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Abstract

The energy of a graph is the sum of the absolute values of the eigenvalues of its adjacency

matrix. We denote by U(2n) the set of all unicyclic graphs of order 2n with a perfect matching.

Let B(2n) = {G ∈ U(2n)| the length of the unique cycle of G is divisible by 4} and A(2n) =

U(2n) \B(2n). W. Wang, in the paper “Ordering of unicyclic graphs with perfect matchings by

minimal energies”, MATCH Commun. Math. Comput. Chem. 66 (2011) 927–942, [1], posed

a conjecture about ordering of graphs in A(2n) by minimal energies. We now characterize the

graphs in U(2n) with the first seven minimal energies and offer an answer to the conjecture.

1 Introduction

Let G be a simple graph with n vertices and A(G) its adjacency matrix. Let λ1, λ2, . . . , λn

be the eigenvalues of A(G). Then the energy of G, denoted by E(G), is defined as

E(G) =
∑n

i=1 |λi| (see [2–4]). The theory of graph energy is well developed nowadays. Its

details can be found in the recent book [5] and reviews [6], and in the references therein.

One of the fundamental questions that is encountered in the study of graph energy is

which graphs (from a given class) have the maximal and minimal energy. A remarkably

large number of papers were published on such extremal problems (see [5, Chapter 7]).
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One of the graph classes that has been quite thoroughly studied is the class of all unicyclic

graphs [7-27], i.e., connected graphs with one unique cycle. A number of results concerning

the extremal energies of various families of unicyclic graphs has been obtained as follows:

unicyclic graphs with maximal energies [7,11,14]; bipartite unicyclic graphs with maximal

energies [8,9,10,12,13]; unicyclic graphs with minimal energies [15-18]; unicyclic graphs

with a perfect matching [19-23]; unicyclic graphs with a given diameter [24]; unicyclic

graphs with given number of pendent vertices [25,26].

The characteristic polynomial det(xI−A(G)) of the adjacency matrix A(G) of a graph

G is also called the characteristic polynomial ofG, is written as φ(G, x) =
∑n

i=0 ai(G) xn−i.

Using these coefficients of φ(G, x), the energy E(G) of a graph G with n vertices can be

expressed by the following Coulson integral formula [4]:

E(G) =
1

2π

∫ +∞

−∞

1

x2
log

⎡
⎣
⎛
⎝

�n/2�∑
i=0

(−1)i a2i(G) x2i

⎞
⎠

2

+

⎛
⎝

�n/2�∑
i=0

(−1)i a2i+1(G) x2i+1

⎞
⎠

2⎤
⎦ dx .

(1)

Throughout this paper, we write bi(G) = |ai(G)|. It is easy to see that b0(G) = 1,

b1(G) = 0, and b2(G) equals the number of edges of G.

About the signs of the coefficients of the characteristic polynomials of unicyclic graphs,

the following results were shown in [15].

Lemma 1.1 [15]. Let G be a unicyclic graph and the length of the unique cycle of G be �.

Then we have the following.

(1) b2i(G) = (−1)i a2i(G);

(2) b2i+1(G) = (−1)i a2i+1(G), if G contains a cycle of length � with � �≡ 1 (mod 4);

(3) b2i+1(G) = (−1)i+1 a2i+1(G), if G contains a cycle of length � with � ≡ 1 (mod 4).

From Lemma 1.1, the Coulson integral formula (1) can be rewritten as the following

form (in terms of bi(G)) for unicyclic graphs as follows.

E(G) =
1

2π

∫ +∞

−∞

1

x2
log

⎡
⎣
⎛
⎝

�n/2�∑
i=0

b2i(G) x2i

⎞
⎠

2

+

⎛
⎝

�n/2�∑
i=0

b2i+1(G) x2i+1

⎞
⎠

2⎤
⎦ dx . (2)

It follows that E(G) is a strictly monotonically increasing function of those numbers

bi(G) , i = 0, 1, . . . , n, for unicyclic graphs. This in turn provides a way of comparing the

energies of a pair of unicyclic graphs. That is to say, the method of the quasi-ordering

relation ” � ” , outlined in the book [4] on the set of forests, can be generalized to the set

of unicyclic graphs as follows.

-98-



Definition 1.1. Let G1 and G2 be two unicyclic graphs of order n. If bi(G1) ≤ bi(G2) for

all i with 1 ≤ i ≤ n, then we write G1 � G2.

Furthermore, if G1 � G2 and there exists at least one index j such that bj(G1) <

bj(G2), then we write that G1 ≺ G2. If bi(G1) = bi(G2) for all i, we write G1 ∼ G2.

According to the Coulson integral formula (2), we have for two unicyclic G1 and G2 of

order n that

G1 � G2 =⇒ E(G1) ≤ E(G2)

G1 ≺ G2 =⇒ E(G1) < E(G2) .

In this paper, for the sake of conciseness, we introduce the symbols ” ⇀ ” as follows.

E(G1) < E(G2) ⇐⇒ G1 ⇀ G2 .

In the following of this paper, we always assume that the order of a graph G is 2n.

We denote by U(2n) the set of all unicyclic graphs of order 2n with a perfect matching.

Let B(2n) = {G ∈ U(2n)| the length of the unique cycle of G is divisible by 4} and

A(2n) = U(2n)\B(2n). Let Ai (i = 1, 2, 3, 4) and Bi (i = 1, 2, 3) be the graphs shown in

Figure 1. Let Li (i = 1, 2, 3, 4) be the graphs shown in Figure 2.

1A

1B

2n 
 3n 
 3n 
 3n 


3n 
 3n 
 4n 


2A 3A 4A

2B 3B

Fig. 1. The graphs in U(2n) with the first seven minimal energies.

2n 


4n 


1L

2n 

4n 


2L 3L 4L

Fig. 2. Some candidate graphs in U(2n).
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In [19], Li et al. proved that the unique graph in U(2n) with minimal energy is A1 or

B1. Li and Li [20] have further shown that the unique graph in U(2n) with the minimal

energy is B1 by directly comparing the energies of A1 and B1. Recently, Wang [1] posed

a conjecture about ordering of the graphs in A(2n) by minimal energies as follows.

Conjecture 1. Let G ∈ A(2n) and G �= Ai (i = 1, 2, 3, 4), Bi (i = 1, 2), L2, L3, L4. If

n ≥ 45, then

B1 ⇀ A1 ⇀ B2 ⇀ A2 ⇀ A3 ⇀ A4 ⇀ L2 ⇀ L3 ⇀ L4 ⇀ G .

Wang [1] pointed out that in order to prove the above conjecture, we only need to

prove that B1 ⇀ A1 and A3 ⇀ A4. In this paper, by Lemmas 7.5 and 7.8 in Section 7,

we show that the above conjecture is true. In fact, when the conjecture is true, we only

can determine the graphs in A(2n) with the first five minimal energies for n ≥ 45.

Motivated by the above conjecture, in this paper, we characterize the graphs in U(2n)

with the first seven minimal energies in the following theorem which is the main result of

this paper.

Theorem 1.1. Let G ∈ U(2n) and G �= Ai (i = 1, 2, 3, 4), Bi (i = 1, 2, 3). If n ≥ 191, then

B1 ⇀ A1 ⇀ B2 ⇀ A2 ⇀ A3 ⇀ A4 ⇀ B3 ⇀ G.

2 The basic strategy of the proof of Theorem 1.1

In this section, we outline the basic strategy of the proof of Theorem 1.1. Denote by

K(G) the number of perfect matchings of a graph G. We first quote the following basic

property about the number of perfect matchings of unicyclic graphs.

Lemma 2.1 [21]. Let G ∈ U(2n) and C� be the unique cycle of G . If at least one vertex

of C� is attached by a forest of odd order, then K(G) = 1. Otherwise, K(G) = 2.

Let B(2n) = {G ∈ U(2n)| the length of the unique cycle of G is divisible by 4} and

A(2n) = U(2n)\B(2n). By Lemma 2.1, we can classify the graphs in B(2n) into two

classes as follows.

C(2n) = {G ∈ B(2n)|K(G) = 1}

D(2n) = {G ∈ B(2n)|K(G) = 2} .
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Next, in order to further classify the graphs in D(2n) into two classes, we introduce

some notations in what follows.

Throughout this paper, we denote by M(G) a perfect matching of a graph G. Let

Ĝ = G − M(G) − S0, where S0 is the set of isolated vertices in G − M(G). We call Ĝ

the capped graph of G and G the original graph of Ĝ. For example, the capped graphs

of L1, B3, L2 are shown in Figure 3.

4n 
 4n 
 2n 


2L
#

1L
#

3B
#

Fig. 3. The capped graphs of L1, B3, L2 .

Denote by E(G) the edge set of a graph G. Let G ∈ D(2n). Then K(G) = 2. By

Lemma 2.1 and the fact that a tree contains at most one perfect matching, we can see

that E(G − C�) ∩ E(Ĝ) is identical under two different perfect matchings of G. Thus we

can classify the graphs in D(2n) into the following two classes.

E(2n) = {G ∈ D(2n)|E(G− C�) ∩ E(Ĝ) �= ∅}

F(2n) = {G ∈ D(2n)|E(G− C�) ∩ E(Ĝ) = ∅} .

It is easy to see that

U(2n) = A(2n) ∪ C(2n) ∪ E(2n) ∪ F(2n)

and B2 ∈ C(2n), B3 ∈ E(2n) and L2 ∈ F(2n).

For n ≥ 191, our basic strategy of the proof of Theorem 1.1 is to prove the following

results (R1)− (R5):

(R1) B3 ⇀ L1

B3 ⇀ L2

B3 ⇀ L3

B1 ⇀ A1 ⇀ B2 ⇀ A2 ⇀ A3 ⇀ A4 ⇀ B3 .

(R2) For any G ∈ A(2n)\{A1, A2, A3, A4, L3}, we have L1 ⇀ G.
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(R3) For any G ∈ C(2n)\{B2, L1}, we have L1 ⇀ G.

(R4) For any G ∈ E(2n)\{B1, B3, }, we have B3 ⇀ G.

(R5) For any G ∈ F(2n)\{L2}, we have L2 ⇀ G.

It is easy to see that we can prove Theorem 1.1 by combining the above results (R1)–

(R5). We first prove (R2)–(R5) in Sections 3 to 6, respectively. Finally, we prove (R1) in

Section 7.

3 Proof of (R2)

An i-matching is a disjoint union of i edges in G. The number of i-matchings is denoted

by m(G, i). We agree that m(G, 0) = 1 and m(G, i) = 0(i < 0). In order to compare

the energies of two unicyclic graphs by using the method of quasi-ordering, we need to

compute the numbers bi(G). On bi(G), we can easily obtain the following results.

Lemma 3.1 [15]. Let G be a unicyclic graph and C� its unique cycle of length �. Let r be

a positive integer. Then,

b2i+1(G) =

{
0 � = 2r .

2m(G− C� , i− (�− 1)/2) � = 2r + 1 .
(3)

b2i(G) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(G, i) � = 2r + 1 .

m(G, i) + 2m(G− C� , i− �/2) � = 4r + 2 .

m(G, i)− 2m(G− C� , i− �/2) � = 4r .

(4)

It is easy to see that E(G) = E(Ĝ) ∪ M(G). Thus each i-matching Ω of G can be

partitioned into two parts: Ω = Φ ∪Ψ, where Φ ⊆ E(Ĝ) and Ψ ⊆ M(G). Let r
(2i)
j (G) be

the number of ways to choose i independent edges in G such that just j edges are in Ĝ.

We agree that r
(0)
0 (G) = 1 and r

(2i)
j (G) = 0 (i < 0). For example, r

(2i)
0 (G) =

(
n
i

)
and

r
(2i)
1 (G) = n

(
n− 2
i− 1

)
.

Thus we have

m(G, i) =
i∑

j=0

r
(2i)
j (G) = p+

i∑
j=2

r
(2i)
j (G)

where

p =

(
n
i

)
+ n

(
n− 2
i− 1

)
.

By using formula (4), we get the following two formulas that are frequently used in

the rest of this paper.
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b2i(G) ≥ p+
i∑

j=2

r
(2i)
j (G) � �≡ 0 (mod 4) (5)

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−�/2∑
j=0

r
(2i−�)
j (G− C�) � ≡ 0 (mod 4) . (6)

In order to prove (R2), we quote the following lemma.

Lemma 3.2 [1]. Let G ∈ U(2n) with n ≥ 5. If G �= Ai (i = 1, 2, 3, 4), B2, L2, L3, then

m(Ĝ, 2) ≥ 2n− 7.

Proof of (R2). Let G ∈ A(2n)\{A1, A2, A3, A4, L3} and C� be the unique cycle of

G. Then � �≡ 0 (mod 4), which implies that G �= B2, L2. By Lemma 3.2, we have

m(Ĝ, 2) ≥ 2n− 7.

By using formula (5) and the fact that two independent edges in Ĝ are at most incident

with four different edges in M(G), we have

b2i(G) ≥ p+
i∑

j=2

r
(2i)
j (G) ≥ p+ r

(2i)
2 (G)

≥ p+m(Ĝ, 2)

(
n− 4
i− 2

)
≥ p+ (2n− 7)

(
n− 4
i− 2

)
.

By using formula (6) and some calculation, we have

b2i(L1) = p+
i∑

j=2

r
(2i)
j (L1)− 2

i−2∑
j=0

r
(2i−4)
j (L1 − C4)

= p+ (2n− 7)

(
n− 4
i− 2

)
−

(
n− 3
i− 2

)
. (7)

Therefore, b2i(G) ≥ b2i(L1) and b4(G) > b4(L1). Further, b2i+1(G) ≥ 0 = b2i+1(L1). This

implies that G � L1. Then L1 ⇀ G. �

4 Proof of (R3)

Let G ∈ C(2n) and C� be the unique cycle of G. Then we have � ≡ 0 (mod 4) and G

contains only one perfect matching. In order to prove the result (R3), we will take two

steps to consider the problem: � = 4 and � ≥ 8. First, we consider the case when � = 4.

Lemma 4.1. Let G ∈ C(2n) with n ≥ 5 and C� be the unique cycle of G. Assume that

G �= B2, L1. If � = 4, then L1 ⇀ G.
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Proof. By formula (7) we have

b2i(L1) = p+ (2n− 7)

(
n− 4
i− 2

)
−

(
n− 3
i− 2

)
.

Let β1 be the number of ways to choose two independent edges in Ĝ such that at least

one edge is not in E(C4) and β2 the number of ways to choose two independent edges in

Ĝ such that two edges are both in E(C4). We consider the following two cases.

Case 1: E(C4) ∩M(G) = ∅.
Then E(C4) ⊆ E(Ĝ) from which follows β1 ≥ 2(n− 4) and β2 = 2, implying r2i2 (G) ≥

(2n−6)

(
n− 4
i− 2

)
. Since β2 = 2, we have r2ij+2(G) ≥ 2 ·r2i−4

j (G−C4) for all 1 ≤ j ≤ i−2.

By using formula (6) we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−2∑
j=0

r
(2i−4)
j (G− C4)

= p+ r2i2 (G)− 2r2i−4
0 (G− C4) +

i∑
j=3

r
(2i)
j (G)− 2

i−2∑
j=1

r
(2i−4)
j (G− C4)

= p+ r2i2 (G)− 2

(
n− 4
i− 2

)
+

i−2∑
j=1

(
r
(2i)
j+2(G)− 2r

(2i−4)
j (G− C4)

)

≥ p+ (2n− 8)

(
n− 4
i− 2

)

≥ p+ (2n− 7)

(
n− 4
i− 2

)
−

(
n− 3
i− 2

)
= b2i(L1) .

Further b4(L1) < b4(G), which implies that L1 ≺ G. Then L1 ⇀ G.

Case 2: E(C4) ∩M(G) �= ∅.
If |E(C4)∩M(G)| = 2, then G contains two different perfect matchings which contra-

dicts with the condition that G ∈ C(2n). Then |E(C4) ∩M(G)| = 1, which implies that

β2 = 1. We consider the following two subcases.

Subcase 2.1: E(G− C4) ∩ E(Ĝ) = ∅.
Since G �= B2, L1 and by using formula (6),

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−2∑
j=0

r
(2i−4)
j (G− C4)

= p+ r2i2 (G) +
i∑

j=3

r
(2i)
j (G)− 2r2i−4

0 (G− C4)
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≥ p+ r2i2 (G)− 2r2i−4
0 (G− C4)

≥ p+ (n− 3)

(
n− 4
i− 2

)
+ (n− 3)

(
n− 4
i− 2

)
−

(
n− 3
i− 2

)

≥ p+ (2n− 7)

(
n− 4
i− 2

)
−

(
n− 3
i− 2

)
= b2i(L1) .

It is further b4(L1) < b4(G), which implies L1 ≺ G. It follows that L1 ⇀ G.

Subcase 2.2: E(G− C4) ∩ E(Ĝ) �= ∅.
By using formula (6), we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−2∑
j=0

r
(2i−4)
j (G− C4)

≥ p+ β1

(
n− 4
i− 2

)
− r2i−4

0 (G− C4)− r2i−4
1 (G− C4)

≥ p+ (2n− 6)

(
n− 4
i− 2

)
−

(
n− 3
i− 2

)
−

(
n− 5
i− 2

)

≥ p+ (2n− 7)

(
n− 4
i− 2

)
−

(
n− 3
i− 2

)
= b2i(L1) .

Further, b4(L1) < b4(G), implying L1 ≺ G. It follows that L1 ⇀ G.

This completed the proof.

Next, we consider the case when � ≥ 8.

Lemma 4.2. Let G ∈ C(2n) with n ≥ 8 and C� be the unique cycle of G. If � ≥ 8, then

L1 ⇀ G.

Proof. Since G ∈ C(2n), we have that G contains only one perfect matching, which

implies that |E(C�) ∩M(G)| ≤ �/2− 1. We consider the following two cases.

Case 1: |E(C�) ∩M(G)| = �/2− 1.

Then |E(C�)∩E(Ĝ)| = �/2+ 1. Let M1 and M2 be two different perfect matchings of

C�. We further consider the following two subcases.

Case 1.1: M1 �⊆ E(Ĝ) and M2 �⊆ E(Ĝ).

Then Both M1 and M2 contain at least two edges of Ĝ. Moreover one of them contains

at least threes edges of Ĝ. Let M0 be a matching in G−C� with cardinality i− �/2. Then

there are two matchings M1 ∪M0 and M2 ∪M0 with cardinality i corresponding to M0.
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By using formula (6) we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−�/2∑
j=0

r
(2i−�)
j (G− C�)

≥ p+ β0

(
n− 4
i− 2

)
− r2i−�

0 (G− C�)

= p+ β0

(
n− 4
i− 2

)
−

(
n− (�/2− 1)− 2

i− �/2

)

where β0 denote the number of ways to choose two independent edges in Ĝ such that at

least one edge is in E(C�).

Let C� = v1v2 · · · v�v1 and Ti be the trees planted at vi for 1 ≤ i ≤ �. Let mi be the

number of edges of Ĝ in Ti. Then we have

β0 ≥
[(

�/2− 1
2

)
+ (m1 +m2 + · · ·+ml)(�/2 + 1− 2)

]

=

[(
�/2− 1

2

)
+ (n− �/2− 1)(�/2 + 1− 2)

]

= n(�/2− 1)− (�/2− 1)(�/4 + 2) .

Let f(x) = n(x
2
− 1)− (x

2
− 1)(x

4
+ 2). Then f ′(x) = 1

4
(2n− x− 3) ≥ 0 when x ≤ 2n− 3.

Since 8 ≤ � ≤ 2n, we have β0 = f(�) ≥ min{f(8), f(2n)} = f(8) = 3n − 12. It follows

that

b2i(G) ≥ p+ (3n− 12)

(
n− 4
i− 2

)
−

(
n− (�/2− 1)− 2

i− �/2

)

≥ p+ (3n− 12)

(
n− 4
i− 2

)
−

(
n− 5
i− 4

)

≥ p+ (2n− 7)

(
n− 4
i− 2

)
−

(
n− 3
i− 2

)
= b2i(L1) .

Further, b4(L1) < b4(G), which implies L1 ≺ G. Then L1 ⇀ G.

Case 1.2: M1 ⊆ E(Ĝ) or M2 ⊆ E(Ĝ).

Without loss of generality, we assume that M1 ⊆ E(Ĝ). Then |M1 ∩ E(Ĝ)| = �/2 ≥ 4

and |M2 ∩ E(Ĝ)| = 1. By using formula (6) we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−�/2∑
j=0

r
(2i−�)
j (G− C�)

≥ p+ β3

(
n− 4
i− 2

)
− r2i−�

0 (G− C�)

= p+ β3

(
n− 4
i− 2

)
−

(
n− (�/2− 1)− 2

i− �/2

)
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where β3 denote the number of ways to choose two independent edges in Ĝ such that at

least one edge is in M1 and no edge is in M2.

Using the same method as in Subcase 1.1, we have

β3 ≥
[(

�/2
2

)
+

(
n− �

2
− 1

)(
�

2
+ 1− 2

)]
> β0 ≥ 3n− 12 .

Thus b2i(L1) ≥ b2i(G) and b4(L1) < b4(G). It implies that L1 ⇀ G.

Case 2: |E(C�) ∩M(G)| ≤ �/2− 2.

Then |E(C�)∩E(Ĝ)| ≥ �/2+2 ≥ 6. Let M1 and M2 be two different perfect matchings

of Cell. Thus Both M1 and M2 contain at least two edges of Ĝ. Since � ≥ 8, we know

that M1 or M2 contains at least four edges of Ĝ. Take |E(C�) ∩ E(Ĝ)| = x. Then

|E(C�) ∩M(G)| = �− x. By using formula (6) we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−�/2∑
j=0

r
(2i−l)
j (G− C�)

≥ p+ β4

(
n− 4
i− 2

)
− r2i−�

0 (G− C�)

= p+ β4

(
n− 4
i− 2

)
−

(
n− (�− x)− (2x− �)

i− �/2

)

= p+ β4

(
n− 4
i− 2

)
−

(
n− x
i− �/2

)

≥ p+ β4

(
n− 4
i− 2

)
−

(
n− �/2− 2
i− �/2

)

where β4 denote the number of ways to choose two independent edges in Ĝ such that at

least one edge is in E(C�). Using the same method as in Subcase 1.1, we have

β4 ≥
[
x(x−2)

2
+ (n− x)(x− 2)

]

≥
[
6(6−2)

2
+ (n− 6)(6− 2)

]
≥ 4n− 12 .

This implies

b2i(G) ≥ p+ (4n− 12)

(
n− 4
i− 2

)
−

(
n− �/2− 2
i− �/2

)

≥ p+ (4n− 12)

(
n− 4
i− 2

)
−

(
n− 6
i− 4

)

≥ p+ (2n− 7)

(
n− 4
i− 2

)
−

(
n− 3
i− 2

)
= b2i(L1) .

Thus b2i(L1) ≤ b2i(G) and b4(L1) < b4(G). It implies that L1 ⇀ G.

Proof of (R3). The result can be directly derived from Lemmas 4.1 and 4.2. �
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5 Proof of (R4)
Let G ∈ E(2n) and C� be the unique cycle of G. Then we have � ≡ 0 (mod 4) and G

contains two different perfect matchings. Moreover, for each perfect matching M(G), we

have E(G − C�) ∩ E(Ĝ) �= ∅. In order to prove the result (R4), we will take two steps to

consider the problem: � = 4 and � ≥ 8. First, we consider the case when � = 4.

Lemma 5.1. Let G ∈ E(2n) with n ≥ 5 and C� be the unique cycle of G. Let G �= B1, B3.

If � = 4, then B3 ⇀ G.

Proof. By using formula (6) and some calculation, we have

b2i(B3) = p+
i∑

j=2

r
(2i)
j (B3)− 2

i−2∑
j=0

r
(2i−4)
j (B3 − C4)

= p+ r
(2i)
2 (B3) + r

(2i)
3 (B3)− 2r

(2i−4)
0 (B3 − C4)− 2r

(2i−4)
1 (B3 − C4)

= p+ 2

(
n− 3
i− 2

)
+ 3(n− 4)

(
n− 4
i− 2

)
+ (n− 4)

(
n− 5
i− 3

)

−
(

n− 2
i− 2

)
− (n− 4)

(
n− 4
i− 3

)
.

Let C4 = v1v2v3v4v1. Let mi be the number of edges in E(Ĝ) that are adjacent to vi

except two edges of C4. Take m1 +m2 +m3 +m4 = x. Then we have 1 ≤ x ≤ n− 3. We

consider the following there cases.

Case 1: x = 1.

Without loss of generality, we assume that m1 = 1 and m2 = m3 = m4 = 0. By using

formula (6), and the fact that G �= B1 and E(G− C4) ∩ E(Ĝ) �= ∅, we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−2∑
j=0

r
(2i−4)
j (G− C4)

≥ p+ r
(2i)
2 (G) + r

(2i)
3 (G)− 2r

(2i−4)
0 (G− C4)− 2r

(2i−4)
1 (G− C4)

≥ p+ 2

(
n− 3
i− 2

)
+ 3(n− 3)

(
n− 4
i− 2

)
+ (n− 4)

(
n− 5
i− 3

)

−
(

n− 2
i− 2

)
− (n− 4)

(
n− 4
i− 3

)

≥ p+ 2

(
n− 3
i− 2

)
+ 3(n− 4)

(
n− 4
i− 2

)
+ (n− 4)

(
n− 5
i− 3

)

−
(

n− 2
i− 2

)
− (n− 4)

(
n− 4
i− 3

)
= b2i(B3) .
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Further we have b4(B3) < b4(G), which implies that B3 ⇀ G.

Case 2: x = 2.

By using formula (6) and G �= B3, we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−2∑
j=0

r
(2i−4)
j (G− C4)

≥ p+ r
(2i)
2 (G) + r

(2i)
3 (G)− 2r

(2i−4)
0 (G− C4)− 2r

(2i−4)
1 (G− C4)

≥ p+ 2

(
n− 3
i− 2

)
+ 3(n− 4)

(
n− 4
i− 2

)
+ (n− 5)

(
n− 4
i− 2

)

+(n− 4)

(
n− 5
i− 3

)
−

(
n− 2
i− 2

)
− (n− 4)

(
n− 4
i− 3

)
≥ b2i(B3) .

Further, b4(B3) < b4(G), which implies B3 ⇀ G.

Case 3: 3 ≤ x ≤ n− 3.

By using formula (6) we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−2∑
j=0

r
(2i−4)
j (G− C4)

≥ p+ r
(2i)
2 (G) + r

(2i)
3 (G)− 2r

(2i−4)
0 (G− C4)− 2r

(2i−4)
1 (G− C4)

≥ p+ x

(
n− 3
i− 2

)
+ 2(n− x− 2)

(
n− 4
i− 2

)
+ (x− 1)(n− x− 2)

(
n− 4
i− 2

)

+(x− 1)(n− x− 2)

(
n− 5
i− 3

)
−

(
n− 2
i− 2

)
− (n− 4)

(
n− 4
i− 3

)

≥ p+ 3

(
n− 3
i− 2

)
+ 4(n− 5)

(
n− 4
i− 2

)
+ 2(n− 5)

(
n− 5
i− 3

)

−
(

n− 2
i− 2

)
− (n− 4)

(
n− 4
i− 3

)
≥ b2i(B3) .

Further, b4(B3) < b4(G), which implies that B3 ⇀ G.

This completes the proof.

Next, we consider the case when � ≥ 8.

Lemma 5.2. Let G ∈ E(2n) with n ≥ 5 and C� be the unique cycle of G. If � ≥ 8, then

B3 ⇀ G.

Proof. By using formula (6) we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−�/2∑
j=0

r
(2i−l)
j (G− C�)

-109-



≥ p+ 2

(
n− 3
i− 2

)
+ (β5 − 1)

(
n− 4
i− 2

)
+

�

2

(
n− 4
i− 3

)

+

(
n− �

2
− 1

)(
n− 5
i− 3

)
− r2i−�

0 (G− C�)− r2i−�
1 (G− C�)

≥ p+ 2

(
n− 3
i− 2

)
+ (β5 − 1)

(
n− 4
i− 2

)
+ (n− 1)

(
n− 5
i− 3

)

−
(

n− �/2
i− �/2

)
− (n− �/2− 1)

(
n− �/2− 2
i− �/2− 1

)

≥ p+ 2

(
n− 3
i− 2

)
+ (β5 − 1)

(
n− 4
i− 2

)
+ (n− 1)

(
n− 5
i− 3

)

−
(

n− 4
i− 2

)
− (n− 5)

(
n− 6
i− 5

)

where β5 denotes the number of ways to choose two independent edges in Ĝ such that at

least one edge is in E(C�).

Using the same method as in Subcase 1.1 of Lemma 4.2, we have

β5 ≥
(

�/2
2

)
+

(
n− �

2

)(
�

2
− 1

)
≥ 3n− 6 .

Then,

b2i(G) ≥ p+ 2

(
n− 3
i− 2

)
+ 3(n− 4)

(
n− 4
i− 2

)
+ (n− 4)

(
n− 5
i− 3

)

−
(

n− 2
i− 2

)
− (n− 4)

(
n− 4
i− 3

)
= b2i(B3) .

Further, b4(B3) < b4(G), implying B3 ⇀ G.

This completes the proof.

Proof of (R4). The result can be directly derived from Lemmas 5.1 and 5.2. �.

6 Proof of (R5)

Let G ∈ F(2n) and C� be the unique cycle of G. Then we have � ≡ 0 (mod 4) and G

contains two different perfect matchings. Moreover, E(G−C�)∩E(Ĝ) = ∅ for each perfect

matching M(G) of G. In order to prove the result (R5), we will take two steps to consider

the problem: � = 4 and � ≥ 8. First, we consider the case when � = 4.
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Lemma 6.1. Let G ∈ F(2n) with n ≥ 5 and C� be the unique cycle of G. Let G �= L2
. If

� = 4, then L2 ⇀ G.

Proof. By using formula (6), we have

b2i(L2) = p+
i∑

j=2

r
(2i)
j (L2)− 2

i−2∑
j=0

r
(2i−4)
j (L2 − C4)

= p+ r
(2i)
2 (L2)− 2r

(2i−4)
0 (L2 − C4)

= p+

(
n− 2
i− 2

)
+ (n− 2)

(
n− 3
i− 2

)
− 2

(
n− 2
i− 2

)

= p+ (n− 2)

(
n− 3
i− 2

)
−

(
n− 2
i− 2

)
.

By using formula (6), and the fact that G �= L2 and E(G− C4) ∩ E(Ĝ) = ∅, we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−2∑
j=0

r
(2i−4)
j (G− C4)

≥ p+ r
(2i)
2 (G)− 2r

(2i−4)
0 (G− C4)

≥ p+

(
n− 2
i− 2

)
+ (n− 2)

(
n− 3
i− 2

)
+

(
n− 4
i− 2

)
− 2

(
n− 2
i− 2

)

= p+ (n− 2)

(
n− 3
i− 2

)
+

(
n− 4
i− 2

)
−

(
n− 2
i− 2

)
≥ b2i(L2) .

Further, b4(L2) < b4(G), which implies L2 ⇀ G.

By this the proof is completed.

Next, we consider the case when � ≥ 8.

Lemma 6.2. Let G ∈ F(2n) with n ≥ 5 and C� be the unique cycle of G. If � ≥ 8, then

L2 ⇀ G.

Proof. By using formula (6) and the fact that E(G− C�) ∩ E(Ĝ) = ∅, we have

b2i(G) = p+
i∑

j=2

r
(2i)
j (G)− 2

i−�/2∑
j=0

r
(2i−l)
j (G− C�)

≥ p+ r
(2i)
2 (G)− 2r

(2i−�)
0 (G− C�)

≥ p+ β6

(
n− 3
i− 2

)
− r

(2i−�)
0 (G− C�)

≥ p+ β6

(
n− 3
i− 2

)
−

(
n− �/2
i− �/2

)

≥ p+ β6

(
n− 3
i− 2

)
−

(
n− 2
i− 2

)
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where β6 is the number of ways of choosing two independent edges of E(Ĝ), such that

these are adjacent to a same edge in M(G). Then β6 ≥ (n−�/2)+ �/2 = n, which implies

b2i(G) ≥ p+ n

(
n− 3
i− 2

)
−

(
n− 2
i− 2

)
≥ b2i(L2) .

Further, b4(L2) < b4(G), implying L2 ⇀ G.

Proof of (R5). The result can be directly derived from Lemmas 6.1 and 6.2. �

7 Proof of (R1)

From Section 2 to Section 6, the quasi-ordering method is always used to compare the

energies of two unicyclic graphs. However, if the quantities bi(G) cannot be compared

uniformly, then the common comparing method is invalid, and this happens quite often.

Recently much effort has been made to tackle these quasi-ordering incomparable problems.

Efficient approaches to solve these problems can be found in [1,11-14,17,18,20,27-36]. In

particular, by means of the Coulson integral formula for the energy difference of two

graphs, Huo et al. determined the fourth energy tree [28] and the maximal energy unicyclic

graph [14]. Recently, Shan et al. [35] presented a new method of comparing the energies

of subdivision bipartite graphs which can also be used to tackle these quasi-ordering

incomparable problems. By using this method, they determined the first 3n − 84 (when

n is odd) and 3n− 87 (when n is even) largest energy trees in [36].

In this section, we use the the Coulson integral formula for the energy difference of

two graphs to compare the energies of two unicyclic graphs which are quasi-ordering

incomparable. The following lemma is a well known result due to Gutman [6], which will

be used in the sequel.

Lemma 7.1 [6]. Let φ1(x) and φ2(x) be two characteristic polynomials of two graphs G1

and G2 with the same order, respectively. Then

E(G1)− E(G2) =
1

π

∫ +∞

−∞
log

∣∣∣∣
φ1(ix)

φ2(ix)

∣∣∣∣ dx =
1

2π

∫ +∞

−∞
log

p21(x) + q21(x)

p22(x) + q22(x)
dx (8)

where φ1(ix) = p1(x) + i q1(x) and φ2(ix) = p2(x) + i q2(x).

By using formula (8), we can prove the following results.

Lemma 7.2. If n ≥ 5, then B3 ⇀ L1 .
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Proof. By some calculation we have

φ(B3, x) = x2(x2 − 1)n−5(x8 − (n+ 5)x6 + (6n− 1)x4 − (6n− 1)x2 + 8)

φ(L1, x) = (x2 − 1)n−5(x10 − (n+ 5)x8 + (5n+ 2)x6 − (5n+ 1)x4 + (n+ 4)x2 − 1) .

By using formula (8) we have

E(B3)− E(L1) =
1

π

∫ +∞

−∞
logF (x) dx =

2

π

∫ +∞

0

logF (x) dx

where

F (x) =
x2(x8 + (n+ 5)x6 + (6n− 1)x4 + (6n− 1)x2 + 8)

x10 + (n+ 5)x8 + (5n+ 2)x6 + (5n+ 1)x4 + (n+ 4)x2 + 1
.

Write

f(t, x) =
φ̃1

φ̃2

=
x2(x8 + (t+ 5)x6 + (6t− 1)x4 + (6t− 1)x2 + 8)

x10 + (t+ 5)x8 + (5t+ 2)x6 + (5t+ 1)x4 + (t+ 4)x2 + 1
.

Then

f ′
t(t, x) =

x4(x2 + 1)(x4 + x2 − 1)(x6 + 7x4 + 9x2 + 2)

(φ̃2)2

which has only one positive real root, equal to
√

(
√
5− 1)/2. Therefore f(n, x) strictly de-

creases when x ∈
(
0,
√

(
√
5− 1)/2

)
and strictly increases when x ∈

[√
(
√
5− 1)/2,+∞

)
.

Take

f(+∞, x) = lim
n→+∞

f(n, x) =
x2(x6 + 6x4 + 6x2)

x8 + 5x6 + 5x4 + x2
=

x6 + 6x4 + 6x2

x6 + 5x4 + 5x2 + 1
.

It follows that

E(B3)− E(L1) =
2

π

∫ +∞

0

log f(n, x) dx

≤ 2

π

∫ √√
5−1
2

0

log f(5, x) dx+
2

π

∫ +∞
√√

5−1
2

log f(+∞, x) dx

.
=

2

π
(−0.851236 + 0.502351) < 0 .

Thus, B3 ⇀ L1 for n ≥ 5.

Lemma 7.3. If n ≥ 5, then B3 ⇀ L2 .

Proof. By some calculation we obtain

φ(B3, x) = x2(x2 − 1)n−5(x8 − (n+ 5)x6 + (6n− 1)x4 − (6n− 1)x2 + 8)
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φ(L2, x) = x2(x2 − 1)n−3(x4 − (n+ 3)x2 + 2n) .

Using formula (8) we have

E(B3)− E(L2) =
2

π

∫ +∞

0

log
x8 + (n+ 5)x6 + (6n− 1)x4 + (6n− 1)x2 + 8

(x2 + 1)2(x4 + (n+ 3)x2 + 2n)
dx .

Write

f(t, x) =
φ̃1

φ̃2

=
x8 + (t+ 5)x6 + (6t− 1)x4 + (6t− 1)x2 + 8

(x2 + 1)2(x4 + (t+ 3)x2 + 2t)
.

Then

f ′
t(t, x) =

(x2 + 1)2(2x4 + x2 − 2)(x4 + 7x2 + 8)

(φ̃2)2

which has only one positive real root, equal to
√

(
√
17− 1)/4. Therefore f(n, x) strictly

decreases when x ∈
(
0,
√

(
√
17− 1)/4

)
and strictly increases when x ∈

[√
(
√
17− 1)/4,+∞

)
.

Take

f(+∞, x) = lim
n→+∞

f(n, x) =
x6 + 6x4 + 6x2

(x2 + 1)2(x2 + 2)
.

If n ≥ 90, then

E(B3)− E(L2) =
2

π

∫ +∞

0

log f(n, x) dx

≤ 2

π

∫ √√
17−1
4

0

log f(90, x)dx+
2

π

∫ +∞
√√

17−1
4

log f(+∞, x) dx

.
=

2

π
(−0.944366 + 0.942722) < 0 .

Further, B3 ⇀ L2 for 5 ≤ n ≤ 89. Thus, B3 ⇀ L2 for n ≥ 5.

Lemma 7.4. If n ≥ 5, then B3 ⇀ L3 .

Proof. By some calculation we have

φ(L3, x) = (x2 − 1)n−3(x6 − (n+ 3)x4 − 2x3 + (2n+ 1)x2 + 2x− 1)

φ(L2, x) = x2(x2 − 1)n−3(x4 − (n+ 3)x2 + 2n) .

Thus, L2 ≺ L3 , which implies that L2 ⇀ L3 . By Lemma 7.3, B3 ⇀ L3 .

In [5], Li and Li have shown the following result by directly comparing the energies of

B1 and A1 .

Lemma 7.5 [20]. I f n ≥ 5, then B1 ⇀ A1 .
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Wang [1] has shown the following results by means of the theorem of zero points.

Lemma 7.6. If n ≥ 7, then A1 ⇀ B2 .

Lemma 7.7. If n ≥ 4, then B2 ⇀ A2 ⇀ A3 .

In order to prove the result (R1), we only need to prove that A3 ⇀ A4 and A4 ⇀ B3 .

Lemma 7.8. If n ≥ 4, then A3 ⇀ A4 .

Proof. By some calculation we have

φ(A3, x) = (x2 − 1)n−4(x8 − (n+ 4)x6 − 2x5 + (3n+ 4)x4 + 4x3 − (n+ 5)x2 − 2x+ 1)

φ(A4, x) = (x2 − 1)n−4(x8 − (n+ 4)x6 + (3n+ 5)x4 − 2x3 − (n+ 6)x2 + 2x+ 1) .

Write

p1 = x8 + (n+ 4)x6 + (3n+ 4)x4 + (n+ 5)x2 + 1

q1 = 2x5 + 4x3 + 2x

p2 = x8 + (n+ 4)x6 + (3n+ 5)x4 + (n+ 6)x2 + 1

q2 = 2x3 + 2x .

By using formula (8),

E(A3)− E(A4) =
1

2π

∫ +∞

−∞
log

p21 + q21
p22 + q22

dx

and it can be shown that

(p21 + q21)− (p22 + q22) = −x2(x2 + 1)(2x8 + (2n+ 4)x6 + (6n− 3)x4 + (2n+ 3)x2 + 2) ≤ 0 .

It follows that E(A3) < E(A4), that is, A3 ⇀ A4 .

Lemma 7.9. If n ≥ 191, then A4 ⇀ B3 .

Proof. By some calculation we have

φ(A4, x) = (x2 − 1)n−4(x8 − (n+ 4)x6 + (3n+ 5)x4 − 2x3 − (n+ 6)x2 + 2x+ 1)

φ(B3, x) = x2(x2 − 1)n−5(x8 − (n+ 5)x6 + (6n− 1)x4 − (6n− 1)x2 + 8) .

By using formula (8), we get

E(A4)− E(B3) =
1

π

∫ +∞

0

logF1(x) dx <
1

π

∫ +∞

0

logF2(x) dx
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where

F1(x) =
(x2 + 1)2 [(x8 + (n+ 4)x6 + (3n+ 5)x4 + (n+ 6)x2 + 1)2 + (2x3 + 2x)2]

x4(x8 + (n+ 5)x6 + (6n− 1)x4 + (6n− 1)x2 + 8)2

F2(x) =
(x2 + 1)2 [(x8 + (n+ 4)x6 + (3n+ 5)x4 + (n+ 6)x2 + 1)2 + (2x3 + 2x)2]

x4(x8 + (n+ 5)x6 + (6n− 1)x4 + (6n− 1)x2 + 6)2
.

Write

p1 = x8 + (t+ 4)x6 + (3t+ 5)x4 + (t+ 6)x2 + 1

q1 = 2x3 + 2x

p2 = x8 + (t+ 5)x6 + (6t− 1)x4 + (6t− 1)x2 + 6

f(t, x) =
(x2 + 1)2 [p21 + q21]

x4p22
.

Then

f ′
t(t, x) =

(x2 + 1)2

x4
· 2p1p

2
2(x

6 + 3x4 + x2)− 2p2(p
2
1 + q21)(x

6 + 6x4 + 6x2)

p42

≤ (x2 + 1)2

x4
· 2p1p2 ((x

6 + 3x4 + x2)p2 − (x6 + 6x4 + 6x2)p1)

p42

=
(x2 + 1)2

x4
· 2p1p2 (−x4(2x8 + 20x6 + 59x4 + 65x2 + 25))

p42
< 0 .

Thus f(n, x) about n strictly decreases when x ∈ (0,+∞). When n ≥ 300, it implies that

E(A4)− E(B3) <
1

π

∫ +∞

0

log f(n, x) dx <
1

π

∫ +∞

0

log f(300, x) dx

.
= −0.0335098 < 0 .

Further, by some calculation we obtain A4 ⇀ B3 for 191 ≤ n ≤ 299. Therefore,

B3 ⇀ L2 for n ≥ 191.

Proof of (R1). The result can be directly derived from Lemmas 7.2 to 7.9. �
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