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Abstract

Motivated by the problem about HOMO-LUMO separation that arises in mathe-
matical chemistry, Fowler and Pisanski [2, 3] introduced the notion of the HL-index
which measures how large in absolute value may be the median eigenvalues of a
graph. In this note we prove that the median eigenvalues of every bipartite planar
graph of maximum degree at most three belong to the interval [−1, 1]. This proves
the bipartite case of a conjecture of the author that was proposed in [6].

1 Introduction

In a recent work, Fowler and Pisanski [2, 3] introduced the notion of the HL-index of a

graph that is related to the HOMO-LUMO separation studied in theoretical chemistry

(see also Jaklič et al. [4]). This is the gap between the Highest Occupied Molecular Orbital

(HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). In the Hückel model [1], the

energies of these orbitals are in linear relationship with eigenvalues of the corresponding

molecular graph and can be expressed as follows. Let G be a (molecular) graph of order

n, and let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of its adjacency matrix. The eigenvalues

occurring in the HOMO-LUMO separation are λH and λL, where

H = �n+1
2
� and L = �n+1

2
�.
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The HL-index R(G) of the graph G is then defined as

R(G) = max{|λH |, |λL|}.

Let us recall that a simple unweighted graph G is said to be subcubic if its maximum

degree is at most 3. In chemical literature (cf. [2, 4]) connected subcubic graphs are

sometimes termed as chemical graphs. In [2, 3] it is proved that every subcubic graph G

satisfies 0 ≤ R(G) ≤ 3 and that if G is bipartite, then R(G) ≤
√
3. The following is the

main result from [6].

Theorem 1.1. The median eigenvalues λH(G) and λL(G) of every subcubic graph G are

contained in the interval [−
√
2,
√
2 ], i.e., R(G) ≤

√
2.

This result is best possible since the Heawood graph (the bipartite incidence graph of

points and lines of the Fano plane) has λH = −λL =
√
2 as it has been observed in [4].

The following conjecture was proposed in [6]. Let us recall that a graph is planar if it

can be drawn in the plane such that different edges intersect only at common endvertices.

Conjecture 1.2. If G is a planar subcubic graph, then R(G) ≤ 1.

In this paper we prove the conjecture for bipartite graphs.

2 Bipartite planar graphs

Theorem 2.1. The median eigenvalues λH and λL of every subcubic planar bipartite

graph G are contained in the interval [−1, 1], i.e., R(G) ≤ 1.

In order to prove the theorem, we need some preparation. Let us first mention that

eigenvalues of bipartite graphs are symmetric with respect to 0, i.e., if λ is an eigenvalue,

then −λ is an eigenvalue as well and has the same multiplicity as λ. This in particular

implies that λH ≥ 0 and that λL = −λH . Therefore, it suffices to prove that λH ≤ 1.

Let us next recall the eigenvalue interlacing theorem (cf., e.g., [5]) that will be our

main tool in the sequel. For a graph G, we let λi(G) be the ith largest eigenvalue of G

(counting multiplicities).

Theorem 2.2. Let A ⊂ V (G) be a vertex set of cardinality k, and let K = G−A. Then

for every i = 1, . . . , n− k, we have

λi(G) ≥ λi(K) ≥ λi+k(G).
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In estimating the eigenvalues, we shall also use the following lemma, which is easy to

verify by computer.

(a) (b)

(c) (d)

Figure 1: The graphs in Lemma 2.3

Lemma 2.3. (a) Let G be the graph depicted in Fig. 1(a). Then λ2(G) = 1.

(b) Let G be any of the graphs depicted in Fig. 1(b)–(d). Then λ3(G) = 1.

A partition {A,B} of vertices of G is called unfriendly if every vertex in A has at least

as many neighbors in B as in A, and every vertex in B has at least as many neighbors in

A as in B. A partition {A,B} of V (G) is unbalanced if |A| �= |B|.

Lemma 2.4. If G is a subcubic graph with an unbalanced unfriendly partition, then

R(G) ≤ 1.

Proof. Let {A,B} be an unfriendly partition with |B| > |A|. Since G is subcubic, the

maximum degree in G(B) is at most 1, i.e., all components of G(B) are isomorphic to

either K1 or K2. In particular, every eigenvalue of G(B) is equal to either 0, 1, or

−1. Thus, λ1(G(B)) = |λ|B|(G(B))| ≤ 1. Since G(B) = G − A is obtained from G

by deleting |A| vertices and |A| < H, the eigenvalue interlacing theorem shows that

λH(G) ≤ λ|A|+1(G) ≤ λ1(G(B)) ≤ 1. Similarly, interlacing of smallest eigenvalues gives

λL(G) ≥ λn−|A|(G) ≥ λ|B|(G(B)) ≥ −1. This implies that −1 ≤ λL(G) ≤ λH(G) ≤ 1 and

thus R(G) ≤ 1.

Every multigraph has an unfriendly partition, and they are easy to find. Unfortunately,

some graphs have no unbalanced unfriendly partition. A planar and bipartite example

of such a graph is the graph of the cube. A more general class of examples are subcubic

graphs that contain a spanning subgraph consisting of 4-cycles. Since every 4-cycle needs
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to have two of its vertices in one part and the other two in another, every unfriendly

partition is balanced.

Let {A,B} be an unfriendly partition of V (G). Suppose that C ⊂ V (G) is a vertex

set. If C ∩ A �= ∅ and {A \ C,B ∪ C} is also an unfriendly partition (or the same holds

with the roles of A and B interchanged), then we say that C is unstable (with respect to

the partition {A,B}).

Lemma 2.5. If {A,B} is an unfriendly partition of a subcubic graph G and C ⊂ V (G)

is an unstable vertex set, then R(G) ≤ 1.

Proof. One of the unfriendly partitions {A,B} or {A \ C,B ∪ C} is unbalanced. We are

done by Lemma 2.4.

We say that a partition {A,B} of V (G) with |A| < |B| is k-unbalanced if |B| ≥
|A|+ 2k − 1. Let us recall that G(B) = G−A denotes the subgraph of G induced on B.

Lemma 2.6. Suppose that {A,B} is a vertex partition of a subcubic bipartite graph G,

where |A| < |B|. Suppose that precisely one component Q of G(B) has more than two

vertices. If the partition is k-unbalanced for some k ≥ 1 and λk(Q) ≤ 1, then R(G) ≤ 1.

Proof. The proof is essentially the same as the proof of Lemma 2.4. Conditions of the

lemma imply that λk(G(B)) ≤ 1. Since G(B) = G − A is obtained from G by deleting

|A| vertices and |A| + k ≤ H, the eigenvalue interlacing theorem shows that λH(G) ≤
λ|A|+k(G) ≤ λk(G(B)) ≤ 1. Since G is bipartite, this implies that R(G) ≤ 1.

We are ready for the proof of our main theorem.

Proof of Theorem 2.1. Let G be a subcubic planar bipartite graph of order n ≥ 3. Our

goal is to find an unfriendly partition and apply Lemma 2.4, 2.5, or 2.6. We start by taking

the bipartition {A,B} of G, which is obviously an unfriendly partition. If |A| �= |B| (and
in particular if n is odd), we have an unbalanced unfriendly partition, and we are done.

Similarly, if there is an unstable vertex set with respect to this partition, one of the two

partitions is unbalanced, and we are done. Thus we assume henceforth that |A| = |B|
and that there are no unstable vertex sets.

If v is a vertex of degree at most 1, then {v} is unstable with respect to the bipartition.

So, we may assume that every vertex of G has degree two or three.
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Suppose that G contains a 4-cycle C = v1v2v3v4. We will assume that C is selected

in such a way that the number of vertices of G inside the disk D bounded by C (in an

embedding of G in the plane) is minimum. For i = 1, . . . , 4, let ui be the neighbor of

vi that is not on C (if deg(vi) = 2, then we set ui = vi). If u1 = u3 and u2 = u4, then

one of the vertices u1 or u2 (say u1) lies inside D. But then replacing C with the 4-cycle

v1u1v3v4 contradicts our choice of C having minimum number of vertices in its interior.

Thus we may assume that u1 �= u3. Recall that the bipartition {A,B} of G is balanced.

We may assume that v1, v3 ∈ A. The partition {A\V (C), B∪V (C)} is 2-unbalanced, and

G(B) consists of isolated vertices plus one component Q containing C that is isomorphic

to the graph depicted in Figure 1(a) (or to an induced subgraph of that one if u1 = v1

or u3 = v3). Lemma 2.3(a) shows that λ2(Q) ≤ 1 and thus Lemma 2.6 implies that

R(G) ≤ 1.

From now on, we may assume that G has no 4-cycles and that it is connected. Suppose

that G has two vertices, x and y, both of degree 2, that belong to the same bipartite class,

say x, y ∈ A. Let P be a shortest path connecting x and y in G. Let A′ = A + V (P )

and B′ = B + V (P ), where + denotes the symmetric difference. Clearly, |V (P ) ∩ A| =
|V (P ) ∩ B| + 1, since x and y both belong to A. Therefore, the partition {A′, B′} is

unbalanced. Each vertex in V (G) \ V (P ) has at most one neighbor on the path P –

having two would either create a 4-cycle or contradict our choice of P as a shortest path

from x to y. It is also obvious that every vertex in A′∩V (P ) = B∩V (P ) has at most one

neighbor in A′ since such a neighbor must be in A\V (P ). The same holds for B′∩V (P ).

Therefore, the partition {A′, B′} is an unbalanced unfriendly partition of G, and the proof

is complete by Lemma 2.4.

For the rest of the proof, we may assume that each of A and B contains at most

one vertex of degree 2. Thus, G has at most two vertices of degree 2. A well-known

consequence of Euler’s formula (see, e.g., [7]) is that every plane graph of minimum

degree at least 2 satisfies the following condition:

∑
i≥1

fi(i− 6) ≥ 12− 2n2 (1)

where fi denotes the number of faces of G of length i and n2 denotes the number of vertices

of degree 2 in G. (This formula is usually formulated for the case when the minimum

degree is at least 3, i.e. n2 = 0. But adding a vertex of degree 2 is like subdividing an

edge by inserting the degree-2 vertex in the middle of an edge. Since such an operation
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either increases the lengths of two faces by 1, or increases the length of one face by 2, it

preserves the inequality (1).) Since we have n2 ≤ 2, the right hand side of (1) is positive.

This contradicts the fact that G has no cycles and hence no faces of length less than

6 (which implies that the left hand side of (1) cannot be positive). This contradiction

completes the proof.
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