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Abstract

The icosahedral isomer of C60 has the maximum smallest eigenvalue amongst all
fullerenes on 60 or more vertices. This settles in affirmative a decade old conjecture.

1 Introduction

A number of spectral invariants of fullerene graphs have been examined recently as pos-

sible predictors of fullerene stability. Among the most promising were the separator [1],

the smallest eigenvalue [2, 3] and the bipartite edge frustration [4]. The initial approach

was mostly computational and empirical. It lead to an accumulation of data that re-

vealed certain patterns that, in turn, prompted several researchers (and at least one

computer program) to propose a number of conjectures about various spectral invariants

of fullerenes; each of the references cited above contains at least one such conjecture, and

the conjecture-making software Graffiti formulated many more [5]. Most of the human-

made conjectures have been settled in affirmative through an interplay of theoretical and

computational methods [1, 6–9]. One of them, however, has been established only for

large fullerenes, leaving a gap that this note aims to close.

In order to make the note self-contained, we remind the reader of the basic concepts.

A fullerene graph is a planar, 3-regular and 3-connected graph that has only pen-

tagonal and hexagonal faces.
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An eigenvalue of a graph G is an eigenvalue of its adjacency matrix A(G). The set

of all eigenvalues of a graph is called its spectrum. We denote the eigenvalues of G by

λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G). The largest eigenvalue of a fullerene graph is not really

interesting, since it is always equal to 3. However, the other extremal eigenvalue, the

smallest one λn, is of significant interest, since it was found to correlate to some extent

with fullerene stability.

A Laplacian eigenvalue of a graph G is an eigenvalue of its Laplacian matrix L(G) =

D(G)− A(G), where D(G) is a diagonal matrix with the degrees of vertices of G on the

diagonal. In the fullerene case, L(G) = 3I − A(G). The largest Laplacian eigenvalue of

G we denote by μ∞(G).

For other graph-theoretic and graph spectra-related terminology we refer the reader

to any of standard monographs, such as, e. g., [10] or [11]. For fullerene graphs the reader

might wish to consult the standard reference by Fowler and Manolopoulos [12].

2 Main results

The conjecture we consider here was formulated a decade ago by Fowler, Hansen and

Stevanović [2, 3].

Conjecture 1

Amongst all fullerenes with 60 or more vertices, the icosahedral isomer C60 (60 : 1812)

has the maximum smallest eigenvalue.

(The smallest eigenvalue of the icosahedral C60, also known as the buckminster-

fullerene, is equal to −3+
√
5

2
= −φ2, where φ is the Golden Ratio.)

The authors checked the validity of their conjecture for small cases by computing and

tabulating the smallest eigenvalues of all fullerene graphs on at most 100 vertices. A

further verification for all fullerenes on at most 140 vertices followed in a paper concerned

with some conjectures about Ramanujan fullerenes [7]. The authors of the conjecture

also proved that it is valid for all isolated pentagon (IP) isomers [3], thus establishing the

conjecture for an infinite class of graphs.

The next step was made possible by a connection between the quantity called the

bipartite edge frustration and the largest Laplacian eigenvalue of a graph. The bipartite

edge frustration ϕ(G) of a graph G is the smallest number of edges that must be deleted

from G in order to make it bipartite. The number of remaining edges, denoted by bip(G),
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is related to μ∞(G), the largest Laplacian eigenvalue of G via the following theorem ( [11],

p. 293).

Theorem A

Let G be a graph on n vertices. Then bip(G) ≤ n
4
μ∞(G).

As fullerene graphs are 3-regular, we have μ∞(G) = 3− λn(G), and Theorem A reads

as follows.

Theorem A’

Let G be a fullerene graph on n vertices. Then λn(G) ≤ −3 + 4
n
ϕ(G).

It was shown in [4] that for each n such that there is a fullerene graph on n vertices,

there also is a fullerene graph with ϕ(G) = 6. Hence, an infinite class of non-IP fullerenes

was found that satisfies Conjecture 1. In the same paper it was shown that for isomers with

full icosahedral symmetry group the bipartite edge frustration can be exactly computed;

for such a fullerene Gn one has ϕ(Gn) =
√

12
5
n. The empirical results suggested that no

other fullerene exceeds that limit. So, the authors of [4] advanced the following conjecture.

Conjecture 2

Let G be a fullerene graph on n vertices. Then ϕ(Gn) ≤
√

12
5
n.

It is clear that Conjecture 2 implies Conjecture 1 via Theorem A’. The first step toward

turning Conjecture 2 into a theorem was made by Dvořak, Lidický and Škrekovski [13].

They proved a weaker statement.

Theorem B

Let G be a fullerene graph on n vertices. Then ϕ(Gn) ≤ 39.29
√
n.

By applying Theorem B, the validity of Conjecture 1 was established for large enough

fullerene graphs. It was done in [8].

Theorem C

Let G be a fullerene graph on n vertices. Then λn(G) ≤ −3 + 157.16√
n

.

Theorem C implies Conjecture 1 for all fullerene graphs on at least 169292 vertices.

Hence, the conjecture was shown to be asymptotically true, but the question still remained

about its validity for 142 ≤ n ≤ 169290.

Conjecture 2 was finally proved in a recent paper by Faria, Klein and Stehĺık [9].
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Theorem D

If G is a fullerene graph on n vertices, then ϕ(Gn) ≤
√

12
5
n. Equality holds if and only if

n = 60k2 for some k ∈ N and Aut(G) ∼= Ih.

The authors of [9] used their result to improve several bounds obtained in [8]. In

particular, they obtained a better bound on λn(G). Their Corollary 7.2 reads as follows.

Theorem E

If G is a fullerene graph on n vertices, then λn(G) ≤ −3 + 8
√

3
5n
.

Theorem E implies that Conjecture 1 is true for all fullerene graphs on at least n = 264

vertices. Thus the gap had been reduced to 142 ≤ n ≤ 262. The remaining cases could, in

principle, be verified by a direct computation, but the cost and the effort required would

still be prohibitively high.

All the progress reported so far had been achieved by gradually improving the upper

bound on ϕ(G) and then combining it with Theorem A. However, once Conjecture 2 was

proved and became Theorem E, its improving potential was exhausted. Hence, it was

time to look at the other side for a result leading to a possible improvement. Fortunately,

it turned out that exactly such a result was available in the literature.

Theorem F (Theorem 3.5 of [14])

Let G be a connected cubic graph on n vertices. Then b(G) ≤ 4
7+λn(G)

, where b(G) is the

bipartite density of G, b(G) = |E(G)|−ϕ(G)
|E(G)| .

(In the original formulation Theorem F characterizes also the cases of equality, but

none of them matter for fullerene graphs.)

Now, by combining Theorem D with Theorem F, we obtain an improved upper bound

on λn(G). The proof follows by a straightforward computation and we omit the details.

Theorem 1

Let G be a fullerene graph on n vertices. Then λn(G) ≤ −3 + 16√
15n−4

.

The right-hand side of the formula from Theorem 1 is a decreasing function of n, and it

is easily verified that it falls below the value −φ2 between n = 140 and n = 141. Hence no

fullerene on more than 140 vertices can have the smallest eigenvalue greater than −3+
√
5

2
,

the smallest eigenvalue of buckminsterfullerene. By a remarkable coincidence, this exactly

fits with the lower end of the gap in Conjecture 1! Hence, we have closed the gap and

turned Conjecture 1 into a theorem.
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Theorem 2

Amongst all fullerene graphs on 60 or more vertices, the icosahedral isomer of C60 (60 :

1812) has the maximum smallest eigenvalue.

3 Concluding remark

There is another conjecture in [3], concerned with the minimum smallest eigenvalue of

fullerenes, that still remains open. It claims that among all fullerenes on a given number

of vertices the one with the minimum smallest eigenvalue has the maximum number of

pentagon-pentagon adjacencies. This seems to be consistent with the fact that a large

number of pentagon-pentagon adjacencies leads to a low bipartite edge frustration, and

hence to large “bipartiteness”. It seems natural that the graphs that are in a sense closest

to bipartite have the smallest eigenvalue closest to -3.
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