
Hasse Diagram Technique
and Monte Carlo Simulations

Ralf Wieland1, Rainer Bruggemann2

1 ZALF, Institute for Landscape Analysis, Eberswalder Str. 84,
15474 Muencheberg, Germany

email: rwieland@zalf.de
2 Leibniz-Institute of Freshwater Ecology and Inland Fisheries,

Department Ecohydrology, Mueggelseedamm 310,
12587 Berlin, Germany

email: brg_home@web.de

(Received August 10, 2012)

Abstract

Monte Carlo simulations are well known within risk assessments; similarly there
is some interest in applying simple elements of partial order theory in the field of
decision analysis, ranking and evaluation. Much criticism concerning the applica-
tion of partial order to data matrices originates from the translation of even small
numerical differences of data into instances of partial order theory. It is mainly
the appearance of incomparabilities that is often seen as being a disadvantage, es-
pecially when the data differences are considered irrelevant for ranking purposes.
Several attempts to improve this situation have already been reported in the liter-
ature. The most effective approach to date is the fuzzy approach which, however,
also has its disadvantages. For this reason, in this paper we combine Monte Carlo
simulations with instances of partial order theory, namely the concept of dominance
and separability of subsets into partially ordered sets. The example is taken from a
well-known set of data, namely High Production Volume Chemicals (HPVC).

1 Introduction

There are around 100,000 chemicals on the market, many of which may be hazardous to
the environment. A typical question that arises is: how can we decide which chemicals
require special attention (see for instance [13])? One possibility is to rank chemicals
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according to the hazard they pose to the environment. The problem is that there is no
measurable quantity to describe “hazard to the environment”. Instead, the practice is
to select indicators that describe aspects of the environmental hazard. Therefore, the
first step taken before chemicals can be ranked is to define indicators to suit the ranking
purpose. The next step is to quantify the indicators such that a data matrix can ultimately
built up combining the chemicals and the indicators. The columns of this matrix are
defined by the indicators and the rows are associated with the corresponding chemical.
The ranking of chemicals involves the analysis of a multi-indicator system [3,4], which in
turn necessitates an analysis of a data matrix with respect to the purpose of the ranking.
Many techniques have been developed to tackle multi-indicator systems; famous examples
are PROMETHEE [2] and ELECTRE [11]. Whereas these multi-criteria decision analysis
(MCDA) tools are quite sophisticated, assigning a tuple of indicator values to a scalar,
other methods such as weighted sums are very simple and are therefore often preferred
over MCDA tools due to their transparency. In contrast to these MCDA methods, partial
order keeps the indicator values separate (i.e. not numerically combined), meaning there
is no compensation - an unwanted side-effect of MCDA tools [10]). The price, however,
is that not all objects can be compared with all others; they are - in technical terms -
incomparable.

Whether comparable or incomparable objects appear depends on the numerical values
of the indicators. When the indicators are continuous in concept, then the problem is
often that numerical differences within a single indicator seem to be irrelevant for the
ranking purpose. The idea therefore arose [6,8,12] to apply fuzzy concepts. Van de Walle
applied Kosko’s subsethood measure, which combines the different indicators numerically.
Although this internal aggregation (see below) assigns a scalar for each pair of objects,
the structure of a partial order is maintained. Indeed, instead of the original data matrix
a relational matrix arises, which leads to a family of partially ordered sets, ready for final
analysis.

In this paper, we suggest a method following the basic idea of the Hasse diagram
technique (HDT) [4]), which keeps the indicators separate and which extracts as much
information as possible from the partial order relations. Our manuscript is organized in
the following manner.

After summarizing Kosko’s approach (see [6] for details) we introduce the method,
which basically uses the concept of dominance and separability matrices [15]) (subsection
2.3); in the next subsection (section 2.4) we discuss the computer technical realization.
Subsection 2.5 presents a simple fictitious example and the data matrix of a real case.
The method is exemplified in section 3. We start off by using simple matrices of fictitious
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objects for demonstration and then proceed to apply the method to the set of High
Production Volume Chemicals (HPVC) from the EINECS list [14]. This set was also
used to compare MCDA methods with the partial order concept, i.e. with HDT [9], and
to demonstrate the variance-based sensitivity approach [1]. Finally we summarize our
results in section 4 and discuss the method critically in section 4 and conclude the paper
in section 5.

2 Method

2.1 Idea

Dominance and separability matrices, as introduced by Restrepo and Bruggemann, 2008
[15] are means to order disjoint classes of objects. In the following we call the ordered set
of indicator values of an object x a “profile”. When the profile is perturbed by Monte Carlo
simulation, each new profile, denoted as q(xrd), obtained from that of a given object x

belongs to that object. We can therefore define classes by gathering all perturbed indicator
value profiles that belong to certain objects and, instead of examining the order relations
among the objects, we can discuss the dominance values of pairs of classes. When there is
a criss-cross of profiles of objects x and y, caused by only small numerical differences, the
dominance of x over y with respect to a subset of indicators is quite often similar to that
of y over x. This fact can be used to define equivalence classes (complete set of indicators)
and thus to find a new relational graph. More often, however, we find a dominance of
x over y, and vice versa, only with respect to single indicators, which we will call “noise
equivalence” (abbrev.: noise equiv.); see below for details. This idea is specified in the
’Theory’ subsection. In the “Kosko-approach” subsection we summarize Kosko’s widely
used method to obtain fuzzy partial orders.

2.2 Kosko-approach

The idea behind Kosko’s approach is to replace the order relation x < y with a fuzzy
subsethood, SH(x, y). The subsethood matrix SH(x, y) does not necessarily fulfill the
axioms of a partial order. However, as shown in [7], there is an iterative method to obtain
an approximate matrix that can be interpreted as a matrix describing a quasi order. After
extracting the equivalence relations, a reduced matrix is obtained, which is the relational
matrix of a strict partial order, [4]. The core of this approach is SH(x, y), which is defined
as:
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SH(x, y) =

⎧⎪⎨
⎪⎩

∑
i min(q(x, i), q(y, i))∑

i q(x, i) : ∑
i q(x, i) �= 0

1 : otherwise
(1)

The two summations of indicator values q(x, i) (value of the ith indicator of object x)
contrast with the idea of the Hasse diagram technique, which keeps the indicators (even if
considered dimensionless by an appropriate normalization) separate (i.e. not numerically
combined) for as long as possible in order to trace back the effect of each indicator to the
ranking of objects. Although Kosko’s approach works well and is able to reproduce the
partial order by a crisp evaluation of the indicator values, we think that the numerical
combination as in SH(x, y) is a point that must be considered inconsistent.

2.3 Theory

Let X be the set of objects x ∈ X, q(x) its tuple of indicator values and IB the set of
indicators (information base). Let q(xrd) be the tuple of values of x, randomly changed,
given a certain distribution function D.

Let p be the parameters describing D and n the number of Monte Carlo simulations
that change q(x) into n tuples, called q(xrd). We consider the map:

f : q(x) → RD(x), with : RD(x) = {q(xrd)} (2)

Formally we assign to each tuple q(xrd) an object xrd and consider the set X(x, n) =
{xrd}, obtained after n MC simulations. Thus, we install a one-to-one map:

X(x, n) → RD(x) (3)

We assume that p and n is the same ∀x ∈ X. Then instead of |X| objects we have a
set of |X| ∗ n objects called X(n). X(n) can be considered as a disjoint sum of X(x, n).
X(n) = X(x1, n) + X(x2, n) + ... + X(xt, n) = |X|.

Instead of analyzing the order relations among x ∈ X we analyze the set of three
quantities, see [15]:

Dom(X(xi, n), X(xj, n)) , Dom(X(xj, n), X(xi, n)) and Sep(X(xi, n), X(xj, n))

We use the following abbreviations

dij = |{(xrd
i , xrd

j ) : xrd
i ∈ X(xi, n), xrd

j ∈ X(xj, n), xrd
i > xrd

j }|
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dji = |{(xrd
i , xrd

j ) : xrd
i ∈ X(xi, n), xrd

j ∈ X(xj, n), xrd
i < xrd

j }|

sij = |{(xrd
i , xrd

j ) : xrd
i ∈ X(xi, n), xrd

j ∈ X(xj, n), xrd
i ‖xrd

j }|
and call dij the dominance of X(xi, n) over X(xj, n) and sij the separability between

X(xi, n) and X(xj, n). Our main interest and the computational basis here is the analysis
of dij. The main idea is to analyze dominance and separability as function of e.g. noise
(see section 2.4) instead of realizations of simulation X(xi, n). From this point of view, a
directed graph G(ε) can be defined as follows: set of vertices = x ∈ X and a set of arrows
i → j = {xi ∈ X, xj ∈ X, i �= j, with dij/n > ε}.

To avoid cumbersome notations and if no confusion is possible, we simply write
Dom(x, y) instead of Dom(X(x, n), X(y, n)).

The graph G(ε) may contain cycles, depending on the selection of ε and can sometimes
be interpreted as a poset, similarly to the case shown by [15] with dominance among
classes found for X when ε ≥ 0.5. At the moment, however, the basic result is G(ε)
without assuming the additional structure of a poset. Therefore we present both the
network corresponding to G(ε) and - if possible - the Hasse diagram as the visualization
of the poset (see section 3.2).

Assume the following situation:

• x < y with respect to an indicator set IB1 of indicators with small numerical
differences and

• x > y with respect to the residual set IB2 of indicators, albeit with large numerical
differences.

Then Dom(X(x, n), X(y, n)) 	 Dom(X(y, n), X(x, n)) because the small numerical dif-
ferences with respect to IB1 are often leveled out by noise. When Dom(X(x, n), X(y, n)) >

ε > Dom(X(y, n), X(x, n)), the crisp graph G(ε) will have an arrow x → y. We call this
situation the noise equivalent: objects are considered equivalent with respect to IB1.
Hence incomparabilities caused by slight numerical differences of at least one indicator
can be enriched due to the Monte Carlo simulation.
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2.4 Implementation

The implementation (fuzzy.py) is a proof of the concept implementation written in Python1

using the python modules: numpy2 (numerical package like Matlab), networkX3 (a pack-
age for creating, manipulating, and studying the structure, dynamics, and functions of
complex networks) and matplotlib4 for graphical visualization. Furthermore, software
graphviz [17] is applied to draw the Hasse diagrams. Fuzzy.py as open source software
can be downloaded from http://www.zalf.de.

The implementation uses the same probability parameters for all qi. In case of uniform
distribution, the noise can be (and is realized in the actual implementation) defined as:
noise = p/100.0 ∗ u(−1, 1) ∗ (max(qi) − min(qi)), where u(−1, 1) is a uniform distributed
random number between (-1,1), max(qi) is the maximum value of qi in the data sample,
and min(qi) is the minimum value of qi. This means the noise is a percentage of the range
of each qi. Other formulations of uniform noise are possible, too. In other words: The
statistical data uncertainty is described by distribution functions and by there appropriate
parameters such as p in the special case of uniform distribution as actually selected.

The code fuzzy.py is written in an object-oriented programming style. The code con-
sists of three main classes (sit, compare_sit, hassegraph) and a number of additional
general functions. The class “sit” stores the x, q(x) and the probability distribution (uni-
form and triangular are already implemented, other distributions can easily be inserted)
that includes its parameters. X(n, x) = {xrd} is created dynamically during the simu-
lation. Based on “sit” the class “compare_sit”, is responsible for simulation and data
storage.
Matrices Dom(X(xi, n), X(xj, n)), Dom(X(xj, n), X(xi, n)) and
Sep(X(xi, n), X(xj, n)) are calculated during the simulation. The simulation itself is
based on numpy, where the creation of random values according to the selected probabil-
ity distribution is particularly useful. Dominance can be visualized (see below) using the
“make_graph_matrix(dom,eps)” function.

The class “hassegraph” is used to build and visualize a partial order. Modules net-
workX and matplotlib are used for visualization. The methods of networkX have been
proven to be powerful enough to visualize G(ε), whereas graphviz visualizes the transitive-
reduced digraph, i.e. the Hasse diagram (HD).

1http://www.python.org/
2http://numpy.scipy.org/
3http://networkx.lanl.gov/
4http://matplotlib.sourceforge.net/
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2.5 Data sets

Two artificial data sets with three objects a, b, c and two attributes5 q1 and q2 (Table: 1,
2) are used to illustrate the method:

sit q1 q2
a 1.0 1.0
b 3.0 3.0
c 3.0 2.0

Table 1. Artificial data set1

sit q1 q2
a 1.0 1.0
b 3.0 3.0
c 4.0 2.0

Table 2. Artificial data set2

Data set1 has the crisp order: a < c < b; data set2 has a crisp partial order: a <

b and a < c but also the b ‖ c relation, ‖ being the symbos for incomparability.
Alternatively to this artificial data set, a more realistic data set HPVC (Table 3) is

used to show how the HD is changed according to the method suggested here.

HPV C chemical name PV Tox Accum Persist

CNB 1-Chloro-4-Nitrobenzene 4 78.5 2.6 99.8
NA 4-Nitroaniline 2 45 1.4 100
NP 4-Nitrophenol 1 73 1.9 99.9
ATR Atrazine 2 75.7 2.5 99.5
CHL Chlormequat chlorid 2 0 -2.2 99
DIA Diazinon 1 77.4 3.3 100
DIM Dimethoate 2 72.5 0.7 100
LIN Ethofumesate 1 69 2.7 99.6
GLY Glyphosphate 2 28 0.002 99.7
ISO Isoproturon 2 77 2.5 70
MAL Malathion 3 79.96 2.7 0
THI Thiram 2 79.7 1.7 100

Table 3. Real life data set of 12 HPVC chemicals

The indicators PV , Tox, Accum and Persist describe the environmental impact of
substances. In particular, PV is a score with values taken from 1,2,3,4 as follows:

5we use “attribute” in this paper when the meaning is not important
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• 1 : 5000 - 10000 tpa (ton per annum)

• 2 : 10000 - 50000 tpa

• 3 : 50000 - 100000 tpa

• 4 : 100000 - 500000 tpa

Tox is an indicator derived from acute toxicity for fish LC50 (correspondig to [14]). In
order to obtain the same orientation of the indicator (a high value indicates a high hazard)
Tox = max(LC50) − LC50. The well known n-octanol-water partition coefficient (in
logarithmic form) is used to measure accumulation, i.e. Accum = log(Kow). Persist,
a measure of persistence, is derived from the biodegradation intensity, BD, measured
in percentage of degradation per day. As before, we require a reorientation as follows:
Persist = max(BD) − BD. This data matrix combines indicators that are continuous in
concept, such as Tox, Acccum and Persist, and discrete, such as PV . A crisp analysis by
partial order theory would interpret, for instance, Tox(LIN) = 2.7 and Tox(ISO) = 2.5
as different values. In our approach, these are such small differences (in comparison to
the whole range of values ∈ [0, 79.96]) that they can be modeled as irrelevant.

3 Results

3.1 Fictitious example

Data set1 was used to show the change in Dom and Sep according to q2(c) = 2.0 +
0.1 ∗ delta for delta ∈ {0, 1, 2, ..., 17, 18, 19}. At the beginning of the simulation we
have a < c < b. During the simulation there is a range where b ≈ c, i.e. where both
Dom(X(b, n), X(c, n)) and Dom(X(c, n), X(b, n)) > ε. For the sake of simplicity, we call
this range the “fuzzy range”. At the end of the simulation there should be c > b, as the
following Figure 1 shows.

Sep(b, c) is nearly constant during the simulation. In any case, the matrix entries
Dom(c, b)+Dom(b, c)+Sep(b, c) = 1.0 see [15]. Figure 1 shows that delta ∈ {0, 1, 2, 3, 4,-
5, 6, 7} → Dom(c, b) < Dom(b, c), indicating a preference of b over c; delta ∈ [8, 12] →
b ≈ c is the fuzzy range and delta ≥ 12 → Dom(c, b) 	 Dom(b, c).
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Figure 1. Data set 1: Dom(c, b)p10 (solid) versus Dom(b, c)p10 (dotted), p10: 10%
random noise and Sep(b, c) (dashed).
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Figure 2. Data set 2: Sep(b, c) as function of noise

The artificial data set2 has no clear preference as b and c are incomparable. Figure 2
shows the result of the simulation. Sep(b, c) starts at 1.0 when the noise is low < 20%
and begins to decrease. Very high noise makes the data set comparable to some degree.
On the other hand, even with 80% noise Dom(c, b) = 0.1075 and Dom(b, c) = 0.188 are
small compared to Sep(b, c) = 0.7045. Hence objects c and b remain incomparable. In
other words, incomparabilities caused by small numerical differences can be leveled out,
such that large numerical differences dictate the behavior of a pair of objects as a function
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of noise, i.e. they are decisive whether or not a greater relation or an incomparability
appears.

3.2 Structure analysis

The Python program was used to analyze and visualize the HPVC dataset. The user can
change ε and p ∈ (0..1) to get an overview. Figure 3 shows the original data structure
(p = 0) and Figure 4 demonstrates the enrichment due to (p = 0.05).

Figure 3. Original data structure, G(ε), applying networkX, the thickened part of
the line indicates the orientation of the edge

Figure 4. Enriched structure, G(ε) (networkX): p = 0.05 and ε = 0.2

The analysis by networkX is designed to prove that the concept allows fast simulation
at the cost of structural analysis. The output is a directed graph (without loops) but not
an HD. To transform this directed graph, direct paths between nodes pathi→j have to
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be removed additionally if there exists an alternative path: pathi→...→j which is just the
transitive reduction. When the directed graph is transitively reduced, the resulting HD
looks more informative.

CNB

ATR GLYISO

NA NP

CHL

DIA

LINDIM

MALTHI

Figure 5. Original HD, applying graphviz [17]

CNB

NA

ATRISO

GLY

NPDIM

CHL

DIA

LIN

MAL

THI

Figure 6. HD after simulation (p = 0.05 and ε = 0.2)

The result of the Monte Carlo simulation is a new partial order, visualized as a HD. The
original HD is shown in Figure 5; Figure 6 shows the simulated HD ( p = 0.05 and ε = 0.2
). Note that, for the sake of clarity (avoiding crossing of lines by tools of graphviz), we
do not use the drawing standards here as in the usual HDT. The most striking aspect
is that there are three graph-theoretical components in the original HD. However, in
the simulated HD there are only two graph-theoretical components, one of which is an
isolated element (Malathion, MAL). The oriented edge ATR → NP i.e. there are new
comparabilities. The maximum and minimum elements in both graphs are the same, and
MAL remains an isolated element. However, there are new paths in the simulated HD:
{CNB → NA, ATR → DIM , ATR → GLY , ATR → NA, ATR → NP} i.e. there are
new comparabilities. The strength of these new connections is larger than ε = 0.2. The
enrichment facilitates a comparison between chemicals: for instance, in the original HD,
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atrazine (ATR) had one successor (CHL) and one predecessor (CNB); in the modified
HD, ATR has five successors (DIM , GLY , NA, NP and CHL) and keeps its predecessor.

As the example of HPVC is quite often used in theoretical studies and hence often
contextually discussed, it should be sufficient here to explain the fact that {DIA, NP ,
LIN} is a separate subset [5] with respect to the other two components (unconnected parts
of the HD). In [5] the use of a tripartite graph was introduced to study the separateness
of two object subsets. Here, however, a look at the rather small data matrix shows that
the separation is mainly caused by a low PV for {DIA, NP , LIN} and a larger value
of log(Kow) as an indicator of the accumulation tendency, whereas many of the main
subset {THI, CNB, NA ,...,CHL} has lower values of log(Kow) and larger values for
the production volume. The remaining incomparabilities are caused by PV and Persist.
Nevertheless, as Figure 6 shows, the numerical differences are small enough for a Monte
Carlo simulation to create additional comparabilities.

Table 4 shows the new paths in greater detail:

Additional links Accum PV Tox Persist
ATR → DIM > = > noise-equiv
ATR → GLY > = > noise-equiv
ATR → NP > > > noise-equiv
ATR → NA > = > noise-equiv
CNB → NA > > > noise-equiv

Table 4. noise-equiv: new equality due to simulation with respect to a single
indicator

Only the small differences between the Persist cause noise equiv. A larger p can
also change the other differences significantly. The user can control the noise equiv by
changing p. In the example, larger noise will influence the result as the next Tox. The
cut-off parameter ε either includes or excludes the noise equiv nodes and controls the
structure directly (see section 4).

4 Discussion
To address the main problem again, a small change of some values in a given data set can
significantly change the structure of an HD. Although Kosko’s approach could mitigate
the problem, the numerical combination of indicator values and the selection of the best
defuzzification are still problematic. The presented simulation technique offers a basis for
interactive structure refinement together with the stakeholder. The introduction of noise
in terms of a probability distribution (the uniform distribution was used here) together
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with the “cut-off” parameter ε allows the simulation to be controlled. The fictitious
example demonstrates the “fuzzy” change according to the delta. The much richer HPVC
data set was used to demonstrate the influence of ε and p changed by the user. A larger
p introduces more connections when ε is moderate: ε ∈ (0.1, 0.3] (using 2,000 simulation
runs), which means that ε is somewhere in the “fuzzy” range. With higher ε, outside of
the “fuzzy” range, the structure will become more simple again when p increases. This
can be explained by the fact that large noise can break small dominance and a large ε

will cut it.
The noise level that should be used depends on the uncertainty of the data and is often

a priori unknown. For practical application it should be somewhere between p ∈ [0.01, 0.5]
and has to be estimated by trial and error. The cut-off parameter ε, on the other hand,
can be used as an additional control parameter. If ε > 0.5, then the resulting structure will
be increasingly poor even if p increases. ε < 0.5 can approach the “fuzzy” range and the
structure becomes richer. Below the “fuzzy” range, the structure becomes meaningless.

The appearance of equivalence classes is relatively rare because, at the same time,
xi must dominate xj, and vice versa, for all four indicators. Hence the effect of the
Monte Carlo simulation is that similar indicator values are cancelled out so that only
large numerical differences remain. Table 4 clearly shows this effect. The < relation can
only be broken to become noise equiv with a large amount of noise p. Even if all relations
become noise equiv, the ε parameter will probably cut off these equivalence classes or
noise equivalences. The crucial role of ε is demonstrated in Figure 7.
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Figure 7. Count of comparabilities versus eps (ε), HPVC-data set
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As can be seen in Figure 7 the number of comparabilities is changing were we selected
our ε ≈ 0.2 (Figure 5, based on original data and Figure 6 based on p = 0.05 and ε = 0.2).

Thus the crucial criss-cross of data profiles of objects, which often seriously hampers
the analysis due to partial order, can be avoided. The downside is that, as in Kosko’s
method, new parameters such as p and ε are introduced.

5 Conclusion
One of the main problems of partial order analysis in the context of ranking and decision
support is the appearance of incomparabilities. Whereas an incomparability itself merely
indicates the existence of a conflict in the characterizing indicators, which is or should
be considered a positive result, incomparabilities caused by small data differences must
be considered disadvantageous. In the literature, therefore, several attempts concerning
HDT are discussed. Examples include a discretization of the indicators only, see [4], and
the fuzzy approach (Kosko’s method).

Kosko’s approach combines indicator values and, indeed, the normalization can lead
to different partial orders! We therefore conclude that the approach by Monte Carlo
simulation can be a good starting point for a refined application of HDT in rankings
or decision support systems. An approach was discussed in [16] to directly combine a
Monte Carlo simulation with an fuzzy approach, which leads in the same direction. The
derivation of recipes for selecting “best” ε, p remains a task for the future.
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