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Abstract

We introduce the analysis of DNA sequences based on the fuzzy integral, and compare it

with some other existing methods. The similarity and phylogenetic analysis on two real data

sets illustrate that the proposed approach is effective and feasible.

1 Introduction

Development of the nucleotide and protein sequencing technology have resulted in an

explosive growth in the number of known DNA and protein sequences. It has raised

many fundamental and challenging questions to modern biology. The elucidation of the

evolutionary history of different species is a major concern to biological science. Early

approaches to deal with it were mainly based on the alignment of a gene or protein se-

quence, but traditional alignment methods are computationally intensive and meaningless

to whole genome comparison because each genome has its own genes and gene order. Ac-
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cordingly, there is an urgent need to develop new sequence analysis methods utilizing the

ever-increasing genome data.

Some researchers explored many alignment–free methods for similarity and phyloge-

netic analysis. For instance, distance methods, maximal parsimony methods, maximum

likelihood methods and Bayesian methods [1–11], each of which has its own range of

applicability. Biologists and researchers are always trying to develop efficient methods

for complex phylogenetic analysis. Zhang et al. [12] proposed to use gene content to

measure the distance, which did not perform efficiently when the gene content of the or-

ganisms under study are very similar. Karlin et al. [13] proposed the dinucleotide relative

abundance ρXY = fXY /fXfY which discounts bias in G+C content and general base com-

position, where fX denotes the frequency of nucleotide X, and fXY denotes the frequency

of dinucleotide XY . Information theory is also used for phylogenetic analysis [14–19].

Besides, some methods based on graphical representations of DNA sequences were put

forward [20–29], which usually map a DNA sequence to a set of plots in 2D/3D space,

and use some graphical invariants to characterize this sequence. These methods provide

a simple way of viewing, sorting and comparing various gene structures. Motivated by

their work, in this paper, we propose to take the fuzzy integral into account for analysis

of DNA sequences.

The rest of this paper is organized as follows. We first discuss the feature vector of

DNA sequences and some definitions of fuzzy measure and fuzzy integral, and then use

the fuzzy integral similarity to obtain the distance metric. We finally apply the proposed

method to two data sets: the coding sequences of the β-globin gene for 11 different

species and the 24 coronavirus whole genomes. The similarity matrix and phylogenetic

tree constructed by the new method are consistent with the commonly accepted ones. By

comparing our method with other existing methods, we can see that these results are very

promising and suggest more efforts for further developments.

2 Materials and methods

2.1 Feature vector of DNA sequences

Given a DNA sequence of length L, let N(a1a2 . . . ak) be the occurrences of a k-word

a1a2 . . . ak observed in sequence, where ai is one of the four nucleotides A,C,G or T and
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k is the word length (1 ≤ k ≤ L). The frequency of a1a2 . . . ak is defined by

f(a1a2 . . . ak) = N(a1a2 . . . ak)/(L− k + 1)

Mutations happen in a more or less random manner at the molecular level, while

selections shape the direction of evolution. From the perspective of molecular evolution,

k-word frequency may reflect both the results of random mutation and selective evolution.

One should reduce the random background from the simple counting result in order

to highlight the contribution of selective evolution [13, 30, 31]. Here, we estimate the

probability of random background by using the zeroth–order Markov model:

f 0(a1a2 . . . ak) = f(a1)f(a2) · · · f(ak)
where k ranges from 2 to L.

In this work, we collect

α(a1a2 . . . ak) =

⎧⎨
⎩

f(a1a2 . . . ak)/f
0(a1a2 . . . ak) if f 0(a1a2 . . . ak) �= 0

0 if f 0(a1a2 . . . ak) = 0

for all possible words a1a2 . . . ak as the multi–nucleotide relative abundance of DNA se-

quence.

The selection of word length k is important to capture rich evolutionary information

of DNA sequence. Weber et al. [32] and Reuben et al. [33] investigated the relationships

among many important properties of genetic codon and 20 kinds of amino acids. They

found that not only within the codon and amino acids, but also between codon and

amino acids, there exist a number of significant correlations in nature. Meanwhile, codon-

level phylogenetic analysis is the key topic in genome evolution, protein function and

interactions between genetic and environment [34, 35]. Therefore, it will make sense to

consider the importance of the triplet genetic code (k=3) in similarity and phylogenetic

analysis of DNA sequences.

For a fixed k = 3, there are 64 distinct 3-words to be considered. By letting

αW =
∑

{X,Y }⊆{A,C,G,T}
α(XWY )

where W ∈ {A,C,G, T}, we get the features vector of DNA sequence, denoted as

(αA, αC , αG, αT ).

For DNA sequences A and B, 4-word feature vectors A = (αA
A, α

A
C , α

A
G, α

A
T ) and B =

(αB
A , α

B
C , α

B
G, α

B
T ) are constructed, that can be used to discriminate DNA sequences from

different species.
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2.2 Fuzzy measure and fuzzy integral

Let X = {x1, x2, . . . , xn} be a finite set, let A,B ⊆ X, and let �(X) be the power set

of X. A fuzzy measure, μ, is a real valued function μ : �(X) → [0, 1], satisfying the

following conditions:

(a) μ(∅) = 0 and μ(X) = 1

(b) μ(A) ≤ μ(B) if A ⊆ B.

The λ-fuzzy measure [36,37], that we use in this work, satisfies the properties of fuzzy

measure plus the following additional condition: for all A,B ⊂ X and A ∩ B = ∅,

μ(A ∪ B) = μ(A) + μ(B) + λμ(A)μ(B) for some λ > −1 (1)

where λ is obtained by solving the equation

λ+ 1 =

n∏
i=1

(1 + λμi) . (2)

Let h : X → [0, 1] represent a function that matches each element of X to its evidence.

Suppose that h(x1) ≥ h(x2) ≥ · · · ≥ h(xn) . If this is not the case for any element, then

reorder X so that the relation holds, and let μ : �(X) → [0, 1] be a fuzzy measure. Then

the fuzzy integral of h with respect to the fuzzy measure μ is:

I =
n

max
i=1

[min(h(xi), μ(Ai))] (3)

where Ai = {x1, x2, . . . , xi}.

2.3 Fuzzy integral similarity and distance metric

Let A = (αA
A, α

A
C , α

A
G, α

A
T ) and B = (αB

A , α
B
C , α

B
G, α

B
T ) be two normalized columns to be

compared. Here, the so-called h function can be defined as h(i) = 1 − |iA − iB|, where
i = {αA, αC , αG, αT}, i. e., the similarity of the feature vectors A and B.

Consider the maximum level of conservation of the feature vector, which favors the

importance of better conserved positions. We can define a λ-fuzzy measure μ, in our case,

μi = max(iA, iB). At this point, we can just apply Eq. (2) to obtain λ, and Eq. (1) to

obtain the fuzzy measure μ. It can be easily proven that μ satisfies the conditions (a) and

(b) of the fuzzy measures. Once we have h and μ, it is a straightforward task to obtain

the fuzzy integral by using Eq. (3).

-420-



According to the fuzzy integral similarity measure, we can define the distance met-

ric between two feature vectors. Given the feature vectors A and B, their distance is

D(A,B) = 1− I(A,B).

It had been proved that the distance D satisfies the following four properties required

by distance metrics:

(1) D(A,B) > 0, ∀A �= B ;

(2) D(A,B) = 0, ∀A = B ;

(3) D(A,B) = D(B,A), ∀A,B;

(4) D(A,B) ≤ D(A,C) +D(C,B), ∀A,B,C.

We will consider the feature vectors of DNA sequences and calculate their distances

according to the above equation. By arranging all these values into a matrix, a pairwise

distance matrix is derived. This distance matrix contains the similarity information on

the n DNA primary sequences. Finally, this pairwise distance matrix may be input to the

Neighbour program in PHYLIP package [38] for constructing a phylogenetic tree.

3 Experiments and Results

In order to test our method, we have selected two test data, the coding sequences of the

β-globin gene for 11 different species and the 24 coronavirus whole genomes separately.

The phylogenetic reconstruction of the two data sets using our new distance, all pointed

at encouraging results.

3.1 Similarity analysis of the β-globin gene for 11 different species

In the first experiment, we choose the coding sequences of the β-globin gene for 11 different

species, reported by Randić et al. [23]. Taxonomic information and accession numbers

are provided in Table 1.

The similarity matrix M was obtained by the above specified and is shown in Table

2. It is based on the assumption that two DNA sequences are more similar if they have

smaller least similarity values, which means that the corresponding least similarity value

is close to 0.
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Table 1. The accession numbers, length, and location for each β-globin genes
and their exons

Species Database ID Location Leng(bp) Location of each exon

1 Human NCBI U01317 62187-63610 1424 62187· · · 62278, 62409· · · 62631, 63482· · · 63610

2 Chimpanzee NCBI X02345 4189-5532 1344 4189· · · 4293, 4412· · · 4633, 5484· · · 5532

3 Gorilla NCBI X61109 4538-5881 1344 4538· · · 4630, 4761· · · 4982, 5833· · · 5881

4 Lemur NCBI M15734 154-1595 1442 154· · · 245, 376· · · 598, 1467· · · 1595

5 Rat NCBI X06701 310-1505 1196 310· · · 401, 517· · · 739, 1377· · · 1505

6 Mouse NCBI V00722 275-1462 1188 275· · · 367, 484· · · 705, 1334· · · 1462

7 Goat NCBI M15387 279-1749 1471 279· · · 364, 493· · · 715, 1621· · · 1749

8 Bovine NCBI X00376 278-1741 1464 278· · · 363, 492· · · 714, 1613· · · 1741

9 Rabbit NCBI V00882 277-1419 1143 277· · · 368, 495· · · 717, 1291· · · 1419

10 Opossum NCBI J03643 467-2488 2022 467· · · 558, 672· · · 894, 2360· · · 2488

11 Gallus NCBI V00409 465-1810 1346 465· · · 556, 649· · · 871, 1682· · · 1810

Table 2: The similarity matrix of the coding sequences of the β-globin gene of 11 species

Species Human Goat Opossum Gallus Lemur Mouse Rabbit Rat Gorilla Bovine Chimpanzee

Human 0 0.017880.06387 0.12706 0.04632 0.02484 0.05827 0.03207 0.02446 0.02157 0.01208

Goat 0 0.06534 0.12559 0.03599 0.04239 0.05940 0.03320 0.02593 0.01386 0.01975

Opossum 0 0.19093 0.09124 0.06174 0.07406 0.06281 0.04164 0.07919 0.05179

Gallus 0 0.12804 0.12918 0.15145 0.14665 0.15152 0.11173 0.13913

Lemur 0 0.05267 0.03413 0.02944 0.04959 0.04068 0.04820

Mouse 0 0.03765 0.03025 0.03651 0.03690 0.02504

Rabbit 0 0.02619 0.04875 0.06409 0.04827

Rat 0 0.02256 0.03789 0.02207

Gorilla 0 0.03979 0.01238

Bovine 0 0.02740

Chimpanzee 0
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From Table 2, we see that the smallest entries in it are associated with the pairs (Hu-

man, Chimpanzee), (Human, Gorilla), (Gorilla, Chimpanzee) and (Goat, Bovine). Fur-

thermore, human is found to more similar to chimpanzee than gorilla. On the other hand,

the largest entries in the similarity values appear in the rows belonging to opossum (the

most remote species from the remaining mammals) and gallus (the only non-mammalian

representative). This is consistent with the known facts of evolution.

In order to see this more clearly, in Fig. 1 we show the phylogenetic tree of the β-globin

gene for 11 different species. Similar results have been obtained also elsewhere [20–24].

One should bare in mind that the values presented in Table 2 pertain to the compar-

ison of multi-sequences, not to the comparison of sequences one by one. This means that

the values in Table 2 only show the relative relations among these sequences, whereas the

right phylogenetic relation among them should be established by additional algorithms.

Different algorithms may result in different phylogenetic trees, so it is important to choose

the most appropriate among them. In the present paper, the result in Fig 1. were gener-

ated by means of the UPGMA approach (UPGMA = Unweighted Pair Group Method

with Arithmetic Mean) [39].

Fig. 1. The phylogenetic tree of the β-globin gene for 11 different species.

In order to compare our proposed method with other, recently reported representative

methods, we examined the similarity degree between human and the other 10 species by

five different approach, see Fig. 2. It is seen that our method is basically consistent with
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the previous ones. Therefore we may conclude that the method proposed in this work is

applicable for similarity and phylogenetic analysis of DNA sequences of different species.
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Fig. 2. The similarity degree comparison of the coding sequences of several species with
the coding sequences of human (f: from Table 2 in the present work; a: from Randić et
al. [23]; b: from Liao et al. [20]; c: from Liao et al. [21]; d: from Liu et al. [22]; e: from
Wang et al. [24]). On the abscissa, i corresponds the (i+ 1)-th species in Table 2.

3.2 Phylogenetic analysis of the 24 coronavirus whole genomes

In order to further verify the validity of our method, we performed a phylogenetic analysis

of sequences belonging to the 24 coronavirus whole genomes, which are listed in Table 3.

Coronaviruses are members of a family of enveloped viruses that replicate in the cytoplasm

of animal host cell. According to the type of the host, coronaviruses can be classified into

three groups. Groups I and II contain mammalian viruses, whereas group III contains

only avian viruses. After genome sequencing of some SARS-CoVs, much effort has been

made to identify, by using molecular data, the phylogenetic position of SARS-CoVs in

the coronavirus tree.

The phylogenetic tree for 24 coronavirus whole genomes was constructed by using the

above described method, and is presented in Fig. 3. In order to compare our method

with alignment method, we also construct the evolutionary tree by ClustalW method [40],

which is a multiple sequence alignment program. The result is shown in Fig. 4.
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Table 3. The accession number, abbreviation, name and length
for the 24 coronavirus genomes

No. Accession Abbreviation Genome Leng(bp)

1 NC 002645 HCoV 229E Human coronavirus 229E 27317

2 NC 002306 TGEV Transmissible gastroenteritis virus 28586

3 NC 003436 PEDV Porcine epidemic diarrhea virus 28033

4 U00735 BCoVM Bovine coronavirus strain Mebus 31032

5 AF391542 BCoVL Bovine coronavirus isolate BCoV-LUN 31028

6 AF220295 BCoVQ Bovine coronavirus strain Quebec 31100

7 NC 003045 BCoV Bovine coronavirus 31028

8 AF208067 MHVM Murine hepatitis virus strain ML-10 31233

9 AF201929 MHV2 Murine hepatitis virus strain 2 31276

10 AF208066 MHVP Murine hepatitis virus strain Penn 97-1 31112

11 NC 001846 MHV Murine hepatitis virus strain A59 31357

12 NC 001451 IBV Avian infectious bronchitis virus 27608

13 AY278488 BJ01 SARS coonavirus BJ01 29725

14 AY278741 Urbani SARS coronavirus Urbani 29727

15 AY278491 HKU-39849 SARS coronavirus HKU-39849 29742

16 AY278554 CUHK-W1 SARS coronavirus CUHK-W1 29736

17 AY282752 CUHK-Su10 SARS coronavirus CUHK-SulO 29736

18 AY283794 SIN2500 SARS coronavirus Sin2500 29711

19 AY283795 SIN2677 SARS coronavirus Sin2677 29705

20 AY283796 SIN2679 SARS coronavirus Sin2679 29711

21 AY283797 SIN2748 SARS coronavirus Sin2748 29706

22 AY283798 SIN2774 SARS coronavirus Sin2774 29711

23 AY291451 TW1 SARS coronavirus TW1 29729

24 NC 004718 TOR2 SARS coronavirus 29751
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Fig. 3. The phylogenetic tree for 24 coronavirus whole genomes constructed by our
method.

Fig. 4. The phylogenetic tree for 24 coronavirus whole genomes constructed by the
ClustalW method.

Comparing the results shown in Figs. 3 and 4, we find that our method performs bet-

ter: By our approach, coronaviruses are divided into four groups according to serotypes.

Group I (HCoV 229E, TGEV, and PEDV) and group II (BCoVL, BCoVM, BCoVQ,

BCoV, MHVM, MHV2, MHVP, and MHV) contain mammalian viruses, while group II

coronaviruses contain a hemagglutinin esterase gene homologous to that of Influenza C
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virus. Group III (IBV) contains only avian viruses, and Group IV [41, 42] are SARS-

CoVs. From Fig. 3 we can observe that all the SARS-CoVs that belong to Group IV are

clustered into the same class accurately. That is, all 12 SARS-CoV strains are grouped

together and form a new fourth group, which is distinctly related to the group I coron-

aviruses (TGEV, explicitly). This is in accordance with the best result in the publicized

existing trees [43]. An inspection of Fig.4 shows the grouping there is quite different. This

corroborates the applicability of our method, relative to the ClustalW procedure.

4 Conclusions and Discussion

With the development of technology, more and more biological sequences are being col-

lected for analysis. In the present study, we introduce a similarity and phylogenetic

analysis of DNA sequences based on the fuzzy integral. The main advantage is that our

approach can consider not only the similarity of feature vectors of DNA sequences, but

also the relative importance of each occurrence within each feature vector. Furthermore,

our method does not require any additional parameter. This makes it more robust and

fully automated, thus avoiding the need to select parameters via expert knowledge or

trial–and–error schemes. Experiments on the coding sequences of the β-globin gene for

11 different species, and for the 24 coronavirus whole genomes have both indicated that

our proposed method is efficient and feasible.

In summary, in this paper we offer a novel method yielding reasonably good results

in a rapid manner. Our method is not necessarily an improvement as compared to some

existing ones, but rather an alternative. It does not require sequence alignment and the

construction of tree models. Our tests have demonstrated that our method can serve

as an alternative tool among other alignment–based and alignment–free approaches for

similarity and phylogenetic analysis of DNA sequences.

Acknowledgement: This work was supported in part by Scientific Research Startup Foun-

dation of Xidian University and the Fundamental Research Funds for the Central Uni-

versities, the Shandong Natural Science Foundation (Grant No. ZR2010AM020), and by

the Serbian Ministry of Science and Education (Grant No. 174033).

-427-



References

[1] Y. Lin, S. Fang, J. Thorne, A tabu search algorithm for maximum parsimony phy-

logeny inference, Eur. J. Oper. Res. 176 (2007) 1908–1917.

[2] F. Ren, H. Tanaka, Z. Yang, A likelihood look at the supermatrix–supertree contro-

versy, Gene 441 (2009) 119-125.

[3] A. Som, ML or NJ–MCL? A comparison between two robust phylogenetic methods,

Comput. Biol. Chem. 33 (2009) 373–378.

[4] M. B. Elliott, D. M. Irwin, E. P. Diamandis, In silico identification and bayesian

phylogenetic analysis of multiple new mammalian kallikrein gene families, Genomics

88 (2006) 591–599.

[5] E. Jako, E. Ari, P. Ittzes, A. Horvath, J. Podani, BOOL-AN: A method for compar-

ative sequence analysis and phylogenetic reconstruction, Mol. Phy. Evol. 52 (2009)

887–897.

[6] Y. S. Zhang, W. Chen, A measure of DNA sequence dissimilarity based on free energy

of nearest–neighbor interaction, J. Biomol. Struct. Dyn. 28 (2011) 557–565.

[7] X. Q. Qi, Q. Wu, Y. S. Zhang, E. Fuller, C. Q. Zhang, A novel model for DNA

sequence similarity analysis based on graph theory, Evol. Bioinformatics 7 (2011)

149–158.

[8] Y. S. Zhang, W. Chen, A new measure for similarity searching in DNA sequences,

MATCH Commun. Math. Comput. Chem. 65 (2011) 477–488.

[9] Y. Q. Liu, Y. S. Zhang, New invariant of DNA sequences based on a new matrix

representation, Comb. Chem. High. T. Scr. 14 (2011) 61–71.

[10] H. L. Wang, Y. S. Zhang, A new approach to molecular phylogeny of H5N1 avian

influenza viruses in Asia, Int. J. Quantum Chem. 110 (2010) 1964–1971.

[11] Y. Q. Liu, Y. S. Zhang, A new method for analyzing H5N1 avian influenza virus, J.

Math. Chem. 47 (2010) 1129–1144.

[12] H. Zhang, Y. Zhong, B. Hao, X. Gu, A simple method for phylogenomic inference

using the information of gene content of genomes, Gene 441 (2009) 163–168.

[13] S. Karlin, M. Ladunga, Comparisons of eukaryotic genomic sequences, Proc. Natl.

Acad. Sci. 91 (1994) 12832–12836.

[14] H. H. Otu, K. Sayood, A new sequence distance measure for phylogenetic tree con-

struction, Bioinformatics 19 (2003) 2122–2130.

-428-



[15] D. R. Bastola, H. H. Otu, S. E. Doukas, K. Sayood, S. H. Hinrichs, P. C. Iwen,

Utilization of the relative complexity measure to construct a phylogenetic tree for

fungi, Mycol. Res. 108 (2004) 117–125.

[16] S. Zhang, L. Yang, T. Wang, Use of information discrepancy measure to compare

protein secondary structures, J. Mol. Struct. (THEOCHEM) 909 (2009) 102–106.

[17] S. Zhang, T. Wang, Phylogenetic analysis of protein sequences based on conditional

LZ complexity, MATCH Commun. Math. Comput. Chem. 63 (2010) 701–716.

[18] L. Yang, X. Zhang, T. Wang, The Burrows–Wheeler similarity distribution between

biological sequences based on Burrows–Wheeler transform, J. Theor. Biol. 262 (2010)

724–749.

[19] S. Zhang, T. Wang, A complexity–based method to compare RNA secondary struc-

tures and its application, J. Biomol. Struct. Dyn. 28 (2010) 247–258.

[20] B. Liao, T. M. Wang, Analysis of similarity/dissimilarity of DNA sequences based

on 3-D graphical representation, Chem. Phys. Lett. 388 (2004) 195–200.

[21] B. Liao, M. Tan, K. Ding, A 4D representation of DNA sequences and its application,

Chem. Phys. Lett. 402 (2005) 380–383.

[22] X. Q. Liu, Q. Dai, Z. L. Xiu, T. M. Wang, PNN-curve: A new 2D graphical repre-

sentation of DNA sequences and its application, J. Theor. Biol. 243 (2006) 555–561.

[23] M. Randić, M. Vračko, N. Lerš, D. Plavšić, Analysis of similarity/dissimilarity of

DNA sequences based on novel 2-D graphical representation, Chem. Phys. Lett. 371

(2003) 202–207.

[24] S. Y. Wang, F. C. Tian, W. J. Feng, X. Liu, Applications of representation method

for DNA sequences based on symbolic dynamics, J. Mol. Struct. (THEOCHEM) 909

(2009) 33–42.

[25] Y. Guo, T. Wang, A new method to analyze the similarity of protein structure using

TOPS representations, J. Biomol. Struct. Dyn. 26 (2008) 367–364.

[26] J. Feng, T. Wang, Condensed representations of protein secondary structure se-

quences and their application, J. Biomol. Struct. Dyn. 25 (2008) 621–628.

[27] Y. J. Huang, T. M. Wang, New graphical representation of a DNA sequence based on

the ordered dinucleotides and its application to sequence analysis, Int. J. Quantum

Chem. 112 (2012) 1746–1757.
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