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Abstract 

 
DNA sequencing with nanopores (nanopore sequencing) is a method for determining the order in 
which nucleotides occur on a strand of DNA. One particular way to analyze this method is by using 
concepts from graph theory. In this paper, we propose a new method for reading a DNA sequence 
with nanopores.  

1. Introduction 

    Since Watson and Crick [1] proposed the helical structure of DNA, many problems about 

this structure are posed. An important problem is how to read and recognize primary structure 

of a DNA sequence. One particular way to analyze DNA sequences and their properties is by 

using the concept of graph theory. Up to now, many papers published about applications of 

graph theory in analyzing DNA sequences, for example see [2-14]. There are various 

methods for DNA sequencing which use concepts of graph theory such as hybridization 

(SBH) and DNA fragment assembly. In 1999, Ludry and Waterman presented an algorithm 

for DNA sequencing by hybridization (SBH) by using concepts of graph theory [15]. Pevzner 

presented graph theoretical approaches to DNA sequencing and fragment assembly [16, 17].  
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Another way to DNA sequencing is using nanopores. Nanopore sequencing is a method 

under development since 1995 [18, 19] for determining the order in which nucleotides occur 

on a strand of DNA. Nanopore devices are used in DNA sequencing with the hopes of 

enabling large and complete strands of DNA to be read completely. 

These nanopores are a few atoms in diameter, and single stranded DNA passes through them 

by optical or electrical means. Through this passage, each individual base of the strand is 

identified, producing a seemingly endless chain of A, T, G and C. Based on the work of 

Watson and Crick [20], we know that DNA is a double-stranded structure and with each 

single strand of DNA there exists a complement, as A matches with T, and C is 

complementary with G. 

There are some key issues in DNA sequencing with nanopores. The first issue lies on the fact 

that an entire single strand rarely makes it through the nanopore in one piece. Rather, 

substrings of lengths around 100,000 bases in length are produced. Further, the problem of 

the coinciding Watson-Crick complement causes confusion regarding whether or not the 

original strand of its coinciding complements is being passed through the nanopore. 

Similarly, there is another issue involving the specified orientation of single strand as it 

passes through. Upon passage and decomposition into substrings, the direction (3′-5′ or 5′-3′) 

of the DNA is lost [21]. Bokhari and Saure [22] identify and address the problems that occur 

in this form of sequencing. They use de bruijn graphs representing DNA data upon 

determining an algorithm which aids the process of DNA sequencing with nanopores, their de 

bruijn graph G must be constructed with k-long oligonucleotides (k-mers) of complete DNA 

sequence which k should be selected so that G contain four paths such that the union of all 

paths is equivalent to G. Further, no two paths have any equivalence in their intersections. 

Testing these paths with a permutation further determines whether or not that are, in fact 

complements and reversals of each other. If this holds true, then the strand being examined 

comes from an authentic sequence of DNA data [21]. 

Some authors have tried to solve important computational biology problems with relations 

between DNA sequences and particular graphs.  For example see [23, 24]. 

In 1999, Blazewicz provided definition of DNA graph and some of its properties [25]. After 

that some authors work by this graph and discuss about its properties and its applications [26-

32].  
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In this paper we give a new method to DNA sequencing with nanopores using concept of 

DNA graph which is independent on the long of oligonucleotides (k). We will show that this 

method is simpler of above method proposed by Bokhari and Saure [22]. 

 

2. The relation between DNA graph and line digraph 

First, we give definition of DNA graph and then discuss about its properties and its role to 

DNA sequencing with nanopores.  

Definition 2.1. [33]. Let k ≥ 2 be an integer. We say that a directed  graph D with a set of 

vertices V(D) and a set of ordered pairs of points (directed edges) E(D),  is DNA graph if it is 

possible to assign a label (l1(x),…,lk(x)) of length k to each vertex  x of  V(D) such that: 

(a) li(x) ϵ {A,C,T,G}, for every i ϵ {1,…,k}; 

(b) All labels are different, that is, (l1(x),…,lk(x)) ≠ (l1(y),…,lk(y)) if  x ≠ y; 

(c) (x,y) ϵ E(D)  if and only if (l2(x),…lk(x)) = (l1(y),…lk-1(y)).  

For any multiset which consists of some k-long oligonucleotides, a DNA graph is often 

constructed as follows: 

Each k-long oligonucleotide from the multiset becomes a vertex; two vertices are connected 

by an arc vertex if the k-1 rightmost nucleotides of first vertex overlap with the k-1 leftmost 

nucleotides of the second one. 

For example let S = {ACTG, CTGT, TGTA, GTAC, TACT, ACTT, CTTG} be a multiset of 

all 4-long oligonucleotides of a DNA sequence, the DNA graph of   “S” is made as follows: 

 

 

Figure 1. DNA graph of “S” 
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The above approach, however, leads to an exponential-time algorithm since looking for a 

Hamiltonian path is in general strongly NP-complete [22].  

To obtain the relationship between DNA graphs and line digraphs (directed line graphs), we 

need some definitions and theorem: 

Definition 2.2. [34]. A graph G is a p-graph if for any ordered pair x, y of vertices for G, 

there are at most p parallel arcs from x to y. 

Definition 2.3. [27]. The adjoint G′ = (V,U) of a graph G = (X,V) is the 1-graph with vertex 

set V and such that there is an arc from a vertex x to a vertex y in G′ if and only if the 

terminal endpoint of the arc x in G is the initial endpoint of arc y in G.  

Definition 2.4. [27]. A graph is a directed line-graph (line digraph) if and only if it is the 

adjoint of a 1-graph.  

Theorem 2.5. [27]. Let H be the adjoint of graph G. then there is an Eulerian path/circuit in 

G if and only if there is a Hamiltonian path/circuit in H. 

Since line digraphs are especial cases of adjoints, we get the following corollary: 

Corollary 2.6. [27]. Let H be the line digraph of 1-graph G. then there is an Eulerian 

path/circuit in G if and only if there is a Hamiltonian path/circuit in H. 

Now we construct a new DNA graph by another approach which presented by Pevzner [35] 

as follows:  

Each k-long oligonucleotide from the multiset becomes an arc which its initial end point is k-

1 rightmost nucleotides of arc and its terminal end point is k-1 leftmost nucleotides. 

For example, the new DNA graph of the graph in Figure 1 according to above approach is 

made as follows: 

 

Figure 2.  The new DNA graph of Figure 1 
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Easily seen that, line digraph of this new DNA graph is the DNA graph which is made by the 

previous approach which is shown in Figure1. Then using corollary 2.6, we find that there is 

an Eulerian path in this new DNA graph, and it is known that finding an Eulerian path can be 

done in polynomial time. 

 

3. A new method for DNA sequencing 

In this section, by creating and analyzing DNA graph with the approach which discuss in the 

previous section, we will propose a new method to read a DNA sequence with nanopores. 

This method is simpler than the method proposed by Bokhari and Sauer in [22], since this is 

independent on the long of oligonucleotides (k).  

There are two certain key issues in DNA sequencing with nanopores as follows: 

1. Each DNA helix would be split up into the original and its Watson-Crick complement. 

Since these would be further broken up into smaller pieces, there is no way for the 

nanosequencer's signals to reveal which of these two is passing through at any time. 

2. There is no control on the orientation in which the strings pass through the nanopore. DNA 

has well defined orientations (the 3′-5′ direction and vice versa). Since the single strand DNA 

is broken into subsequences, all information on orientation is lost. 

We will try to solve these problems by our method. Since in DNA sequencing with 

nanopores, we use the complete DNA sequence, there are four different strings to be 

recognized. These are the original 3′-5′ string, the reversed 5′-3′ string and the two Watson-

Crick complements of these. Our approach is to identify all four of these. Now we give our 

new method: 

Let M be a multiset of all k-long oligonucleotides of a complete DNA sequence, we construct 

a graph G with these oligonucleotides as follows: 

Each oligonucleotide becomes an arc which its initial end point is k-1 rightmost nucleotides 

of arc and its terminal end point is k-1 leftmost nucleotides. This graph (G) may be connected 

or disconnected, but this graph includes four connected DNA graphs :G1, G2, G3, G4 , which 

G1 is DNA graph of all k- long oligonucleotides from the original 3′-5′ string, G2 is DNA 

graph of all k- long oligonucleotides from the reversed 5′-3′ string, G3 is DNA graph of all k- 
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long oligonucleotides from the Watson-Crick complements of the original 3′-5′ string and G4 

is DNA graph of all k- long oligonucleotides from the Watson-Crick complements of the 

reversed 5′-3′ string. According to the corollary 2.6, each Gi, i = 1,…,4 includes an Eulerian 

path. These paths determine structure of primary DNA sequence. Our goal is finding these 

paths. 

Suppose that A is a set of all subgraphs of G which include an Eulerian path. Now we define 

the set B as follows: 

B = {{G1, G2, G3, G4} | Gi A  &  G1 G2 G3 G4  = G  & E(Gi) E(Gj) = ,  i,j ,i  j } 

Let R(p) represent the reversal of a sequence p and C(p) represent the Watson-Crick 

complement of p. We define a property for the members of the set B. 

τ-property: Let p1,  p2,  p3,  p4  be four paths ,we say these paths satisfy τ-property if ones can 

find a permutation τ(pi) for every i=1,…,4, such that τ(p1) = R(τ (p2)) = C(τ (p3)) = 

R(C(τ(p4))).  

Assume that {G1, G2, G3, G4}  B and pi is an Eulerian path of Gi, for i = 1,2,3,4. If this set of 

subgraphs of G satisfies the τ-property, we can get result that p1 is single string of DNA 

sequence. Therefor by this method, we can read a DNA sequence.  

Now we give an example for our method. 

Example: Let M = { CTG, TCT, CTG, TGA, GAC, ACT, GAG, AGA, GAC, ACT, CTG, 

TGA, TCA, CAG, AGT, GTC, TCT, CTC, GTC, TCA, CAG, AGA, GAG} be a multiset of 

all 3-long oligonucleotides of a complete DNA sequence, we construct a graph G with these 

oligonucleotides as follows: 

 

Figure 3. DNA graph of M  
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Then we obtain four subgarphs of G according to section 3 as follows: 

 

 

Figure 4. Subgraph G1 of graph G 

 

 

Figure 5. Subgraph G2 of graph G 

 

Figure 6. Subgraph G3 of graph G 

 

Figure 7. Subgraph G4 of graph G 

 

We see that Gi , i = 1,…,4 include an Eulerian path so that G1 G2 G3 G4  = G  and  

E(Gi) E(Gj) =    i,j ,i  j. As you see in figures 4,5,6,7, for each subgraph Gi , we have 

an Eulerian path pi , i = 1,…,4, as follows: 
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p1 = CTGACTCT 

p2 = TCTCAGTC 

p3 = GAGACTGA 

p4 = AGTCAGAG 

Take τ(p1)= CTCTGACT, τ(p2) = TCAGTCTC, τ(p3)= GAGACTGA, τ(p4)= AGTCAGAG 

Then we have τ(p1) = R(τ (p2)) = C(τ (p3)) = R(C(τ(p4))). Therefore p1 is original single strand 

of DNA sequence. 

Finally for illustrating the utility of this method, we use this method for sequencing of a 

complete segment of the first exon of β-globin human gene [12]. First we take k = 4 and use 

our new method to sequencing this gene and then we take k = 8 and then we will compare 

results. 

 Let  M′ = { ATGG, TGGT, GGTG, GTGC, TGCA, GCAC, CACC, ACCT, TACC, ACCA, 

CCAC, CACG, ACGT, CGTG, GTGG, TGGA, GGTA, TGGT, GTGG, CGTG, ACGT, 

CACG, CCAC, TCCA, CCAT, ACCA, CACC, GCAC, TGCA, GTGC, GGTG, AGGT} be a 

multiset of all 4-long oligonucleotides of a complete segment of the first exon of β-globin 

human gene, we construct a graph G′ with these oligonucleotides as follows: 

 

 

 

 

 

 

 

 

 

Figure 8. DNA graph of M′  

ATG TGG GGT 

ACC 

GTG 

GCA CAC 

TGC 

CCT TAC 

CCA ACG CGT 
GTA GGA 

TCC 
AGGCAT 
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Then we obtain four subgarphs of G′ according to section 3 as follows: 

 

 

 

 

 

 

Figure 9. Subgraph G′1 of graph G′ 

 

 

 

 

 

 

Figure 10. Subgraph G′2 of graph G′ 

 

 

 

 

 

 

Figure 11. Subgraph G′3 of graph G′ 

 

ATG TGG GGT 

GCA TGC 

CAC ACC CCT 

GTG 

GTA GGT TGG 

ACG CGT 

CAC CCA TCC 

GTG 

TAC ACC CCA 

CGT ACG 

GTG TGG GGA 

CAC 
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Figure 12. Subgraph G′4 of graph G′ 

 

As you see in figures 9, 10, 11 and 12, {G′1, G′2, G′3, G′4}  B and for each subgraph G′i we 

have an Eulerian path p′i , i = 1,…,4, as follows: 

p′1 = ATGGTGCACCT 

p′2 = TCCACGTGGTA 

p′3 = TACCACGTGGA 

p′4 = AGGTGCACCAT 

Take τ = identity permutation, we have τ(p′1)= ATGGTGCACCT, τ(p′2) = TCCACGTGGTA 

, τ(p′3)= TACCACGTGGA, τ(p′4)= AGGTGCACCAT 

 

Then we have τ(p′1) = R(τ (p′2)) = C(τ (p′3)) = R(C(τ(p′4))). Therefore p′1 = ATGGTGCACCT 

is original single strand of DNA sequence. 

 

Now let M′′ = { ATGGTGCA, TGGTGCAC, GGTGCACC, GTGCACCT, ACGTGGTA, 

CACGTGGT, CCACGTGG, TCCACGTG, TACCACGT, ACCACGTG, CCACGTGG, 

CACGTGGA, TGCACCAT, GTGCACCA, GGTGCACC, AGGTGCAC} be a multiset of 

all 8-long oligonucleotides of a complete segment of the first exon of β-globin human gene, 

we construct a graph G′′ with these oligonucleotides as follows: 

CAT CCA ACC 

TGC GCA 

GTG GGT AGG 

CAC 
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Figure 13. DNA graph of M′′  

Then we obtain four subgarphs of G′′ according to section 3 as follows: 

 

 

 

 

Figure 14. Subgraph G′′1 of graph G′′ 

 

 

 

 

 

Figure 15. Subgraph G′′2 of graph G′′ 

 

 

ATGGTGC GGTGCAC 

ACCACGT 

TGGTGCA 

CACGTGG 

GTGCACC 

TGCACCT CACGTGG 

TGCACCA 

TCCACGT 

CCACGTG 

CCACGTG 

ACGTGGT 

TACCACG 

CGTGGTA 

GCACCAT 

AGGTGCA 

ACGTGGA 

GGTGCAC GTGCACC 

ATGGTGC GGTGCAC TGGTGCA GTGCACC 

TGCACCT 

CACGTGG 

TCCACGT CCACGTG 

ACGTGGT CGTGGTA 
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Figure 16. Subgraph G′′3 of graph G′′ 

 

 

 

 

Figure 17. Subgraph G′′4 of graph G′′ 

As you see in figures 14-17, {G′′1, G′′2, G′′3, G′′4}  B and for each subgraph G′′i, we have an 

Eulerian path p′′i , i = 1,…,4, as follows: 

p′′1 = ATGGTGCACCT 

p′′2 = TCCACGTGGTA 

p′′3 = TACCACGTGGA 

p′′4 = AGGTGCACCAT 

Same as above take τ = identity permutation, we have τ(p′′1)= ATGGTGCACCT, τ(p′′2) = 

TCCACGTGGTA, τ(p′′3)= TACCACGTGGA, τ(p′′4)= AGGTGCACCAT 

Then we have τ(p′′1) = R(τ (p′′2)) = C(τ (p′′3)) = R(C(τ(p′′4))). Therefore p′′1 = 

ATGGTGCACCT is original single strand of DNA sequence. Comparing the above two 

cases, can be easily found that the results are similar, in other words p′1 = p′′1, p′2 = p′′2, p′3 = 

p′′3 and  p′4 = p′′4. 

As seen in the example above, this method gives the same result for each k. 

 

ACCACGT CACGTGG CCACGTG 

TACCACG 
ACGTGGA 

TGCACCA 

GCACCAT 

AGGTGCA GGTGCAC GTGCACC 
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4. Conclusion  

We give a new method to read a DNA sequence using concepts of graph theory, which work 

in DNA sequencing with nanopores. Compared with the method proposed by Bokhari [22] 

our method is simpler. In their method, first we are supposed to find a suitable k and then 

construct a de bruijn graph with k-oligonucleotides of a DNA sequence, but our method is 

independent of the length of oligonucleotides (k), in other words, this method does not 

require a specific amount for k. on the other hand steps of the algorithm according to this 

method will be less than the previous methods. These advantages make our method simpler 

and more useful.  

 

Acknowledgement 

The authors would like to thank the referee for the valuable comments. 

 

References 

[1] J. D. Watson, F. H. C. Crick, Molecular structure of nucleic acids - A structure for  

deoxyribose nucleic acid,  Nature 171 (1953) 737–738. 

[2] R. Wu, Q. Hu, R. Li, G. Yue,  A novel composition coding method of  DNA sequence  

and its application, MATCH Commun. Math. Comput. Chem. 67 (2012) 269–276. 

[3]  X. Zhou, K. Li, M. Goodman, A. Sallam, A novel approach for the classical Ramsey 

number problem on DNA-based supercomputing,  MATCH Commun. Math. Comput. 

Chem. 66 (2011)  347–370. 

[4]  Q. Zhang, B. Wang, On the bounds of DNA coding with H-distance,  MATCH 

Commun. Math. Comput. Chem. 66 (2011) 371–380. 

[5] Q. Zhang, B. Wang, X. Wei, Evaluating the different combinatorial constraints in DNA 

computing based on minimum free energy, MATCH Commun. Math. Comput. Chem. 

65 (2011) 291–308.  

[6] Y. Zhang, W. Chen, A new measure for similarity searching in DNA sequences, 

MATCH Commun. Math. Comput. Chem. 65 (2011) 477–488.  

[7] R. Wu, R. Li, B. Liao, G. Yue, A novel method for visualizing and analyzing DNA 

sequences, MATCH Commun. Math. Comput. Chem. 63 (2010) 679–690. 

-413-



[8] W. Chen, B. Liao, Y. Liu, W. Zhu, Z. Su, A numerical representation of DNA 

sequences and its applications, MATCH Commun. Math. Comput. Chem. 60 (2008) 

291–300. 

[9] V. Aram, A. Iranmanesh, 3D-dynamic representation of DNA sequences, MATCH 

Commun. Math. Comput. Chem. 67 (2012) 809–816. 

[10] J. Pesek, A. Zerovnik, Numerical characterization of modified Hamori curve 

representation of DNA sequences, MATCH Commun. Math. Comput. Chem. 60 (2008) 

301–312. 

[11] Y. Zhang, W. Chen, New invariant of DNA sequences, MATCH Commun. Math. 

Comput. Chem. 58 (2007) 197–208. 

[12] N. Jafarzadeh, A. Iranmanesh, A novel graphical and numerical representation for 

analyzing DNA sequences based on codons, MATCH Commun. Math. Comput. Chem. 

68 (2012) 611–620. 

[13] J. Yu, J. Wang, X. Sun, Analysis of similarities/dissimilarities of DNA sequences based 

on a novel graphical representation, MATCH Commun. Math. Comput. Chem. 63 

(2010) 493–512. 

[14] B. Liao, C. Zeng, F. Q. Li, Y. Tang, Analysis of similarity/dissimilarity of DNA 
sequences based on dual nucleotides, MATCH Commun. Math. Comput. Chem. 56 
(2006) 209–216. 

[15] R. M. Ldury, M. S. Waterman, A new algorithm for DNA sequencing assembly, J. 

Comput. Biol. 2 (1995) 291–306. 

[16] P. A. Pevzner, DNA physical mapping and alternating Eulerian cycles in colored 

graphs, Algorithmica 13 (1995) 77–105. 

[17] P. A. Pevzner, H. Tang, M. S, Waterman, A new approach to fragment assembly in 

DNA sequencing, RECOMB 1 (2001) 256–267. 

[18] G. M. Church, D. W. Deame, D. Branton, R. Baldarelli, J. Kasianowicz, 

Characterization of individual polymer molecules based on monomer-interface 

interactions, U. S. Patent (1998) 5795782. 

[19] J. Kasianowicz, E. Brandin, D. Branton, D. W. Deamer, Characterization of individual 

polynucleotide molecules using a membrane channel, Proc Natl Acad Sci USA 93 

(1996) 13770–13773. 

[20] J. D. Watson, F. H. C. Crick, Molecular structure of nucleic acids, Am. J. Psych. 160 

(2003) 623–624. 

-414-



[21] J. Kaptcianos, A graph theoretical approach to fragment assembly, Am. J. Undergrad. 

Res. 7 (2008) 311–329. 

[22] S. H .Bokhari, J. R. Sauer, A parallel graph decomposition algorithm for DNA 

sequencing with nanopores, J. Bioinform. 21 (2005) 889–896. 

[23] C. Li, N. Tang, J. Wang, Directed graphs of DNA sequences and their numerical 

characterization, J. Theor. Biol. 241 (2006) 173–177. 

[24] J. F. Yu, J. H. Wang, X. Sun, Analysis of similarities/dissimilarities of DNA sequences 

based on a novel graphical representation, MATCH Commun. Math. Comput. Chem. 63 

(2010) 493–512. 

[25] J. Blazewicz, A. Hertz, D. Kobler, On some properties of DNA graphs, Discr. Appl. 

Math. 98 (1999) 1–19. 

[26] J. Wang, C. Xu, A further study on DNA graphs and DNA labeling graphs, Acta Math. 

Appl. Sin. 33 (2010) 982–989 (in Chinese). 

[27] J. Hao, The adjoints of DNA graphs, J. Math. Chem. 37 (2005) 333–346. 

[28] X. Li, H. Zhang, Characterizations for some types of DNA graphs, J. Math. Chem. 42 

(2007) 65–79. 

[29] S. Wang, J. Yuan, DNA computing of directed line-graphs, MATCH Commun. Math. 

Comput. Chem. 56 (2006) 479–484. 

[30] P. Sa-Ardyen, N. Jonoska, Self-assembling DNA graphs, Nat. Comput. 2 (2003) 427–

438. 

[31] R. Pendavingh, P. Schuurman, G. Woeginger, Recognizing DNA graphs is difficult, 

Discr. Appl. Math. 127 (2003) 85–94. 

[32] J. Blazewicz, M. Bryja, M. Figlerowicz, P. Gawron, M. Kasprzak, E. Kirton, D. Platt, J. 

Przybytek, A. Swiercz, L. Szajkowski, Whole genome assembly from 454 sequencing 

output via modified DNA graph concept, Comput. Biol. Chem. 33 (2009) 224–230. 

[33] S. Y. Wang, J. Yuan, S. Lin, DNA labelled graphs with DNA compuing, Sci. China 

Ser. A: Math. 51 (2008) 437–452. 

[34] G. Chartrand, L. Lesniak, Graphs and Digraphs, Wadsworth & Brooks, Monterey, 

1986. 

[35] P. A. Pevzner, H. Tang, M. S. Waterman, An Eulerian path approach to DNA fragment 

assembly, Proc. Nat. Acad. Sci. 98 (2001) 9748–9753.  

-415-


