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Abstract

A mathematical method is proposed to describe the complex structure of poly-
hedral catenanes with two DNA duplexes. In this method, a special oriented tangle
diagram Tk is designed to generate a new family of polyhedral links based on the
1-skeleton of polyhedron. We show that the Homfly polynomials of these links can
be given by an explicit formula in terms of the Qd-polynomial of the associated
polyhedral graph. As applications, this formula allows us to calculate the spanv of
the Homfly polynomial, the braid index and genus of each link we constructed. Our
results reveal that the complexity of these polyhedral links depends completely on
these building blocks.

1 Introduction

In past decades, the geometry and topology of DNA molecules [1–13] have been realized

by using DNA as building material. A variety of DNA polyhedron including DNA tetra-

hedron [2, 6], DNA cube [3, 7], DNA octahedron [4, 8], DNA dodecahedron [6, 11], DNA

icosahedron [9,12] and DNA bipyramid [13] have been synthesized based on stiffness and

flexibility of DNA. These exotic newcomers in biochemistry have attracted considerable

attentions due to their graceful structures and potential properties. How to describe and

characterize these intriguing DNA nanoarchitecture has became a new challenge in the

topological stereochemistry. This paper will be dedicated to exploiting a small fraction

of this field.
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A polyhedral link [14–25] is a set of some interlocked and interlinked looped based on

1-skeleton of polyhedron. In fact, it appears as amathematicalmodel for DNA polyhedron

by treating DNA as double strands. In these synthesized DNA polyhedrons, each edge

is composed of double-helical DNA [2–5] or two DNA duplexes [6–10], and each vertex

a big ’hole’ formed by the interaction of the edges. Based on these facts, there are lots

of polyhedral links [15–22] constructed by double-helical DNA as two twisted strands.

Meanwhile, some related topological indexes, such as the component number, Homfly

polynomial, Jones polynomial, genus and index braid, have been discussed in Ref. [17–22].

However, there is very little research on the polyhedral catenane with two DNA duplexes.

To this end, this paper introduces a special oriented tangle diagram Tk to construct

the new family of polyhedral links. Three important invariants, including the Homfly

polynomial, genus and braid index, are all calculated in this paper.

The Homfly polynomial [26, 27] is a very powerful invariant of oriented links, which

plays an important role in identifying topological type and chirality [28]. This invariant

is closely related to both the genera and braid indexes of oriented links [29–32], which

have been used to classify and order molecular catenanes [33, 34]. However, among the

three invariants, none of them can be easily calculated in general, particularly for the

links with a large number of crossings. In the present paper, the Homfly polynomials of

the polyhedral links our constructed have been given by an explicit formula in terms of

Qd-polynomial, a generalized dichromatic polynomial, of the associated polyhedral graph.

This formula not only simplifies greatly the calculation of the Homfly polynomial but also

leads to obtaining the spansv of the Homfly polynomials, the genera and braid indexes, of

these links. These invariants provide the important mathematical tools for a comprehen-

sive measure of the complexity of polyhedral links, and also give a possible approach to

describing and characterizing the structural properties of polyhedral catenanes with two

DNA duplexes.

2 The oriented links derived from the plane graphs

In this section, we will begin with some basic terms and definitions.

In graph theory, a planar graph is a graph that can be embedded in the plane. A planar

graph already drawn in the plane without edge intersections is called a plane graph. Note

that all convex polyhedrons are 3-connected planar graphs [35], and hence each of them

has an embedding on the plane. Such an embedding is called a polyhedral graph. In

this paper, we will consider all plane graphs, which include the polyhedral graphs as the
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special case.

A n-twist tangle diagram, denoted by [n], is two parallel strands with n half-twists

for any positive integer n. Two 2-tangle diagrams [∞] and [0] are shown in Fig. 1. The

Denominator of a 2-tangle diagram T , denoted by De(T ), is obtained by joining with

simple arcs each pair of the corresponding top and bottom endpoints of T .

T

[0]∞[ ]

[2]

Figure 1. Three 2-tangle diagrams (left) and De(T ) (right).

A special oriented 2-tangle diagram Tk = T (2n1, 2n1; 2n2, 2n2; ...; 2nk, 2nk) is shown

in Fig. 2, where each box 2ni denotes a 2ni-twist tangle diagram for 1 ≤ i ≤ k ≥ 1.

Specially, if a box 2ni is replaced by a 2-tangle diagram [∞] or [0], the resulting link

diagram is denoted by the corresponding notation obtained by using 0 or ∞ instead of

2ni in Tk (See Fig. 2).

2
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Figure 2. Four oriented tangle diagrams: Tk, T2, T (0,∞) and T (∞, 2).

We now associate any plane graph to an oriented link diagram by using a similar

method in Ref. [36–38]. Here these special oriented 2-tangle diagrams are used as the

building blocks of the oriented links. The constructive process is described as follows:

For any connected plane graph G, its medial graph M(G) is a 4-regular plane graph

by inserting a vertex ve on every edge e of G, and connecting two new vertices by an

edge lying in a face of G if the vertices are on adjacent edges of the face. Then, M(G)
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is shaded as in a checkerboard so that the unbounded face is unshaded, and the bound-

ary of each shaded face is oriented in clockwise direction. At last for each vertex ve

of M(G), the neighborhood N(ve) is replaced by a special oriented 2-tangle diagram

Tke = T (2n1, 2n1; 2n2, 2n2; ...; 2nke , 2nke), as shown in Fig. 3(a). The resulting link dia-

gram is denoted by D(G), and Tke is associated to e. In Fig. 3(b), a link diagram D(G)

is obtained from the tetrahedral graph G by using T (2, 2) as the building block.

(2 2)T ,

e
v

( )
e

N v

( )
e

N v

M G( ) D G( )

e
k

Te

Replaced by

( )a

( )b

Figure 3. (a)The neighborhood N(ve) replaced by Tke (b) The link diagram D(G)
derived from the oriented medial graph M(G).

3 Homfly polynomial and Qd-polynomial

The Homfly polynomial is the invariant of oriented links, which was discovered inde-

pendently by several authors [26, 27]. This invariant generalizes the Alexander-Conway

polynomial and the Jones polynomial. Here we use its definition provided in Ref. [28].

Definition 3.1. The Homfly polynomial H(L; v, z) ∈ Z[v, z] for an oriented link L is

defined by the following relationships:

(1) H(L; v, z) is invariant under ambient isotopy of L.

(2) If L is a trivial knot, then H(L; v, z) = 1.

(3) Suppose that three link diagrams L+, L− and L0 are different only on a local region,

as shown in Fig. 4. Then v−1H(L+; v, z)− vH(L−; v, z) = zH(L0; x, y, z).

The Homfly polynomial has the following properties:

(1) If L is the connected sum of L1 and L2, denoted by L1�L2, then

H(L) = H(L1)H(L2).
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Figure 4. Three link diagrams: L+, L−, L0.

(2) If L is the disjoint union of L1 and L2, denoted by L1 ∪ L2, then

H(L) = (
v−1 − v

z
)H(L1)H(L2).

A double weighted graph is a graph G together with two functions α and β, where α

(β, respectively) maps from E(G) into some commutative ring with unity Rα(Rβ, respec-

tively). Let e be any edge of G, and let α(e) and β(e) be two weights of e respectively.

Hereafter we use G− e and G/e to denote the graphs obtained from graph G by deleting

and contracting e respectively.

Definition 3.2. The Qd-polynomial Qd(G) = Qd(G; t, z) for a double weighted graph G

is defined by the following recursive rules:

1. Let En be n isolated vertices. Then Qd(En) = tn.

2. Suppose that α(e) = αe and β(e) = βe. Then

(a) when e is a loop,

Qd(G) = (αez + βe)Q
d(G− e);

(b) when e is a bridge,

Qd(G) = (αe + βet)Q
d(G/e);

(c)otherwise,

Qd(G) = αeQ
d(G/e) + βeQ

d(G− e).

In fact, Qd-polynomial is a naturally generalization of the dichromatic polynomial

Q(G; t, z) of a weighted graph G [37]. We can recover this dichromatic polynomial from

Qd-polynomial by setting αe = 1. Hence Qd-polynomial can be defined as follows:

Qd(G) =
∑

F⊆E(G)

(∏
e∈F

αe

)⎛⎝ ∏
e∈E(G)−F

βe

⎞
⎠ tk<F>zn<F>, (1)

where k < F > and n < F > are the number of connected components and the nullity of

the spanning subgraph < F >, induced by F , of G, respectively.
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4 The Homfly polynomials of links

In this section, we establish the relationship between the Homfly polynomials of the family

of links constructed in section 2 and the Qd-polynomial of the associated plane graph. Let

G be any connected plane graph, and D(G) be the link diagram derived from G using the

method in section 2. Let De:T (G) be the same as D(G) only except the 2-tangle diagram

associated to e is T. Hereafter, we denote by V (G), E(G) and F (G) the vertex, edge, face

set of G respectively.

Lemma 4.1. Let T = T (2n, 2n) be a special oriented 2-tangle diagram. Then

H(De(T ); v, z) = v4n · v
−1 − v

z
+ vz · v

4n − 1

v2 − 1
. (2)

Proof: We proceed by induction on the crossing number n, and suppose that n = 1

firstly. Repeatedly applying the definition (3) of Homfly polynomial to the crossings of

T, we have

H(De(T )) =v2H(De(T (∞, 2))) + vz

=v2[v2H(De(T (∞,∞))) + vz] + vz

=v4
v−1 − v

z
+ v3z + vz .

Now we suppose that n ≥ 2. Using the definition (3) of Homfly polynomial, then

H(De(T )) =v2H(De(T (2n− 2, 2n))) + vz

=v2[v2H(De(T (2n− 2, 2n− 2))) + vz] + vz

=v4H(De(T (2n− 2, 2n− 2))) + v3z + vz .

By our induction hypothesis, we have

H(De(T (2n− 2, 2n− 2))) = v4(n−1) · v
−1 − v

z
+ vz · v

4(n−1) − 1

v2 − 1
.

Hence we can obtain the following equation:

H(De(T )) =v4[v4(n−1) · v
−1 − v

z
+ vz · v

4(n−1) − 1

v2 − 1
] + v3z + vz

=[v4n · v
−1 − v

z
+ vz · v

4n − v4

v2 − 1
] + vz · v

4 − 1

v2 − 1
.

�
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Lemma 4.2.

H(De:T (2n,∞)(G)) = H(De:T (∞,2n)(G)) = (v2n · v
−1 − v

z
+ vz · v

2n − 1

v2 − 1
)H(De:T (0,∞)(G)).

Proof: Since T (∞, 2n) and T (2n,∞) represent the same tangle type, we have

H(De:T (2n,∞)(G)) = H(De:T (∞,2n)(G)).

Hence we only need to show that lemma 4.2 holds for the link diagram De:T (2n,∞)(G). We

proceed by induction on the crossing number n, and suppose that n = 1 firstly. Applying

the definition (3) of Homfly polynomial to a crossing of T, we have

H(De:T (2,∞)(G)) =v2H(De:T (∞,∞)(G)) + vzH(De:T (0,∞)(G))

=v2(
v−1 − v

z
)H(De:T (0,∞)(G)) + vzH(De:T (0,∞)(G))

=(v2 · v
−1 − v

z
+ vz)H(De:T (0,∞)(G)).

Now we suppose that n ≥ 2. Using the definition (3) of Homfly polynomial, then

H(De:T (2n,∞)(G)) =v2H(De:T (2n−2,∞)(G)) + vzH(De:T (0,∞)(G)).

Apply our induction hypothesis to the link diagram De:T (2n−2,∞)(G), we have

H(De:T (2n,∞)(G)) =v2[v2(n−1)(
v−1 − v

z
)

+vz · v
2(n−1) − 1

v2 − 1
]H(De:T (0,∞)(G)) + vzH(De:T (0,∞)(G))

=[v2n
v−1 − v

z
+ vz · v

2n − v2

v2 − 1
+ vz · v

2 − 1

v2 − 1
]H(De:T (0,∞)(G)).

�

Similarly, we have

Lemma 4.3.

H(De:T (2n,0)(G)) = H(De:T (0,2n)(G)) = v2nH(De:T (0,∞)(G)) + vz
v2n − 1

v2 − 1
H(D(G− e)).

For any positive integer n, we define the following notations:

an = v4n · v
−1 − v

z
+ 2vz · v2n · v

2n − 1

v2 − 1
,

bn = (vz · v
2n − 1

v2 − 1
)2 and

cn = v4n · v
−1 − v

z
+ vz · v

4n − 1

v2 − 1
.
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Lemma 4.4. Let Tke = T (2n1, 2n1; 2n2, 2n2; ...; 2nke , 2nke) be a special oriented 2-tangle

diagram associated to an edge e of G. If e is a loop, then

H(D(G); v, z) = [
ke∏
i=1

ani

v−1 − v

z
+

nke∑
j=1

(

j−1∏
i=1

ani
bnj

ke∏
i=j+1

cni
)]H(G− e). (3)

Otherwise,

H(D(G); v, z) =
ke∏
i=1

ani
H(G/e) + [

nke∑
j=1

(

j−1∏
i=1

ani
bnj

ke∏
i=j+1

cni
)]H(G− e). (4)

Proof: We proceed by induction on ke for 1 ≤ i ≤ ke, and have two cases depending on

whether e is a loop or not.

(i)We first assume that ke = 1.

Repeatedly applying the definition (3) of Homfly polynomial to the crossings of Tke ,

we have

H(D(G)) =v2H(De:T (2n1−2,2n1)(G)) + vzH(De:T (0,2n1)(G))

=v2[v2H(De:T (2n1−4,2n1)(G)) + vzH(De:T (0,2n1)(G))] + vzH(De:T (0,2n1)(G))

=v4H(De:T (2n1−4,2n1)(G)) + (v3z + vz)H(De:T (0,2n1)(G)).

By induction on n1, we can easily obtain the following formula:

H(D(G)) = v2n1H(De:T (∞,2n1)(G)) + vz · v
2n1 − 1

v2 − 1
H(De:T (0,2n1)(G)).

Using the lemmas 4.2 and 4.3, we have

H(D(G)) =v2n1(v2n1 · v
−1 − v

z
+ vz · v

2n1 − 1

v2 − 1
)H(De:T (0,∞)(G))

+vz · v
2n1 − 1

v2 − 1
[v2n1H(De:T (0,∞)(G)) + vz · v

2n1 − 1

v2 − 1
H(D(G− e))]

=(v4n1 · v
−1 − v

z
+ 2vz · v2n1 · v

2n1 − 1

v2 − 1
)H(De:T (0,∞)(G))

+(vz · v
2n1 − 1

v2 − 1
)2H(D(G− e)).

If e is a loop, then

H(De:T (0,∞)(G)) = (
v−1 − v

z
)H(D(G− e)).

And hence we have

H(D(G)) =[(v4n1 · v
−1 − v

z
+ 2vz · v2n1 · v

2n1 − 1

v2 − 1
)(
v−1 − v

z
)

+(vz · v
2n1 − 1

v2 − 1
)2]H(D(G− e)).
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If e is not loop, then

H(De:T (0,∞)(G)) = H(D(G/e)).

And hence we have

H(D(G)) =(v4n1 · v
−1 − v

z
+ 2vz · v2n1 · v

2n1 − 1

v2 − 1
)H(D(G/e))

+(vz · v
2n1 − 1

v2 − 1
)2H(D(G− e)).

(ii)We now assume that ke ≥ 2. By repeatedly applying the definition (3) of Homfly

polynomial, we have

H(D(G)) =v2H(De:T (2n1−2,2n1;2n2,2n2;...)(G)) + vzH(De:T (0,2n1;2n2,2n2;..)(G))

=v2[v2H(De:T (2n1−4,2n1;2n2,2n2;...)(G)) + vzH(De:T (0,2n1;2n2,2n2;..)(G))]

+vzH(De:T (0,2n1;2n2,2n2;..)(G))

=v4H(De:T (2n1−4,2n1;2n2,2n2;..)(G)) + (v3z + vz)H(De:T (0,2n1;2n2,2n2;..)(G))

· · · =v2n1H(De:T (∞,2n1;2n2,2n2;..)(G)) + vz · v
2n1 − 1

v2 − 1
H(De:T (0,2n1;2n2,2n2;...)(G)).

Using the lemmas 4.2 and 4.3, we have

H(D(G)) =v2n1(v2n1 · v
−1 − v

z
+ vz · v

2n1 − 1

v2 − 1
)H(De:T (0,∞;2n2,2n2;...)(G))

+vz · v
2n1 − 1

v2 − 1
[v2n1H(De:T (0,∞;2n2,2n2;...)(G)) + vz · v

2n1 − 1

v2 − 1
H(De:T (0,0;2n2,2n2;...)(G))].

Hence we have

H(D(G)) = an1H(De:T (0,∞;2n2,2n2;...;2nke ,2nke )
(G)) + bn1H(De:T (0,0;2n2,2n2;..;2nke ,2nke )

(G)).

Also, De:T (0,0;2n2,2n2;..;2nke ,2nke )
(G) = De:T (0,0)(G)�De(T (2n2, 2n2))�...�De(T (2nke , 2nke)).

By using the property (1) of Homfly polynomial and lemma 4.1, we can obtain the

following equation:

H(De:T (0,0;2n2,2n2;..;2nke ,2nke )
(G)) =H(De:T (0,0)(G)) ·

ke∏
i=2

H(De(T (2ni, 2ni)))

=H(D(G− e))
ke∏
i=2

cni
.

Hence we have

H(D(G)) =an1H(De:T (0,∞;2n2,2n2;..;2nke ,2nke )
(G)) + bn1

ke∏
i=2

cni
H(D(G− e))

=an1H(De:T (2n2,2n2;..;2nke ,2nke )
(G)) + bn1

ke∏
i=2

cni
H(D(G− e)).
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If e is a loop, by our induction hypothesis, then

H(De:T (2n2,2n2;..;2nke ,2nke )
(G)) = [

ke∏
i=2

ani
· (v

−1 − v

z
) +

ke∑
j=2

j−1∏
i=2

ani
· bnj

·
ke∏

i=j+1

cni
]H(D(G− e)).

Hence we have

H(D(G)) =an1 [
ke∏
i=2

ani
· (v

−1 − v

z
)

+
ke∑
j=2

j−1∏
i=2

ani
· bnj

·
ke∏

i=j+1

cni
]H(D(G− e)) + bn1

ke∏
i=2

cni
·H(D(G− e))

=[
ke∏
i=1

ani
· (v

−1 − v

z
) + an1

ke∑
j=2

j−1∏
i=2

ani
· bnj

·
ke∏

i=j+1

cni
+ bn1

ke∏
i=2

cni
]H(D(G− e)).

Clearly, the formula (3) can be obtained directly from the above equation.

If e is not a loop, by our induction hypothesis, then

H(De:(2n2,2n2;..;2nke ,2nke )
(G)) =

ke∏
i=2

ani
H(D(G/e)) +

ke∑
j=2

j−1∏
i=2

ani
· bnj

·
ke∏

i=j+1

cni
H(D(G− e)).

Hence, we have

H(D(G)) =an1 [
ke∏
i=2

ani
H(D(G/e))

+
ke∑
j=2

j−1∏
i=2

ani
· bnj

·
ke∏

i=j+1

cni
H(D(G− e))] + bn1

ke∏
i=2

cni
·H(D(G− e))

=
ke∏
i=1

ani
H(D(G/e)) + [an1

ke∑
j=2

j−1∏
i=2

ani
· bnj

·
ke∏

i=j+1

cni
+ bn1

ke∏
i=2

cni
]H(D(G− e)).

Clearly, the formula (4) can be obtained directly from the above equation. �

Let e be any edge of G, and Tke be the 2-tangle associated to e. We define

αe =
ke∏
i=1

ani
and βe =

nke∑
j=1

(

j−1∏
i=1

ani
bnj

ke∏
i=j+1

cni
).

Hence we obtain two functions α and β from E(G) to Z(v, z) by defining α(e) = αe and

β(e) = βe respectively. Then G is a double weighted graph with α and β. Therefore,

the following Theorem can be obtained by comparing Theorem 4.4 with the definition of

Qd-polynomial.
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Theorem 4.5. Let G be a double weighted graph together with two functions α and β as

defined above. Then

H(D(G), v, z) =
z

v−1 − v
Qd(G;

v−1 − v

z
,
v−1 − v

z
).

By using the definition of Qd-polynomial, we can easily obtain

Theorem 4.6. H(D(G)) =
∑

F⊆E(G)

(
∏
e∈F

αe)(
∏

e∈E(G)−F

βe)(
v−1−v

z
)k<F>+n<F>−1.

5 Span, braid index and genus

In this section, the spansv of Homfly polynomials, the braid indexes and genera of the

oriented links we constructed are all calculated. Let maxdegvf and mindegvf denote the

maximum degree and minimum degree in variable v of multi-variable polynomial f taken

over terms with non-zero coefficients, respectively. Define spanvf= maxdegvf−mindegvf ,

and we denote by v(G), e(G), and f(G) the number of vertices, edges, and faces of the

plane graph G respectively.

5.1 The span of Homfly polynomial

Lemma 5.1. Let an, bn and cn be three polynomials as defined in the section 4. Then

maxdegv an = 4n+ 1 and mindegv an = 2n+ 1; (5)

maxdegv bn = 4n− 2 and mindegv bn = 2; (6)

maxdegv cn = 4n+ 1 and mindegv cn = 1. (7)

Theorem 5.2. Let G be any connected plane graph, and D(G) be the link diagram

obtained by using the method in the section 2. For each edge e of G, it is associated to a

special oriented 2-tangle diagram Tke. Then

mindegv H(D(G)) =
∑

e∈E(G)

ke∑
i=1

(4ni + 1) + f(G)− 1; (8)

maxdegv H(D(G)) =
∑

e∈E(G)

(ke + 1)− v(G) + 1. (9)

Proof: By using theorem 4.6, we have

H(D(G)) =
∑

F⊆E(G)

(
∏
e∈F

αe)(
∏

e∈E(G)−F

βe)(
v−1 − v

z
)k<F>+n<F>−1,

where αe =
ke∏
i=1

ani
and βe =

nke∑
j=1

(
j−1∏
i=1

ani
bnj

ke∏
i=j+1

cni
).
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By the formula (5) of lemma 5.1, we have

maxdegv αe =
ke∑
i=1

maxdegv ani
=

ke∑
i=1

(4ni + 1)

and mindegv αe =
ke∑
i=1

mindegv ani
=

ke∑
i=1

(2ni + 1).

And using lemma 5.1 again, we have

maxdegv βe = maxdegv {bn1

ke∏
i=2

cni
} = 4n1 − 2 +

ke∑
i=2

(4ni + 1) =
ke∑
i=1

(4ni + 1)− 3

and mindegv βe = mindegv {bn1

ke∏
i=2

cni
} = 2 +

ke∑
i=2

1 = ke + 1.

Let F be any subset of E(G), and |F | be the number of edges of F. If |F | < e(G),

then we have

maxdegv {(
∏
e∈F

αe)(
∏

e∈E(G)−F

βe)(
v−1 − v

z
)k<F>+n<F>−1}

=
∑
e∈F

maxdegv αe +
∑

e∈E(G)−F

maxdegv βe + k < F > +n < F > −1

=
∑
e∈F

ke∑
i=1

(4ni + 1) +
∑

e∈E(G)−F

[
ke∑
i=1

(4ni + 1)− 3] + k < F > +n < F > −1

=
∑

e∈E(G)

ke∑
i=1

(4ni + 1)− 3(e(G)− |F |) + k < F > +n < F > −1.

Also, k < F >≤ e(G)− |F |+ 1 and n < F >= |F | − v < F > +k < F >, then

maxdegv {(
∏
e∈F

αe)(
∏

e∈E(G)−F

βe)(
v−1 − v

z
)k<F>+n<F>−1}

≤
∑

e∈E(G)

ke∑
i=1

(4ni + 1)− 3(e(G)− |F |) + 2(e(G)− |F |+ 1) + |F | − v < F > −1

≤
∑

e∈E(G)

ke∑
i=1

(4ni + 1)− (e(G)− |F |) + |F | − v < F > +1.
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By v < F >= v(G) = e(G)− f(G) + 2 and e(G)− |F | > 0, we have

maxdegv {(
∏
e∈F

αe)(
∏

e∈E(G)−F

βe)(
v−1 − v

z
)k<F>+n<F>−1}

=
∑

e∈E(G)

ke∑
i=1

(4ni + 1)− (e(G)− |F |) + |F | − (e(G)− f(G) + 2) + 1

≤
∑

e∈E(G)

ke∑
i=1

(4ni + 1)− 2(e(G)− |F |) + f(G)− 1

<
∑

e∈E(G)

ke∑
i=1

(4ni + 1) + f(G)− 1.

Hence we have

maxdegv H(D(G)) = maxdegv {(
∏

e∈E(G)

αe)(
v−1 − v

z
)f(G)−1} =

∑
e∈E(G)

ke∑
i=1

(4ni+1)+f(G)−1.

On the other hand, if |F | > 0, then we can obtain

mindegv {(
∏
e∈F

αe)(
∏

e∈E(G)−F

βe)(
v−1 − v

z
)k<F>+n<F>−1}

=
∑
e∈F

mindegv αe +
∑

e∈E(G)−F

mindegv βe − k < F > −n < F > +1

=
∑
e∈F

ke∑
i=1

(2ni + 1) +
∑

e∈E(G)−F

(ke + 1)− k < F > −n < F > +1.

Since
ke∑
i=1

ni ≥ 1, k < F >≤ v < F > −1 and n < F >= |F | − v < F > +k < F >, we

have

mindegv {(
∏
e∈F

αe)(
∏

e∈E(G)−F

βe)(
v−1 − v

z
)k<F>+n<F>−1}

≥
∑
e∈F

(ke + 2) +
∑

e∈E(G)−F

(ke + 1)− 2(v < F > −1)− |F |+ v < F > +1

=
∑

e∈E(G)

(ke + 1)− v < F > +3 =
∑

e∈E(G)

(ke + 1)− v < G > +3

>
∑

e∈E(G)

(ke + 1)− v(G) + 1.

Hence we have

mindegv H(D(G)) = mindegv {
∏

e∈E(G)

βe(
v−1 − v

z
)v(G)−1} =

∑
e∈E(G)

(ke + 1)− v(G) + 1.

�

Corollary 5.3. spanv H(D(G)) =
∑

e∈E(G)

ke∑
i=1

4ni.
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5.2 The braid indexes of links

The braid index b(L) of a link L is the minimal number n such that L can be represented

as a closed n-string braid. It is well known that Franks and Williams [29] and Morton [30]

gave independently a lower bound for the braid index b(L) of a link L in terms of the

spanv of the Homfly polynomial as follows:

b(L) ≥ 1

2
spanvH(L) + 1. (10)

This inequality (10) is known as MFW inequality, which have been studied extensively

for many classes of knots and links [39] such as torus links [29], alternating links [40] and

so on. On the other hand, in 1993, Ohyama [31] gave a upper bound for the braid index

of a link L in terms of the crossing number of L as follows:

b(L) ≤ 1

2
c(L) + 1. (11)

where c(L) be the minimal crossing number of L.

In the following theorem, we show D(G) is sharp for MFW inequality, also for the

inequality (11).

Theorem 5.4. Let G be any connected plane graph, and D(G) be the link diagram

obtained by using the method in the section 2. For each edge e of G, it is associated to a

special oriented 2-tangle diagram Tke . Then

b(D(G)) =
∑

e∈E(G)

ke∑
i=1

2ni + 1.

Proof: Let c(Tke) be the crossing number of Tke , and c(D(G)) be the the crossing number

of D(G).

Clearly, Tke is an alternating tangle diagram for each edge e. Hence D(G) is an

alternating link diagram by the constructive process, and also we have

c(D(G)) =
∑

e∈E(G)

c(Tke) =
∑

e∈E(G)

ke∑
i=1

4ni.

Hence spanvH(D(G)) = c(D(G)) =
∑

e∈E(G)

ke∑
i=1

4ni.

By the inequalities (10) and (11), we have

b(D(G)) =
1

2
spanvD(G) + 1 =

∑
e∈E(G)

ke∑
i=1

2ni + 1.

�
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5.3 The genera of links

The genus g(L) of an oriented link L is the minimum genus of any connected orientable

surface having L as its boundary. The following theorem can be obtained directly by the

Corollary 4.1 and the Remark in Ref. [32].

Lemma 5.5. Let L be an alternating link having a positive diagram, then

g(L) =
1

2
(mindegv H(L)− μ(L) + 1).

Note that each link diagram D(G) we constructed is a positive link diagram, and hence

we have the following theorem.

Theorem 5.6. Let G be any connected plane graph, and D(G) be the link diagram ob-

tained by using the method in the section 2. Let LD(G) be the link corresponding to D(G).

Then g(LD(G)) = 0.

Proof: Let e be any edge of G, and Tke be a special oriented 2-tangle diagram associated

to e. Let μe and μf be the component number associated to the edge e and the face f

of G, respectively. According to the tangle diagram Tke , we have μe = ke and μf = 1.

Then

μD(G) =
∑

e∈E(G)

ke + f(G).

Since D(G) is a positive link diagram, LD(G) is a positive link. By using Theorem 5.5,

hence we have

g(LD(G)) =
1

2
[mindegv H(D(G))− μ(D(G)) + 1]

=
1

2

⎡
⎣ ∑

e∈E(G)

(ke + 1)− v(G) + 1−
∑

e∈E(G)

ke − f(G) + 1

⎤
⎦

=
1

2
[e(G)− v(G)− f(G) + 2] = 0 .

�

6 Conclusion

In this paper, the new family of polyhedral links is constructed by using a special ori-

ented 2-tangle diagram Tk. These links provide the mathematical models for recently

synthetic polyhedral catenanes with double-helical DNA. In Tk, any two twisted compo-

nents are oriented antiparallel to each other, which coincides with the natural direction of
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DNA strands. Notably, the Tk contains some loops, not merely two twisted arcs. Hence

our constructed links have the more complex tangled structures than the previous links

constructed by using n-twist tangle diagrams [17–23]. Furthermore, we established the

relationship between the Homfly polynomial of these links and the Qd-polynomial, a gen-

eralized Dichromatic polynomial, of the origin graph. Using this relationship, we obtained

the spansv of the Homfly polynomials, the braid indexes and genera of these links. Our

results show that the former two indexes are directly determinated by the correspond-

ing building blocks. And the third index shows that these links all can be embedded

on the spherical surface. This work provides a profound understanding and theoretical

description of the recently synthesized DNA polyhedrons.
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