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Abstract: The Euler’s formula for polyhedra displays the geometric properties of polyhedral 

structures, while the new Euler’s formula for DNA polyhedra reveals the intrinsic properties 

of these novel structures, and offers an important tool for the description and study of the 

DNA polyhedra. In this paper, we focus on the crossed DNA polyhedral links, study their 

topological properties including the number of Seifert circles and the new Euler’s 

characteristic, and get the expressions of their new Euler’s characteristics. The study extends 

the new Euler’s formula to more kinds of DNA polyhedra and provides theoretic foundations 

to the design and synthesis of more complex DNA polyhedra.  

1. Introduction 

Elegant polyhedra are fundamental forms of life in nature. The Euler’s formula describes 

polyhedra in the form of 2�	� EFV , in which V, F and E denote the numbers of vertices, 

faces and edges respectively. The synthesis of these polyhedral structures has aroused keen 

interest of many scientists. For the double helix structure and highly selective base-pairing 

mechanism, DNA catenanes have been important materials for the synthesis of nanostructures. 

Since the first rigid DNA nanostructure, DNA cube [1] was synthesized by Seeman in 1991, a 

variety of DNA polyhedral architectures have been obtained in the laboratories, such as DNA 

tetrahedron [2-8], DNA octahedron [9-11], DNA dodecahedron [4, 12], DNA icosahedron [13, 

14] and so on [15-20]. Meanwhile, these novel polyhedral structures have also attracted some

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 70 (2013) 365-382 

                          
                                          ISSN 0340 - 6253  

 



�

theoretic scientists’ attention [21-25], and polyhedral links were brought up to describe the 

topological properties of DNA polyhedra. In the DNA polyhedral links, the two strands on 

each edge are oriented and opposite in direction, since one strand of the DNA double-helix 

follows a direction from 5’ to 3’, and the other from 3’ to 5’. 

There are mainly three methods to construct the polyhedral links: ‘n-branched-curve and 

m-twisted double-line covering’ [26-28], ‘n-cross-curve and m-twisted double-line covering’ 

[29-32] and ‘cross-curve and single-line covering’ [32-34]. The method for ‘n-cross-curve 

and m-twisted double-line covering’ is proposed on the basis of the peculiar structure of 

HK97 capsid [35]. In the polyhedral link constructed by ‘n-cross-curve and m-twisted 

double-line covering’, a vertex of degree n is replaced by an n-cross-curve, and an edge is 

replaced by an m-twisted double-line (Fig. 1 (a)).  

 
Fig. 1. The method for ‘n-cross-curve and m-twisted double-line covering’ (a) and 

‘n-branched-curve and m-twisted double-line covering’ (b) 

‘N-branched-curve and m-twisted double-line covering’ is a method of constructing 

polyhedral links based on the architecture of the polyhedra. In these polyhedral links, the 

vertices and the edges of the polyhedron are replaced respectively by n-branched curves and 

m-twisted double-lines (Fig. 1 (b)). The new Euler’s formula raised by Hu et al, 2�	� cs ,  

[36], can be used to describe these n-branched DNA polyhedral links, and provides a new 

theoretical principle for the description of the novel DNA polyhedral structures. In this 
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formula, s, � and c are the total numbers of Seifert circles, components and crossings of the 

DNA polyhedral link, respectively. The number of Seifert circles, which is an important 

topological invariant of knots and links, is gotten from the Seifert algorithm [37]. Fig. 2 

shows how to eliminate the crossing in the planar graph of an oriented knot or link [38] to 

obtain the nonintersecting circles named Seifert circles. On this basis, Li Wei [39] put 

forward the concept ‘the new Euler’s characteristic’ to describe the DNA polyhedra, the 

expression of which is cs 
�	 ,- . The variables in the formula can be expressed with the 

number of vertices V, of edges E or of faces F by way of suitable transformations.  

 

Fig. 2. The operation of eliminating the crossing 

    In this paper we will do our research on the DNA polyhedral links constructed by the 

way of ‘n-cross-curve and m-twisted double-line covering’, i.e. ‘the crossed DNA polyhedral 

links’ hereinafter, and try to find the law of the number of Seifert circles and the new Euler’s 

characteristic, hoping to provide a theoretical basis for the synthesis of DNA polyhedra.  

2. Topological properties of the crossed DNA polyhedral links 

    In order to facilitate the discussion, we divide all the polyhedra into two based on the 

degrees of the vertices identical or not, then construct the DNA polyhedral links by the way 

of ‘n-cross-curve and m-twisted double-line covering’, and study their numbers of Seifert 

circles and the new Euler’s characteristics.  

2.1. The crossed DNA polyhedral links with vertices of the same degree 

The polyhedra with vertices of the same degree satisfy Euler’s formula:  

2	
� EFV                               (1) 

And 

EnV 2	                                 (2) 
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where n, V, F and E denote respectively the degree of the vertices and numbers of vertices, 

faces and edges of the polyhedra. The value of n will be 3, 4 or 5.  

    The crossed DNA polyhedral links are constructed on the basis of these polyhedra. The 

architectures of the vertices in the polyhedra and in the DNA polyhedral links are shown in 

Fig. 3. After orienting and applying the Seifert construction to these vertices, we can see that 

each vertex gives rise to one Seifert circle, which is represented by a loop in Fig. 3, no matter 

what the degree is (There will be two situations when the degree of the vertex is even, as 

discussed in the latter part).  

 
Fig. 3. Architectures of the vertices in the polyhedra, the crossed DNA polyhedral links and 

the Seifert structures 

Then the crossed DNA polyhedral links are divided into two parts: the polyhedral links 

without twists on the edges and the polyhedral links with twists on each edge. We will not 

discuss the polyhedral links with twists on some of the edges in this paper for simplicity.  

(1) When there are no twists on the edges, there are no Seifert circles derived from them. 

In this case, there is respectively one Seifert circle corresponding to each vertex and each face 

in DNA polyhedral links. So the number of Seifert circles sv derived from vertices is:  

Vsv 	                                  (3) 

where V denotes the vertex number of a polyhedron. And the number of Seifert circles sf 

derived from faces is:  
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Fs f 	                                  (4) 

where F denotes the face number of a polyhedron. Therefore, the total number of Seifert 

circles s can be expressed as:  

FVsss fv �	�	                             (5) 

There are no crossings apart from n crossings in each n-degree vertex, so the crossing number 

is given by:  

nVcc v 		                                (6) 

where n denotes the degree of vertices. Thus we can obtain:  

nVFVcs 
�	
                             (7) 

The simultaneous equations of Eq. (1) and (2) will yield:  

2/2 nVVF �
	                              (8) 

Substitution of Eq. (8) into Eq. (7) yields:  

2/2 nVcs 
	
                              (9) 

Then the new Euler’s characteristic 
 can be calculated by:  

2/2 nVcs 
�	
�	 ,,-                        (10) 

On account of the relationship among n, V, E and F, the new Euler’s characteristic can also 

be expressed as:  

FVE 

�	
�	 42 ,,-                        (11) 

    (2) When there are twists on the edges, we can learn from Fig. 4, which shows a DNA 

tetrahedral link with twists on the edges, that each vertex corresponds to two Seifert circles. 

So the number of Seifert circles sv derived from vertices is:  

Vsv 2	                                 (12) 

When there are k crossings on the edge, i.e. k half-twists, there will be k-1 Seifert circles 

yielded (Fig. 5). In other words, the number of Seifert circles is always 1 less than the 

crossing number on each edge. So the number of Seifert circles se derived from edges is E 

less than the crossing number of edges ce, given by:  

Ecs ee 
	                                (13) 
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where E denotes the edge number of a polyhedron. There are n crossings in each n-degree 

vertex. So the crossing number of vertices cv is:  

nVcv 	                                (14) 

Then we can get the following equation:  

EnVVccsscs evev 

	�
�	
 2)()(                   (15) 

The new Euler’s characteristic can be calculated by: 

FVVncs 36)2/32( 

�	
�	
�	 ,,,-                 (16) 

 
Fig. 4. A DNA tetrahedral link with twists on the edges and its Seifert construction 

 
Fig. 5. The Seifert construction of an edge in DNA polyhedral links 

2.2. The crossed DNA polyhedral links with vertices of different degrees 

When the degrees of the vertices in a polyhedron are different, we get:  

EnVVVV n 2543 543 	���� �                       (17) 

VVVVV n 	���� �543                          (18) 

where Vn denotes the number of n-degree vertices in the polyhedron.  

    (1) When there are no twists on the edges, there are no crossings apart from n crossings 

in each n-degree vertex. Meanwhile, each vertex and each face of a DNA polyhedral link 

correspond to a Seifert circle. So the crossing number c and the number of Seifert circles s are 
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given by:  

EnVVVVc n 2543 543 	����	 �                     (19) 

FVs �	                                (20) 

Therefore, we can get:  

FVEEFVcs 

	
	
�	
 422                     (21) 

So the new Euler’s characteristic can be calculated by:  

FVcs 

�	
�	 4,,-                         (22) 

    (2) When there are twists on the edges, the number of Seifert circles sv derived from 

vertices is given by:  

Vsv 2	                                 (23) 

The number of Seifert circles se derived from the edges and the crossing number of edges ce 

have the relationship expressed as:  

Ecs ee 
	                                (24) 

The crossing number of vertices cv is:  

EnVVVVc nv 2543 543 	����	 �                      (25) 

Therefore, we can obtain:  

FVEVccsscs evev 3632)()( 

	
	�
�	
               (26) 

So the new Euler’s characteristic is given by:  

FVcs 36 

�	
�	 ,,-                        (27) 

    As we can see from the preceding discussion, the new Euler’s characteristic can be 

expressed as FV 36 

�	 ,-  when there are twists on the edges, and as 

FV 

�	 4,-  when there are not, no matter what the degrees of the vertices are. Three 

variables V, F and � are contained in the two expressions. Thus the new Euler’s characteristic 

of any crossed DNA polyhedral link can be figured out if the values of these variables are 

known. However, the component number � of a complicated crossed DNA polyhedral link is 

often not easy to tell. Therefore, we will take three-crossed DNA polyhedral links and 
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four-crossed DNA polyhedral links for example to show that how to use the expressions we 

have obtained to calculate their new Euler’s characteristics, and meanwhile, give more 

detailed discussions about their respective component number �, hoping to get the more 

specific expression of the new Euler’s characteristic.  

3. The three-crossed DNA polyhedral links 

    The three-crossed DNA polyhedral links are constructed on the basis of three-polyhedra, 

in which all the vertices are of three degrees. These links are divided into three according to 

the twist number on the edges. We will study on their component numbers and the new 

Euler’s characteristics respectively.  

3.1. The three-crossed DNA polyhedral links without twists on the edges 

    Two kinds of three-crossed DNA polyhedral links without twists on the edges are shown 

in Fig. 6. Each face of the polyhedron is replaced by a strand in the corresponding link, and 

the strands are interlocked at the vertices of the link. As a result, the component number of 

the link equals to the face number of the corresponding polyhedron, given by:  

F	,                                 (28) 

Substitution of Eq. (28) into Eq. (11) gives the expression of the new Euler’s characteristic:  

Vcs 
	
�	 4,-                            (29) 

And this expression is adequate for all the crossed DNA polyhedral links without twists on 

the edges that satisfy Eq. (28). Combining the formula gcs 22
	
� ,  [40] for knots and 

links, we can get the expression of the genus g:  

12/ 
	Vg                               (30) 

The vertex number V of the tetrahedron is 4, so the new Euler’s characteristic 
 of the crossed 

DNA tetrahedral link without twists (Fig. 6 (a)) is 0, and the genus g is 1. Then 
 of the 

crossed DNA hexahedral link without twists (Fig. 6 (b)) is -4, and the genus g is 3.  
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(a)                          (b) 

Fig. 6. A crossed DNA tetrahedral link (a) and a crossed DNA hexahedral link (b) 

3.2. The three-crossed DNA polyhedral links with even half-twists on each edge 

    The orientations of the strands in the DNA polyhedral links will not change when even 

half-twists are added to the edges. Therefore, the component number � will not change either, 

given by:  

F	,                                 (31) 

The three-polyhedron satisfies Eq. (1), and the vertex degree n in Eq. (2) equals to 3, so we 

get:  

EV 23 	                                (32) 

Rearranging Eq. (32) gives:  

2/3VE 	                               (33) 

Substitution of Eq. (33) into Eq. (1) yields:  

22/ �	VF                              (34) 

Substitution of Eq. (31) and Eq. (34) into Eq. (16) gives the expression of the new Euler’s 

characteristic of this kind of DNA polyhedral links:  

Vcs 22
	
�	 ,-                           (35) 

The genus is given by:  

Vg 	                                 (36) 

So the new Euler’s characteristic of the crossed DNA tetrahedral link shown in Fig. 7 is -6, 

and the genus is 4.  
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Fig. 7. A crossed DNA tetrahedral link with even half-twists and its Seifert construction 

3.3. The three-crossed DNA polyhedral links with odd half-twists on some or all of the 

edges 

    For some of these three-crossed polyhedral links, there is no orientation that gets the two 

strands on each edge opposite in direction. Accordingly, these links are not actually the DNA 

polyhedral links. For three-crossed DNA polyhedral links that have odd half-twists on some 

or all of the edges (Fig. 4), however, there is still not a simple equation to express the 

component number. So we can but substitute 3	n  into Eq. (16) and get the expression of 

the new Euler’s characteristic, given by:  

2/5Vcs 
	
�	 ,,-                          (37) 

4. The four-crossed DNA polyhedral links 

    The octahedral link is taken for example to study on the number of Seifert circles and 

the new Euler’s characteristic of the four-crossed DNA polyhedral links.  

Fig. 8 shows a crossed DNA octahedral link without twists on the edges. When orienting 

the link, we find out that after the orientation of the transverse strands a1 and a2 in the vertex 

module (Fig. 9) is confirmed, there are two possibilities for the orientation of the longitudinal 

strands b1 and b2 (Fig. 10). Moreover, the two orientations will lead to different Seifert 

structures, shown in Fig. 10. The difference between two vertices in Fig. 10 is that four 

crossings in (a) are counted as -1s [41] while crossings in (b) are counted as +1s. Not only the 

four-degree vertex, but all the even-degree vertices will have two orientations respectively, as 

the six-degree vertices and the eight-degree vertices shown in Fig. 11. The crossed DNA 

octahedral link is made up of three pairs of strands. Owing to the two orientations of each 
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pair of strands, there are 823 	  possibilities for the orientation of the link, shown in Fig. 12. 

Actually, 2, 3 and 5 in Fig. 12 are identical, so are 4, 6 and 7. Therefore there are four kinds 

of crossed DNA octahedral links, and their numbers of Seifert circles s, new Euler’s 

characteristics 
 and genera g are listed in Tab. 1.  

 
Fig. 8. A crossed DNA octahedral link without twists on the edges 

 
Fig. 9. The vertex module of four-crossed polyhedral links 

 

(a) 

 

(b) 

Fig. 10. Two orientations of the four-crossed vertex 
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(a)                             (b) 

Fig. 11. The six-degree vertices (a) and the eight-degree vertices (b) 

  
Fig. 12. Eight possibilities for the orientation of the crossed DNA octahedral link 

Tab. 1. The values of s, 
 and g of the four kinds of crossed DNA octahedral links 

Number s 
 g 

1 14 -4 3 

2 8 -10 6 

4 8 -10 6 

8 14 -4 3 

From Fig. 12 and Tab. 1 we can find out that the links 2 and 4 have some crossings 

counted as -1s and the other crossings counted as +1s, and their new Euler’s characteristics 

and genera are respectively -10 and 6; while the links 1 and 8 have all the crossings counted 

as +1s, and their new Euler’s characteristics and genera are respectively -4 and 3. Moreover, a 

polyhedral link and its chiral isomer are opposite in signs of crossings (Fig. 13), yet have the 

same new Euler’s characteristics. Then we can conclude that the link with the identical sign 
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of all the crossings has the maximum 
 and the minimum g. Referring to the genus of an 

oriented link L, which is defined as the minimum genus of any connected orientable surface 

that spans L [40], we define the new Euler’s characteristic of the DNA polyhedral links as the 

maximum of any orientation that generates DNA polyhedral links. So the new Euler’s 

characteristic of the crossed DNA octahedral link is -4 and the genus is 3.  

 
Fig. 13. A crossed DNA octahedral link (Right, the link 1 in Fig. 12) and its chiral isomer 

(Left) 

    Substitution of 4	n  into Eq. (10) and Eq. (16) yields the expressions for the new 

Euler’s characteristic of four-crossed DNA polyhedral links. When there are no twists on the 

edges:  

22 �
	
�	 Vcs ,,-                          (38) 

When there are twists on the edges:  

Vcs 4
	
�	 ,,-                           (39) 

Unlike the three-crossed DNA polyhedral links, there is not a simple equation to 

calculate the component numbers of all the four-crossed DNA polyhedral links. However, 

there are expressions to express the component numbers of some four-crossed DNA 

polyhedral links which follow specific growth laws. For example, the component number of a 

(3, 4)-Extended polyhedral link which is proposed by Hu et al [34] can be expressed as 

210 �	 TNc  (The triangulation number 22 khkhT ��	 ). The link is constructed on the 

basis of the (3, 4)-Extended polyhedron, of which all the vertices are of four degrees. 

Therefore, we can construct a four-crossed DNA polyhedral link on the basis of this 
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polyhedron, shown in Fig. 14. The component number of the link that we constructed is twice 

as much as the component number of the corresponding (3, 4)-Extended polyhedral link, 

given by:  

4202 �		 TNc,                            (40) 

For the (3, 4)-Extended polyhedron, the following relationship holds:  

TV 60	                                (41) 

So the new Euler’s characteristic of the four-crossed DNA polyhedral link that we 

constructed can be expressed as:  

TV 100622 
	�
	 ,-                         (42) 

The triangulation number T of the Ih (3, 4)-62-hedron shown in Fig. 14(a) is 1, so the new 

Euler’s characteristic of the four-crossed 62-hedral link shown in Fig. 14(c) is -94.  

       
(a)                       (b)                       (c) 

Fig. 14. Ih (3, 4)-62-hedron (a), Ih (3, 4)-62-hedral link (b) and four-crossed 62-hedral link (c) 

5. Conclusions 

    In this paper, we have studied on the topological properties of the crossed DNA 

polyhedral links, gotten the expressions of the new Euler’s characteristic, and taken the 

three-crossed and four-crossed DNA polyhedral links for example to show how to use the 

expressions to calculate the new Euler’s characteristic. The results are as follows.  

    1. The new Euler’s characteristic of the crossed DNA polyhedral link is given by: (1) 

FV 

�	 4,-  when there are no twists on the edges; (2) FV 36 

�	 ,-  when there 

are twists on the edges. 
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    2. The new Euler’s characteristic of the three-crossed DNA polyhedral link is given by: 

(1) V
	 4-  when there are no twists on the edges; (2) V22
	-  when there are even 

twists on the edges; (3) 2/5V
	 ,-  when there are odd half-twists on some or all of the 

edges.  

    3. The new Euler’s characteristic of the four-crossed DNA polyhedral link is given by: (1) 

22 �
	 V,-  when there are no twists on the edges; (2) V4
	 ,-  when there are twists 

on the edges.  

    The new Euler’s characteristic unites several features of the DNA polyhedral link, 

reveals the intrinsic property of DNA polyhedra, and has been an important tool to describe 

the elegant DNA polyhedral structures. In this paper, the definition of the new Euler’s 

characteristic of the DNA polyhedral links has been expounded more explicitly. Our study is 

hoped to promote the research and synthesis of new DNA polyhedra.  
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