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Abstract 
Polyhedral links proved to be effective mathematical models for new types of polyhedral 

molecules, especially DNA polyhedra. In this paper, we construct four types of polyhedral links based 

on extended Platonic polyhedra. By applying a new Euler formula and polyhedral growth law to these 

polyhedral links, their topological characteristics, including crossing number, component number and 

Seifert circle number, are computed, thus promoting the understanding of the topological structure 

and synthesis of extended Platonic polyhedral links. Our study indicates that, the new Euler formula 

and its three important parameters explain the architectures of most polyhedral links including their 

Euler characteristics and genus, which facilitates rational design and synthesis of new DNA molecules 

and intrinsically reveals the basic principles of novel structures.  

Introduction 

In nature, DNA has been utilized as the main material to perform various biological 

functions, such as storage and transmission of genetic information. In structural 

nanotechnology [1-3], DNA molecules have been used to assemble a large variety of 

three-dimensional (3-D) nanoscale structures [4,5], especially DNA polyhedra [6-12], and 

potential applications have begun to emerge [3,13]. In spite of the development of more 

advanced structures, the fact remains that we have a lot of technical issues to address and one 

of them is how to design and synthesize these DNA polyhedra efficiently. The deeper 

understanding of these intriguing architectures and topologies not only reveal their potential 

properties but also accelerate the process of their preparation.  
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In fact, techniques coming from mathematics have had great impact on chemistry and 

play an important role in investigating the tricky and complicated questions we are wrestling 

with. Euler’s polyhedron formula, which transcends metric properties to topology, is a simple 

and important way for characterizing the relationship of three basic quantities of a 

polyhedron, vertices, edges and faces. Thus, it becomes an effective tool to address many 

issues related to polyhedra in chemistry. However, when it comes to the new architecture of 

DNA nanocages or even more complex DNA molecules, Euler’s formula may have 

limitations in characterizing the new architecture. On the other hand, it has been proved that 

polyhedral links, interlinked and interlocked structures rather than classical polyhedra, are 

reasonable mathematical models for various DNA polyhedra and viral capsids [14-18], 

particularly those Qiu’s group had constructed using topology and graph theory [19]. Moreover, 

polyhedral links, which consist of knots, helices, and holes instead of the standard building 

blocks of vertices, faces and edges, have had a new Euler’s formula for DNA polyhedra 

already [20]. The numbers of components μ, of crossings c, and of Seifert circles s are related 

in a simple and elegant formula, 2s c� �� � , which unites the basic features of the 

entangled structures of these more complex DNA polyhedra. 

We have had discussed extended Platonic polyhedra and conclude their growth law before 
[21]. Four extended Platonic polyhedra are obtained, of which the extended tetrahedra, 

extended hexahedra, and extended dodecahedra are, respectively, assembled by using the 

method of adding hexagons whereas the extended octahedra are made by means of adding 

squares. The understanding of extended Platonic polyhedra facilitates the architecture of their 

polyhedral links. Moreover, the understanding of extended Platonic polyhedral links and the 

new Euler’s formula contribute to the characterization and design of DNA cages with higher 

genus or even more complex DNA nanostructures.  

This paper presents extended Platonic polyhedral links designed by four construction 

methods: type ( ) three or four branches curves and 2k-twisted lines, type ( ) vertex 

expansion, type ( ) three or four crossing curves and 2k-twisted lines, and type ( ) three or 

four point star and 2k-inverted twisted quadruplex-lines. Then, their key elements that 
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construct polyhedral links are computed on the basis of the growth law of extended Platonic 

polyhedra and some effective topological index are also illustrated by applying the new Euler 

formula. Our ultimate aim is to assemble DNA polyhedra or similar DNA 3D nanocages by 

means of these basic features of polyhedral links. Besides, these elements related by the new 

Euler’s formula for DNA polyhedra connect the topological aspects of the DNA cage to the 

Euler characteristic of the underlying polyhedra. Therefore, this study provides a theoretical 

framework not only for the design and synthesis of some DNA nanostructures but also for 

profound description of geometrical and topological structures of more complex DNA 

molecules.  

 Extended tetrahedral links  

The tetrahedron, hexahedron, and dodecahedron are Platonic polyhedra in which very 

vertex has degree of three. Based on them, the extended tetrahedra, the extended hexahedra, 

and the extended dodecahedra are polyhedra with vertices of degree of three and the adding 

polygons are all hexagons [21]. The extended tetrahedra is the simplest of the extended 

tetrahedra, hexahedra, and dodecahedra. Thus, its polyhedral links are studied in detail and 

the same way is also applied to the other two.  

The numbers of faces F, vertices V and edges E of the extended tetrahedra, its growth 

law, can be expressed as: 

	 
2 22 2F a ab b� � � �                         (1) 

   	 
2 26E a ab b� � �                          (2) 

	 
2 24V a ab b� � �                          (3) 

   Of course, these three quantities perfectly satisfy Euler’s formula: 2V F E� � � . 

2.1. Three branches curves type 

Some nanostructures, whose faces are made of interlocked DNA rings, whose edges are 

made of double-helices [22] or quadruplex-helices [5, 10] DNA strands, and vertices are formed 

from multi-arm junctions, have been synthesized recently and these interlinked and 

-349-



 

interlocked structures could be modeled as “polyhedral links” [6, 14, 23]. The extended 

tetrahedral links are developed using “three branches curves and 2k-twisted lines” [14] to cover 

extended tetrahedra. Specifically, the building blocks of “three branches curves” and 

“2k-twisted lines” replace the vertices and edges of the polyhedra respectively. Extended 

tetrahedra are assembled from four triangles and several hexagons. Consequently, the 

extended tetrahedral links are made up of four triangular and several hexagonal rings (loops) 

which are actually component circuits. In the process of transforming the extended tetrahedra 

into this type of extended tetrahedral links, triangular and hexagonal faces become triangular 

and hexagonal rings respectively, edges change into 2k-twisted lines, and vertices turn out to 

be three branches curves. According to the growth law of the extended tetrahedra above, a 

series of characteristics, which can describe its architecture of the extended tetrahedral links 

of “three branches curves and 2k-twisted lines”, is computed as follows. 

The number of triangular rings μt: 4  

The number of hexagonal rings μh: 	 
2 24 2 2F a ab b� � � � �   

The number of crossings c: 	 
2 22 12kE k a ab b� � �  

Using the mathematical method [20] to examine the specific details, this type of extended 

tetrahedral links meets new Euler’s formula for DNA polyhedra: 2s c� �� � . Utilizing it 

we may reveal some important intrinsic mathematical properties and even control the 

supramolecular design of DNA polyhedra. 

The number of Seifert circles s:  

	 
	 
2 2 2  2 2 2 6 1 2t hs c kE F k a ab b� �� � � � � � � � � � � �  

The new Euler’s formula, 2s c� �� � , connects three most important variants for 

polyhedral links, component number μ, crossing number c and Seifert circles number s, 

which is similar to that Euler’s formula, 2V F E� � � , relates three fundamental 

geometrical parameters, face number F, vertex number V, edge number E. Furthermore, 

2 2V F E g�� � � � � , λ denotes Euler characteristic, a topological term, depends on its 

genus g that is regarded as the “tunnels” or “holes” of a polyhedron. As such, the new Euler 
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formula based on polyhedral links can be generalized to 2 2s c g� �� � � � � . For this type 

of polyhedral links, Euler characteristic is 2, so we get 0g � , it indicates that DNA 

polyhedral catenanes synthesized are homeomorphic to a sphere. We will talk about this in 

future.  

 
Figure 1. Even tangles obtained by 2n half-twists 

Besides, tangles covering edges result in different polyhedral links. Fig. 1 illustrates four 

different tangles with n of ±1 and ±2 [16]. The resulting polyhedral link is defined as D 

configuration if 0n � , otherwise it is defined as L configuration. Moreover, the D and L 

polyhedral links are mirror images of one another, in other words, a pair of topological 

enantiomorphs.  

The information obtained above may help in faster and cheaper DNA design and 

synthesis. In DNA nanotechnology, crossing number c and component (ring) number μ are 

two experimentally accessible quantities in that crossing number c depends on the base 

number of DNA duplexes: c ≈ base pair number /5 and component number μ equals the 

number of circular DNA strands (DNA loops)[20]. To synthesize one of this type of DNA 

polyhedra, we can retrieve the value of a and b associated with face number of the 

polyhedron, then compute crossing number and component number of the resulting 

polyhedral link. At last, the corresponding DNA polyhedra could be made on the basis of this 

model.         

If wanting 10-hedron link of this type of extended tetrahedral links whose edge is 

replaced by twisted lines ( 1k � , two crossings), we locate its position on face growth law of 

extended tetrahedra shown in Fig. 2, getting the value of its polar coordinates a and b. Then, 

plug 2 and 0 into the expression above and obtain the following information. 
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Figure 2. Face growth law of extended tetrahedra 

The number of triangular rings μt: 4 

The number of its hexagonal rings μh: 	 
2 24 2 2 6F a ab b� � � � � �  

 The number of its crossings c: 	 
2 22 12 48kE k a ab b� � � �   

So this DNA polyhedron has 10 circular DNA strands and about 240 base pairs. 

The number of Seifert circles s: 2 2  2 48 10 2 40s c kE F�� � � � � � � � � �  

By the end, the 10-hedral link of “three branches curves and 2k-twisted lines covering” 

type of extended tetrahedral links is shown in Fig. 3.  

 
Figure 3 10-hedronal link of three branches curves type 

2.2. Vertex expansion type 

The extended tetrahedral links are obtained by using “three branches curves and 

2k-twisted lines covering”. However, their vertices, as we see them, are not stable due to their 

loose structure. If stretching the strands at vertices, this type of links would transform into 
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another unique polyhedral links, which is the variant of original one above. We call it vertex 

expansion type. In the process of topology transformation, 2k-twisted lines are converted into 

new vertices like nodes; new triangular patches occur in the position of three branches curves; 

hexagonal rings keep hexagonal ones, their vertices and edges, on the contrary, are located in 

the position of the former 2k-twisted lines and three branches curves, respectively; triangular 

rings also keep triangular ones, their vertices and edges take the place of the former 

2k-twisted lines and three branches curves, respectively. Fig. 4 illustrates 10-hedronal link of 

vertex expansion type that derives from the basic type.         

 
Figure 4. 10-hedronal link of vertex expansion type 

In the process of topological transformation, most attributes don’t change. 

The number of triangular rings μt: 4  

The number of hexagonal rings μh: 	 
2 2 4 2  2F a ab b� � � � �   

The number of crossings c: 	 
2 22 12kE k a ab b� � �  

The number of Seifert circles s: 2 22 2(6 1)( ) 2t hs c k a ab b� �� � � � � � � � �  

In addition, new triangular patches occur in the position of three branches curves of the 

extended tetrahedral links of basic type. 

The number of new triangular patches pt: 	 
2 24 a ab b� �          
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2.3. Three crossing curves type 

Another extended tetrahedral links are constructed using “three crossing curves and 

2k-twisted lines” to cover extended tetrahedra. Specifically, the building blocks of “three 

crossing curves” and “2k-twisted lines” replace the vertices and edges of the polyhedra 

respectively. Although this type of polyhedral links is made up of four triangular and 

hexagonal rings (loops), the building blocks of “three crossing curves” are different from the 

ones of “three branches curves”. When transforming the extended tetrahedra into this type of 

extended tetrahedral links, triangular and hexagonal faces become triangular and hexagonal 

rings respectively, edges change into 2k-twisted lines, and vertices turn out to be three 

crossing curves. According to the growth law of the extended tetrahedra, a series of 

characteristics of the extended tetrahedral links of “three crossing curves and 2k-twisted 

lines” are computed as follows. 

The number of triangular rings μt: 4  

The number of hexagonal rings μh: 	 
2 2– 4 2 2F a ab b� � � �   

Crossings of this type of polyhedral links are scattered in vertices and edges. Like the 

basic type, it is easy to figure the number of crossings of vertices. As for the number of 

crossings of vertices, each vertex contributes three.  

The number of crossings c:  

	 
 	 
 	 
	 
2 2 2 2 2 22 3 12 3 4 12 1c kE V k a ab b a ab b k a ab b� � � � � � � � � � � � �  

For all the polyhedra having vertices of degree 3 and edges of 2k-twisted lines, three 

crossing curves at each vertex result in two Seifert circles and 2k-twisted lines on each edge 

make for 2k–1 ones, which is shown in Fig. 5. 

 
Figure 5. Seifert circles on vertices and edges 
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The number of Seifert circles s: 

	 
 	 
 	 
 	 
 	 
	 
2 2 2 2 2 22 2 1  2 4 2 1 6 12 2s V k E a ab b k a ab b k a ab b� � � � � � � � � � � � � � � �  

2 (2 1) 2 3t hs c V k E F kE V F V E� �� � � � � � � � � � � � .Here plus 2V F E� � �  

into F V E� � , then 2 22 2 2 2 4( )t hs c V a ab b� �� � � � � � � � � � . On the other hand, 

2 2t hs c g� �� � � � � , where g is equivalent to V and 2 2t hs c V� �� � � � � . In a word, 

the Euler characteristic of “three crossings curves type” polyhedra mainly depends on its 

vertices number.  

The 10-hedronal link of three crossing curves and 2k-twisted lines type of extended 

tetrahedral links is shown in Fig. 6.  

 

Figure 6. 10-hedronal link of three crossing curves type 

2.4. Star motif type 

Recently, some more complex DNA polyhedra have emerged [5, 10, 24] and these 

closed polyhedral structures are assembled from DNA star motifs through two 

anti-parallel DNA duplexes. “n-point star curves” is used to take place of the vertex of a 

polyhedron, where n is the degree of vertex. And here DNA star motif, shown in Fig. 

7(a), is a symmetric three-point star curves linked by a single-stranded DNA loop, which 

replaces vertices of a polyhedron and two anti-parallel DNA duplexes, shown in Fig. 

7(b), is 2k-inverted twisted quadruplex-line(k donotes the integer number of full-twists 

on each edges) linked by a single-stranded DNA crossover, which replaces edges of a 

polyhedron. Finally, these two building blocks are connected as shown in Fig. 7(c).  
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Figure 7. The building blocks of three-point star polyhedral links 

Similarly, star polyhedral links of extended tetrahedra are constructed on the basis 

of extended tetrahedra. As we see, each face corresponds to a single-stranded DNA that 

forms duplexes while each vertex as well as edge also contains a DNA single strand.  

The number of triangular rings μt: 4  

The number of hexagonal rings μh: 	 
2 24 2 2F a ab b� � � � �  

The number of vertex loops μv: 	 
2 24 a ab b� �   

The number of edge crossover μc: 	 
2 26 a ab b� �  

Each vertex corresponds to three-point star where each branch has four crossings. 

The crossings on edges can also be calculated. 

The number of vertex crossings cv: 

	 
 	 
2 2 2 24 8 4 3 4 48vc nV E a ab b a ab b� � � � � � � � � �     

The number of crossings ce: 

	 
 	 
 	 
 	 
	 
2 2 2 22 2 2 2 6 12 1ec k E k a ab b k a ab b� � � � � � � � � � �   

This type of extended tetrahedral links satisfies new Euler’s formula: 2s c� �� �  

as well.   
The number of Seifert circles s:  2xx

s c �� � �� �    

The 10-hedronal link of star motif type of extended tetrahedral links is shown in 

Fig. 8. 

 

Figure 8. 10-hedronal link of star motif type 
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Extended octahedral links 

Unlike extended tetrahedra, hexahedra, and dodecahedra, the degree of vertex of 

extended octahedra is four, the adding polygons are squares.    

The numbers of faces F, vertices V and edges E of the extended octahedra are given 

by. 

   	 
2 26 2F a b� � �                           (4) 

2 212( )E a b� �                              (5) 

 2 26( )V a b� �                              (6) 

3.1. Four branches curves type 

If we have extended octahedral links involved, it's pretty similar, but now what we 

use to cover extended octahedra is “four branches curves and 2k-twisted lines”. 

Specifically, the building blocks of “four branches curves” and “2k-twisted lines” 

replace the vertices and edges of the extended octahedra respectively. Accordingly, the 

extended octahedral links are made up of eight triangular and several square rings 

(loops). Triangular and square faces become triangular and square rings respectively, 

edges change into 2k-twisted lines, and vertices turn out to be four branches curves. 

According to the growth law of the extended tetrahedra above, a series of characteristics, 

which can describe its architecture of the extended octahedral links of “four branches 

curves and 2k-twisted lines”, is computed as follows. 

The number of triangular rings μt: 8  

The number of square rings μs: 	 
 	 
2 2 2 28 6 6 6 1F a b a b� � � � � � �   

The number of crossings c: 	 
2 22 24c kE k a b� � �  

The number of Seifert circles s: 

	 
	 
2 22 2 2 6 4 1t ss c kE F k a b� �� � � � � � � � � �  

Extended octahedral links also have a pair of topological enantiomorphs of D and 

-357-



 

L. 

To synthesize one of this type of DNA polyhedra, we still retrieve the value of a 

and b associated with face number of the polyhedron, then compute crossing number 

and component number of the resulting polyhedral link. Finally, the corresponding DNA 

polyhedra could be made based on this model.         

If wanting 14-hedronal link of this type of extended octahedral links whose edge is 

replaced by twisted lines ( 1k � ), we find its position on face growth law of extended 

octahedra shown in Fig. 9, getting the value of its polar coordinates 1a �  and 1b � . 

Then, plug 1 and 1 into the expression above and obtain the following information. 

 

Figure 9. Face growth law of extended octahedra 

The number of triangular rings μt: 8 

The number of its squares rings μs: 	 
2 28 6  1 6F a b� � � � �  

The number of its crossings c: 	 
2 22 24 48kE k a b� � �  

So this DNA polyhedron has 14 circular DNA strands and about 240 base pairs. 

The number of Seifert circles s: 2 48 14 2 36s c �� � � � � � � .  

14-hedral link of four branches and 2k-twisted lines type of extended octahedral 

links is shown in Fig. 10. 
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Figure 10. 14-hedronal link of four branches curves type 

3.2. Vertex expansion type 

   If stretching the strands at vertices, extended octahedral links of “four branches 

curves and 2k-twisted lines” type would transform into their vertex expansion type. Like 

the extended tetrahedral links, 2k-twisted lines grow new vertices; new rectangle patches 

occur in the position of four branches curves; square rings keep square ones, their 

vertices and edges, on the contrary, are located in the position of the former 2k-twisted 

lines and four branches curves, respectively; triangular rings also keep triangular ones, 

their vertices and edges take the place of the former 2k-twisted lines and four branches 

curves, respectively. Fig. 11 shows 10-hedronal link of vertex expansion type that 

derives from the basic type. 

 
Figure 11. 14-hedronal link of vertex expansion type 

The number of triangular rings μt: 8  

The number of square rings μs: 	 
 	 
2 2 2 28 6 6 6 1F a b a b� � � � � � �  

The number of crossings c: 	 
2 22 24   kE k a b� �  

The number of Seifert circles s: 
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2 2
t s 2 2 2 6 4 1s c kE F k a b� �� � � � � � � � � �  

New rectangle patches occur in the position of four branches curves of the extended 

octahedral links of basic type. 

The number of new rectangle patches pr: 	 
2 26 a b�  

3.3. Four crossing curves type 

Likewise, extended octahedral links of four crossing curves and 2k-twisted lines 

type are built. The building blocks of “four crossing curves” and “2k-twisted lines” 

cover the vertices and edges of the extended octahedra respectively. When transforming 

the extended octahedra into this type of extended octahedra links, triangular and square 

faces become triangular and square rings respectively, edges change into 2k-twisted lines, 

and vertices turn out to be four crossing curves. According to the growth law of the 

extended octahedra, a series of characteristics of the extended octahedral links of “four 

crossing curves and 2k-twisted lines” are computed as follows. 

The number of triangular rings μt: 8  

The number of square rings μs: 	 
 	 
2 2 2 28 6 6 6 1F a b a b� � � � � � �  

Multiply edge number by 2k to determine the number of crossings of vertices. 

Likewise, since each vertex has degree four, number of crossings of vertices is 4V.  

The number of crossings c:  

	 
 	 
 	 
	 
2 2 2 2 2 22 4 24 4 6 24 1c kE V k a b a b k a b� � � � � � � � � �  

For all the polyhedra having vertices of degree 4 and edges of 2k-twisted lines, four 

crossing curves at each vertex result in four or two Seifert circles, shown in Fig. 12. And 

2k-twisted lines on each edge still make for 2k–1 ones. 

 
Figure 12. Seifert circles on vertices 
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The number of Seifert circles:  

	 
 	 
 	 
 	 
 	 
2 2 2 2 2 2
1 2 2 1 2 6 2 1 12 24s V k E a b k a b k a b� � � � � � � � � � � �  

	 
 	 
 	 
 	 
 	 
	 
2 2 2 2 2 2
2 4 2 1 4 6 2 1 12 24 12s V k E a b k a b k a b� � � � � � � � � � � � �  

2 (2 1) 2 4 2t ss c V k E F kE V F V E� �� � � � � � � � � � � � . Plus 2V F E� � �  

into F V E� � , then 2 2 2 22 3 2 3 6( ) 2 18( )t ss c V a b a b� �� � � � � � � � � � � � . 

The 14-hedronal link of four crossing curves and 2k-twisted lines type of extended 

octahedral links is shown in Fig. 13. 

 
Figure 13. 14-hedronal link of four crossing curves type 

3.4. Star motif type 

We have been discussing “three-point star curves” of star motif type with which we 

could yield polyhedra having degree-three vertices, such as extended tetrahedra, 

hexahedra, and dodecahedra. And what’s more, “four-point star curves” serves as 

materials to assemble polyhedra with vertices of degree four, such as extended octahedra. 

So, DNA star motif, shown in Fig. 14(a), is a symmetric four-point star curves linked by 

a single-stranded DNA loop, which replaces vertices of a polyhedron and two 

anti-parallel DNA duplexes, shown in Fig. 14(b), is 2k-inverted twisted quadruplex-line 

linked by a single-stranded DNA crossover, which replaces edges of a polyhedron. 

Finally, these two building blocks are connected as shown in Fig. 14(c).  
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Figure 14. The building blocks of four-point star polyhedral links 

As a result, we yield star polyhedral links of extended tetrahedra based on extended 

octahedra. Obviously, each face corresponds to a single-stranded DNA that forms 

duplexes, each vertex as well as edge contains a DNA single strand. 

The number of triangular rings μt: 8  

The number of square rings μs: 	 
 	 
2 2 2 28 6 6 6 1F a b a b� � � � � � �  

The number of vertex loops μv: 	 
2 26 a b�  

The number of edge crossover μc: 	 
2 212 a b�  

Each vertex yields to four-point star where each branch has four crossings. The 

crossings on edges can also be calculated. 

The number of vertex crossings cv: 	 
 	 
2 2 2 24 4 4 6 96nV a b a b� � � � � �  

The number of edge crossings ce: 

	 
 	 
 	 
 	 
	 
2 2 2 22 2 2 2 12 24 1ec k E k a b k a b� � � � � � � � �   

The number of Seifert circles s: 2xx
s c �� � �� �   

The 14-hedronal link of “star motif” type of extended octahedral links is shown in 

Fig. 15. 

 
Figure 15. 14-hedronal link of star motif type  
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Conclusion 
In this paper, we have constructed four types of polyhedral links based on extended 

Platonic polyhedra discussed before. These four types of polyhedral links, including 
three or four branches curves type, vertex expansion type, three or four crossing type 
and three or four point star type, are described by examples of the extended tetrahedra 
and octahedra links and their characteristics, such as crossing number, component 
number and Seifert circles number, are calculated in light of the growth law of the 
underlying polyhedra and new Euler’s formula. These elegant structures of polyhedral 
links and the related topological characters may guide scientists in the field to build a 
variety of 3-D nanoscages and even more complex molecules. Furthermore, the 
mathematical descriptors requiring further investigation pave the way for the connection 
between underlying polyhedron and entangled polyhedral links, quantifying the 
geometry and topology of DNA polyhedra. Our work associates some issues of 
structural chemistry with those of mathematical chemistry, addressing some of them, 
still, it poses some new questions and challenges. We also hope that researchers from 
other field, materials science, chemistry, mathematics, biology and computer science, 
come together to tackle these problems. 
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