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Abstract

Gradǐsar et al. [11] recently presented a novel self-assembly strategy for polypeptide

nanostructure design that could lead to significant developments in biotechnology. In

the present paper, the underlying mathematical model is developed. A construction of a

polypeptide polyhedron is modelled with a stable trace in the corresponding graph of the

polyhedra. Here a stable trace is a double trace with two additional conditions—having

no retracing and no repetition through any vertex. It is proved that the graphs that admit

stable traces are precisely graphs with minimum degree 3. Parallel and antiparallel double

traces are also introduced and studied. Computational results for several polyhedra are

presented.

1 Introduction

The most complex nanostructures known in nature are formed by self-assembly of biopoly-

mers, where polypeptides form most complex structures. Self-assembly of designed DNA

into tetrahedron [10, 12], cube [2, 23], octahedron [17], dodecahedron [24], and icosahe-

dron [1, 4] were reported. A related topic is the one of constructing topologically linked

proteins, the first such construction being reported in [6]. For some recent developments

in this direction see [3, 5] where mathematical models of n-pyramidal links (a link is a

finite union of knots), regular links, and semi-regular links are proposed, see also [14].
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On the other hand, the design of polypeptide folds is significantly more challenging

as the stability of polypeptide assemblies depend on numerous cooperative interactions.

Nevertheless, very recently Gradǐsar et al. [11] presented a novel polypeptide self-assembly

strategy for nanostructure design relying on the topological arrangement of interacting

modular peptide segments. The main success of their research is a construction of a

polypeptide self-assembling tetrahedron by concatenating 12 coiled-coil-forming segments

in an exact order. More precisely, a single polypeptide chain was assembled through the

6 edges of the tetrahedron in such a way that every edge was traversed exactly twice. In

this way 6 coiled-coil dimers were created and interlocked into a stable structure. This

technological procedure seems to be a landmark discovery that could lead to significant

developments in biotechnology.

The required mathematical support for the particular case of the tetrahedron in the

above research was already given in [11]. The main purposes of this paper are

(a) to make comprehensive general mathematical model for investigations that could

follow the breakthrough from [11],

(b) to point to related mathematical investigations that exist in the literature, and

(c) to prove new general results that could be used in the experimental work in the

future.

The paper is organized as follows. In the next section we first list basic concepts from

graph theory needed throughout the paper. Then we introduce double traces and extend

them to stable traces, where the latter traces form the main mathematical model for the

self-assembly of polypeptides. In Section 3 we prove (Theorem 3.1) that a connected

graph admits a stable trace if and only if its minimum degree is at least 3. This in

particular implies that not only the tetrahedron but any polyhedron can be (at least

theoretically) constructed from a single coiled-coil-forming segment. In Section 4 we give

a new proof (based on the proof idea of Theorem 3.1) of the theorem from [7] asserting

that a weaker condition for a graph to contain the so-called proper trace is fulfilled if

and only if the minimum degree is at least 2. In Section 5 we consider two special cases

of double traces, with either only parallel or only antiparallel edges. We conclude with

numerical results that reveal possible varieties in designing polyhedra different from the

tetrahedron.
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2 Double traces and stable traces

All graphs considered in this paper will be connected and finite. Unless stated otherwise,

for instance when doubling every edge of a graph, graphs will also be simple, that is,

without loops and parallel edges. If v is a vertex of a graph G, then its degree will be

denoted by dG(v) or d(v) for short if G will be clear from the context. The minimum and

the maximum degree of G are denoted with δ(G) and Δ(G), respectively. A subdivision

of a graph G is a graph obtained from G by replacing some of its edges with disjoint

paths. A directed graph is a graph, whose edges have a direction associated with them.

In formal terms, a directed graph is a pair G = (V,A), where V is a set of vertices and

A is a set of ordered pairs of vertices, called arcs.

An Eulerian circuit in G is a circuit which traverses every edge of G exactly once. G is

called Eulerian if it admits an Eulerian circuit. A fundamental theorem of graph theory,

known as Euler’s theorem, asserts that G is Eulerian if and only if all of its vertices are

of even degree. Its directed version claims that a directed graph G admits an Eulerian

circuit if and only if for every vertex u in G, the incoming degree of u is equal to the

outcoming degree of u. For other terms and concepts from graph theory not defined here

we refer to [22].

We now move to the underlying mathematical model for the biotechnological investi-

gations presented in the introduction. A polyhedron P which is composed from a single

polymer chain can be naturally represented with the graph G(P ) of the polyhedron. Its

vertices are the endpoints of segments, two vertices being adjacent if there is a segment

connecting them. Since in the technological process every edge of G(P ) corresponds to

a coiled-coil dimer, exactly two segments are associated with a fixed edge of G(P ). We

therefore say that a double trace in a graph G is a circuit which traverses every edge

exactly twice. With this concept in hand we can formulate the following basic:

Fact 2.1 Suppose that a polyhedron P is composed from a single polymer chain such that

coiled-coil dimers were created and interlocked into a stable structure. Then the sequence

of coiled-coil segments corresponds to a double trace in G(P ).

It is easy to see (but important) that every graph admits a double trace:

Proposition 2.2 Every graph G has a double trace.
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Proof. Construct a new graph, called the double of G, by replacing every edge of G with

two new parallel edges. Obviously any vertex of the double of G has even degree. Hence

by Euler’s theorem the double of G admits an Eulerian circuit C. The circuit C then

represents a double trace of the original graph G. �

A double trace in G(P ) itself does not guarantee that the structure created is stable.

In order to have a stable structure, the following condition must be fulfilled:

(i) no immediate succession of an edge e by its parallel copy occurs.

We say that a double trace contains a retracing if it has an immediate succession of an

edge e by its parallel copy, see Fig. 1.

v

e

Figure 1. Retracing of an edge e

We therefore make the following:

Definition 2.3 A double trace that fulfils condition (i) is called a proper trace. In other

words, a proper trace is a double trace with no retracing.

Hence we are interested in proper traces. The graphs that admit proper traces were

first characterized by Sabidussi in [16] and later independently by Eggleton and Skilton

in [7] as follows:

Theorem 2.4 A graph G admits a proper trace if and only if δ(G) ≥ 2.

In their paper, Eggleton and Skilton also studied infinite graphs, a research also done

by Thomassen in [19]. Their results could be useful if the biotechnological progress will

allow the design of huge nanostructures.

But also proper traces do not yet guarantee that the structures created are stable. To

make them such, we also need the following condition to be fulfilled:
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(ii) a vertex sequence u → v → w appears at most once in any direction (u → v → w

or w → v → u) on a double trace.

More formally, if v is a vertex of a graph G with a double trace T and u and w are two

different neighbors of v, then we say that T contains a repetition through v if the vertex

sequence u → v → w appears twice in T in any direction (u → v → w or w → v → u),

see Fig. 2.

v v

Figure 2. Possible repetitions through vertex v

Conditions (i) and (ii) are now sufficient for a double trace in order that the corre-

sponding polyhedron composed from a single polymer chain forms a stable structure. We

therefore makes the key definition of this paper:

Definition 2.5 A double trace that in addition fulfils conditions (i) and (ii) is called a

stable trace. In other words, a stable trace is a proper trace without repetitions through

its vertices.

The prime object of our interest are thus stable traces. Graphs that admit such traces

will be characterized in the next section.

3 Graphs that admit stable traces

As announced, we next prove the following result. Its message is that theoretically

arbitrary stable polyhedrons can be created from a single polymer chain.

Theorem 3.1 A graph G admits a stable trace if and only if δ(G) ≥ 3.

Proof. Suppose first that G admits a stable trace. Then by Theorem 2.4, G does not

contain a vertex of degree 1. Moreover, G does not contain a vertex of degree 2, because

such a vertex v clearly forces either two retracings in v or a repetition through v.
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Assume now that G is an arbitrary graph with δ(G) ≥ 3. We proceed by induction

on Δ = Δ(G).

Let Δ = 3. Then δ(G) = Δ(G) = 3, in other words G is a cubic graph. By

Theorem 2.4 we know that G admits a proper trace T . Since all the vertices of G are of

degree 3 and T is proper, it is not difficult to see that T is also a stable trace. (This fact

was already observed in [11], hence we do not repeat the arguments here.)

Assume now that Δ ≥ 4 and that any graph H with Δ(H) < Δ and δ(H) ≥ 3 admits

a stable trace. To make the argument more transparent, assume first that G contains

a unique vertex v of degree Δ. Let v1, v2, . . . , vΔ be the neighbors of v and construct

the graph G′ from G as follows. Remove from G the vertex v, add two new vertices v′

and v′′, connect them by an edge, connect v′ with v1, . . . , v�Δ
2 �, and connect v′′ with the

remaining neighbors of v, see Fig. 3.

v

v1 v2
. . .

vΔ

(a) G

v′ v′′

v1 v2
. . .

v�Δ
2 � v�Δ

2 �+1

. . .
vΔ

(b) G′

Figure 3. Construction from the proof of Theorem 3.1

Note that in G′ all the vertices but v′ and v′′ are of the same degree as in G, while

dG′(v′) =
⌈
Δ
2

⌉
+ 1 and dG′(v′′) =

⌊
Δ
2

⌋
+ 1. It follows that Δ(G′) < Δ. Since Δ ≥ 4, we

also infer that δ(G′) ≥ 3, hence by the induction assumption on Δ, G′ admits a stable

trace T ′.

We next construct a trace T in G from T ′ as follows. Let e = xy be an arbitrary

(oriented) edge of T ′. If x, y ∈ V (G′) \ {v′, v′′} we put xy into T . Let u �= v′, v′′. If

e = uv′ then replace e with uv in T . Similarly we replace edges of the form v′u, uv′′, and

v′′u with vu, uv, and vu, respectively. Finally, the two occurrences of the edge v′v′′ (or

v′′v′) from T ′ are ignored in T .
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We claim that T is a stable trace of G. Note first that any edge e that appears in G

has its unique corresponding edge e′ in G′. Clearly, e′ �= v′v′′. Since e′ is traversed twice

in T ′, the edge e is traversed twice in T . Hence T is a double trace. It is also clear that T

is a proper trace because otherwise T ′ would not be proper. (If there would be a retracing

of edge e in T , it would lead to a retracing of its corresponding edge e′ in T ′.) Finally we

need to verify that T is stable. Let e = xy and f = yz be two consecutive edges of T . If

{x, y, z} ∩ {v} = ∅, then e, f does not give a repetition through y because otherwise we

would have a repetition through y in T ′. The same conclusion holds if x = v or z = v.

Assume hence that y = v. Let x = vi and z = vj and consider two subcases. In the first

subcase let i, j ≤
⌈
Δ
2

⌉
. Then e, f were obtained from the edges viv

′, v′vj which do not

have a repetition through v′ hence e, f do not have a repetition through v. Analogous

conclusion holds when i, j >
⌈
Δ
2

⌉
(just replace v′ with v′′ in the argument). In the second

subcase let i ≤
⌈
Δ
2

⌉
< j. Then e, f were constructed from viv

′, v′v′′, v′′vj in T ′. Recall

that v′v′′ is traversed exactly twice in T ′. Hence if e, f would have a repetition through v,

we would have (in particular) a repetition through v′ in T ′, a contradiction. We conclude

that T is a stable trace of G.

We have thus proved that if G has a single vertex of degree Δ, then G admits a stable

trace. We now proceed by the second induction on the number Dmax(G) of vertices of

maximum degree of a graph G. Let Dmax(G) ≥ 2 and let v be an arbitrary vertex of

degree Δ. Then construct a graph G′ from G in the same way as above by replacing v

with two adjacent vertices such that the neighbors of v are evenly distributed among the

two new vertices. Note that Dmax(G
′) < Dmax(G) and hence G admits a stable trace by

the induction on Dmax(G). �

4 New proof of Theorem 2.4

Based on the proof idea of Theorem 3.1 we next give a new proof of Theorem 2.4. We

first state the following lemma which readily follows from the fact that if v is a vertex of

G of degree 2 and T is a proper trace of G, then after we reach v on T from u, the trace

T continues to the neighbor of v different from u.

Lemma 4.1 A graph G admits a proper trace if and only if an arbitrary subdivision G′

of G admits a proper trace. In particular, the number of proper traces in G is the same
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as the number of proper traces in G′.

The last assertion of Lemma 4.1 follows because every proper trace T of G uniquely

lifts to a proper trace of G′.

In the rest of the section we prove Theorem 2.4. Suppose first that G admits a proper

trace. Then G does not contain a vertex of degree 1, because such a vertex v clearly

forces a retracing in v.

Conversely, let G be an arbitrary graph with δ(G) ≥ 2. We proceed by induction on

Δ = Δ(G). Let Δ = 2. Then δ(G) = Δ(G) = 2 and as G is connected, G is a cycle. It is

straightforward to construct a proper trace of a cycle by starting in an arbitrary vertex

and twice traversing the cycle. If δ(G) = Δ(G) = 3, then it is easy to see (see [11] for an

argument) that G admits a stable trace and thus a proper trace as well.

Let next δ(G) = 2 and Δ(G) = 3. By Handshaking lemma, the number D of vertices

of degree 3 is even. Suppose first that D = 2 and let d(v1) = d(v2) = 3. Then G contains

exactly three internally disjoint paths P ′, P ′′, and P ′′′ whose endpoint are v1 and v2.

These paths are either all between v1 and v2, or, without loss of generality, P
′ stars and

ends in v1, P
′′ stars and ends in v2, while P ′′′ is a v1, v2-path. In the first case, we may

without loss of generality assume that P ′′ and P ′′′ are of length at least 2. Then the

sequence v1 → P ′ → v2 → P ′′ → v1 → P ′′′ → v2 → P ′′ → v1 → P ′ → v2 → P ′′′ → v1

gives a proper trace. In the second case the paths P ′ and P ′′ are of length at least 2, hence

the sequence v1 − P ′ → v1 → P ′ → v1 → P ′′′ → v2 → P ′′ → v2 → P ′′ → v2 → P ′′′ → v1

does the same. We point that the subsequence P ′ → v1 → P ′ is not a retracing because

P ′ is a cycle. Assume now that Δ(G) = 3, D ≥ 4, and δ(G) = 2. If G is a subdivision

of a cubic graph, then it admits a proper trace by Lemma 4.1 and the already known

fact that cubic graphs admit proper traces. Otherwise G has a vertex v, d(v) = 3, and a

path P starting and ending in v and having all inner vertices of degree 2. Note that P

is of length at least 2. Suppose first that v and P are the unique vertex and path with

described properties. Let e be the edge of G incident with v that is not on P . Since

δ(G) = 2, there exists a path Q internally disjoint with P that starts in v, contains e,

and ends in a vertex u with d(u) = 3. Note that u �= v. Let G′ be the graph obtained

from G by removing all the vertices from the paths P and Q but the vertex u. Note that

in G′ all the vertices except u are of the same degree as in G, while dG′(u) = 2. Hence G′

is a subdivision of a cubic graph and it admits a proper trace T ′. Decompose the proper
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trace T ′ as T ′
1 → u → T ′

2 (note that T ′
1 and T ′

2 are not disjoint). Then we claim that

T = T ′
1 → u → Q → v → P → v → P → v → Q → u → T ′

2 is a proper trace in G, see

Fig. 4.

uv

T ′
1

T ′
2

Q
P

(a) G

u

T ′
1

T ′
2

(b) G′

Figure 4. Construction of proper trace in G from the proof of Theorem 2.4

Indeed, every edge on P andQ is traversed twice in T while the edges from G are traversed

twice in T because T ′ is proper. Since T ′ had no retracing and in the construction of

T no new retracing was constructed, T is proper. We conclude that G admits a proper

trace if it has a unique vertex v of degree 3 with a path starting and ending in v and

having all inner vertices of degree 2.

If G has more that one such vertex, then we proceed by induction on the number of

such vertices. Exception appears if all the vertices of degree 3 in graph G have the above

described property. While proceeding the induction we are left with a graph G′ which

has exactly two disjoint cycles and exactly two vertices u, v of degree 3. Each of these

two vertices lies in a cycle, the two cycles being disjoint, in which all the other vertices

are of degree 2. Vertices u and v are adjacent and are internal vertices one for the first

and the other for the second cycle of G′, see Fig. 5. Clearly, G′ contains a proper trace.

uv

Figure 5. Particular case from the proof of Theorem 2.4

To conclude the proof we assume that the assertion is true for all graphs H with

δ(H) ≥ 2 and Δ(H) ≤ Δ, where Δ ≥ 3. Let G be a graph with δ(G) ≥ 2 and

Δ(G) = Δ + 1. Now make the same construction as in the proof of Theorem 3.1, by
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splitting every vertex of G of degree Δ + 1 into two vertices of smaller degree. The

constructed graph G′ has δ(G′) ≥ 2 and Δ(G′) = Δ. Using induction assumption and

the conclusions from the proof of Theorem 3.1 we see that G admits a proper trace.

Theorem 2.4 is thus proved.

5 Parallel and antiparallel proper traces

In the forthcoming design of polypeptides, two particular designs could be of special

interest: either on every edge of a polyhedra the two coiled-coil-forming segments would

be aligned in the same direction, or on every edge the two coiled-coil-forming segments

would be aligned in the opposite direction. Because parallel coiled-coil dimers are easier

to construct, especially designs of the first type would be useful. We thus introduce the

following additional concepts.

Let T be a double trace of a graph G. Then every edge e = uv of T is traversed

exactly twice. If in both cases e is traversed in the same direction (either both times

from u to v or both times from v to u) we say that e is a parallel edge (with respect to

T ). If this is not the case we say that e is an antiparallel edge (with respect to T ). Then

we put:

Definition 5.1 Let T be a double trace of a graph G. Then T is a parallel double

trace if every edge of T is parallel and an antiparallel double trace if every edge of T is

antiparallel.

The above particular designs of polyhedra can thus be represented with parallel sta-

ble traces and antiparallel stable traces, respectively. In the rest of the section we either

prove or recall characterizations of graphs that admit (anti)parallel double traces and

(anti)parallel proper traces. We begin with the antiparallel case. The following observa-

tion goes back to Tarry [18]:

Proposition 5.2 Every graph admits an antiparallel double trace.

Proof. Let G be a graph, let G′ be the double of G (cf. the proof of Proposition 2.2),

and direct the edges of G′ such that each parallel pair of its edges is directed antiparallel.

Then by Euler’s theorem for directed graph, the constructed digraph admits an Eulerian

circuit C ′. The circuit C ′ then represents an antiparallel double trace in the original

graph G. �
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A characterization of graphs that admit antiparallel proper traces is more involved.

The problem was posed back in 1951 by Ore in [15], partially solved in [21], and completely

solved by Thomassen [20] as follows:

Theorem 5.3 A graph G admits an antiparallel proper trace if and only if δ(G) ≥ 2 and

G has a spanning tree T such that each connected component of G−E(T ) either has an

even number of edges or contains a vertex v, dG(v) ≥ 4.

Theorem 5.3 was generalized by Fan and Zhu in [8]. Moreover, they presented a poly-

nomial recognition algorithm of graphs that admit antiparallel proper traces. Another

study in this direction is [13] where graphs that do not admit antiparallel proper traces

are studied and the minimum number of retracings needed is expressed in terms of other

graph invariants.

Turning to parallel traces we first observe:

Proposition 5.4 A graph G admits a parallel proper trace if and only if G is Eulerian.

Proof. Suppose that T is a parallel proper trace of G. Considering T in the double of

G we infer that the incoming and the outcoming degree in each vertex are the same.

Therefore, each vertex of G is of even degree. Conversely, let G be an Eulerian graph

and let T be an Eulerian circuit in G. Traversing T twice we get a double trace. It is

clearly parallel and has no retracting. �

Note that a graph with a vertex of odd degree does not admit a parallel double trace.

Since by definition a proper trace is a double trace, we also have:

Corollary 5.5 A graph G admits a parallel double trace if and only if G is Eulerian.

Suppose now that a graph G admits a parallel stable trace. Then by Proposition 5.4,

G is Eulerian and hence by Theorem 3.1 we also have δ(G) ≥ 4. We wonder whether

these conditions are also sufficient and hence pose:

Problem 5.6 Is it true that a graph G admits a parallel stable trace if and only if G is

Eulerian and δ(G) ≥ 4?

For the case of antiparallel stable traces we have no suggestion what could be a

characterization and thus pose:

Problem 5.7 Characterize graphs that admit antiparallel stable traces.

The next section contains some numerical indications that could help with this prob-

lem.
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6 Conclusions and numerical results

In Table 1 conditions required for graphs to admit double and related traces are collected.

To make the presentation short, let us call a spanning tree from Theorem 5.3 special

spanning tree (SST).

CONDITION

none parallel antiparallel

T
R
A
C
E

double
∀G

(Proposition 2.2)

Eulerian

(Corollary 5.5)

∀G
(Proposition 5.2)

proper
δ(G) ≥ 2

(Theorem 2.4)

Eulerian

(Proposition 5.4)

∃SST ∧ δ(G) ≥ 2

(Theorem 5.3)

stable
δ(G) ≥ 3

(Theorem 3.1)

?

(Problem 5.6)

?

(Problem 5.7)

Table 1. Required conditions for graphs to admit presented double traces

To conclude the paper we present enumeration results for six polyhedra: the tetra-

hedron and five additional ones. The latter polyhedra whose graphs are shown in Fig. 6

could be the next candidates to be constructed from coiled-coil-forming segments.

(a) tetrahedron (b) 4-pyramid (c) 3-bipyramid

(d) octahedron (e) 3-prism (f) 3-cube

Figure 6. Graphs of the six polyhedra from Table 2

These computations were in part already presented in [11], here we extend them by

computing the number of proper traces, antiparallel proper traces, and parallel proper

traces. The results are collected in Table 2, where PT and ST stand for the number of
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proper traces and stable traces, respectively, while “a” and “p” stand for antiparallel and

parallel, respectively.

graph PT aPT pPT ST aST pST

tetrahedron 3 0 0 3 0 0

4-pyramid 101 5 0 82 5 0

3-bipyramid 925 24 0 470 0 0

octahedron 53372 668 1352 22246 0 275

3-prism 25 2 0 25 2 0

3-cube 40 0 0 40 0 0

Table 2. Number of proper traces (PT), antiparallel proper traces (aPT), parallel
proper traces (pPT), stable traces (ST), antiparallel stable traces (aST),
and parallel stable traces (pST)

We note that in Table 2 only non-equivalent traces are counted, where traces T

and T ′ are called equivalent if T ′ can be obtained from T by reversion T , by shifting

T , by applying a permutation on T induced by an automorphisms of G, or using any

combination of the previous three operations.

We close the paper by another open problem:

Problem 6.1 Analytically enumerate ((anti)parallel) proper and stable traces in graphs,

in particular in polyhedra.
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