
 

 

 

 

 

Classification Ability of Self Organizing Maps in 
Comparison with Other Classification Methods 

Mahdi Vasighi1 and Mohsen Kompany-Zareh*2 
1 Department of Computer Science and Information Technology, Institute for Advanced 

Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. 
2 Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 

45137-66731, Iran. 

(Received March 6, 2012) 

Abstract 

In this study, performance of different classification methods based on self organizing maps 
(SOMs), including counter propagation network (CPN), supervised kohonen networks (SKN) 
and XY-fused network (XYF), were compared to linear discriminant analysis (LDA), learning 
vector quantization (LVQ) and support vector machine (SVM). Performance of classification 
was statistically investigated using both simulated and real data sets according to percent of 
correct classified samples (non-error rate) in the test set. Effect of selection of calibration 
samples on model stability and performance was investigated. There were several adjustable 
parameters in each modeling techniques (except LDA) which were optimized for better 
comparison. Each simulated dataset regenerated 50 times and performance of classification 
was computed for each method to obtain a population of results. Obtained results showed that 
the distribution and structure of the samples in data space is an important factor influences on 
the relative performance of classification methods. CPN and SVM performed better in the 
cases with nonlinear discriminant boundary but for overlapped classes with normal 
distribution, performance of LDA was slightly better than other methods. In addition, CPN 
showed a comparable performance and stability in comparison with SVM which known as a 
powerful classification method.  
 

1. Introduction 
Classification is one of the major subdivisions of pattern recognition methods and refers to 

techniques in which a priori knowledge about the category membership of samples is used for 

building a classifier.  The classification model is developed on a training set of samples with 
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known classes [1]. Subsequently, the model performance is evaluated using a validation set 

comparing predictions with known categories. 

In recent years, many advanced classification techniques have been widely used within 

chemistry, biology, pharmaceutical and food sciences [2-4]. Comparison of different 

classification methods can be found in many chemometrics literatures [5-7,3]. The question of 

which classification approach is suitable for a specific study (dataset) is not easy to answer. 

Generally, depending on the method chosen and the nature of data, different results may be 

obtained. Therefore, it is important to find the method with highest predictability and know if 

the difference between available methods is statistically significant or not [5]. Accordingly, 

quantitative criteria like prediction rate (non-error rate) or misclassification percentage on a 

test set (or cross-validated set) are frequently used to compare performance of the built 

models [8]. Among the numerous classification techniques, artificial neural networks (ANNs) 

and machine learning algorithms gain more popularity in recent pattern recognition researches 

[9-10,3]. 

In this study, the performance of different supervised pattern recognition techniques, 

namely traditional linear discriminant analysis (LDA), three different types of supervised self-

organizing maps (SOMs), learning vector quantization (LVQ) and support vector machine 

(SVM) was investigated.  

1.1 Linear discriminant analysis (LDA): 
Linear discriminant analysis is a linear classification method that focuses on finding 

optimal linear boundaries between classes [11]. LDA is a feature reduction method based on 

selecting direction, which achieves maximum separation among the different classes and 

classify unknown samples based on Euclidean distance [1]. 

 

1.2 Self organizing maps (SOMs): 
Self-organizing maps (SOMs) or the Kohonen neural networks have a high popularity 

among the competitive neural network field [12.]. SOMs bring the advantages of both 

clustering and projection methods together. Basically, SOMs analyze the data in an 

unsupervised manner but there are also several supervised variants like counter propagation 

artificial neural network (CP-ANN), supervised kohonen networks (SKN) and XY-Fused 
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networks (XYF) [13]. The Kohonen network is based on a single layer of neurons which are 

arranged in two dimensions.  

 

Figure 1. A self organizing map with 25 neurons. Each neuron is a vector (weight vector) with the 

same dimension as input vector. 

Each neuron in the map is included a weight vector. The number of elements in the weight 

vectors is equal to the number of variables in input vector. The elements of all weight vectors 

(neurons) should be randomly initialized before training the network. In the training phase, 

each input vector is presented to the network and the most similar neuron (winner neuron) to 

this input can be found due to the minimal Euclidean distance between input vector and 

weight vectors of the neurons. The weight vectors of winner neuron and its neighbors are 

updated by adding the difference between the actual input vector and the respective weight 

vector to the elements of the weight vectors. Thus, weight vector of winner neurons and its 

neighbors become more similar to the input vector. Degree of weight correction attenuated by 

leaning rate and neighbor distance. In this way, weight vector of the winner neuron will 

become more similar to the input and this similarity will decrease for more distant neurons. 

Weight correction process is repeated iteratively until all vectors in the training set are 

presented a sufficient number of times (epochs) to the network. Fig. 1 shows a schematic 

representation of a self organizing map.  

In supervised variants of SOMs, there is also an output layer with same topology but 

different in weight vectors dimension.  
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Figure 2. A counter propagation artificial 

neural network, CP-ANN. 

 

 

 

Figure 3. A supervised kohonen network 

(SKN). 

In CP-ANN, the winner neuron in the input layer specifies the position of winner neuron at 

the output layer (Fig. 2).  

For training a SKN, input and output layer should be glued together (Fig. 3) and training 

performs like a simple Kohonen map but the information in the output layer is used to specify 

the winner neurons during training phase.  

In XY-Fused networks, a fused similarity is calculated from both input and output layer and 

used to find the winner position. Details of the methods can be found in cited literatures [13]. 

1.3 Learning vector quantization (LVQ): 
Learning Vector Quantization (LVQ) is a classification method which can classify set of 

input vectors using a complex linear boundary. It is applicable when a simple linear boundary 

can not be defined for sets of input vectors. In other word, LVQ calculates multiple vectors 

(codebook vectors) to represent each class, which are located in the optimal position to 

describe the best boundary between that class and any neighboring classes in variable space. 

The only important thing is that the competitive layer must have enough neurons, and each 

class must be assigned enough neurons [2,14,15].  
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1.4 Support vector machines (SVMs): 

Support vector machines (SVMs) are able to create a nonlinear boundary for discrimination 

between two classes. SVMs have been applied to a wide variety of classification problems 

because of good discrimination ability [16-18]. A small number of samples in training set 

which lie near the decision boundary (Support Vectors) are used to determine the 

classi�cation (SVs) [19]. If the decision boundary between two classes in data space is not 

well defined by a linear function, then an appropriate kernel function can be used to transform 

the data into a higher dimensional feature space [20]. More details about the SVMs can be 

found in the literature [19]. 

This paper includes a statistical comparative study of six different classification methods. 

Performance and effect of calibration sample selection (stability) for considered methods were 

investigated using both simulated and real data sets according to non-error rate as a 

classification performance. 

2. Material and methods 
2.1. Datasets and software 

For evaluating the performance of the six classification methods for solving a two class 

problem, three synthetic datasets were created. First dataset was consisted of 400 objects in a 

two dimensional plane (a 400×2 data matrix). The range of data values in both dimensions 

were from 0.00 to 1.00. 

 
Figure 4. Synthetic datasets include 400 points uniformly distributed in two dimensions and two 

classes can be discriminated by a sinusoidal boundary. (a) Amplitude of sinusoidal boundary is equal 

to 0.40; (b) Amplitude of sinusoidal boundary is equal to 0.80. 
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Objects were uniformly distributed in a two dimensional space and a sinusoidal boundary 

was defined with a peak-to-peak difference value equal to 0.40 and define two classes as 

shown in Fig. 4a. Second 400"2 dataset was created in similar way but the sinusoidal 

boundary has higher -to-peak difference value of 0.80 in this case to make the problem more 

complex (Fig. 4b). 

Third data set was consisted of 400 objects in a three-dimensional space (a 400×3 data 

matrix).  First 200 objects were belong to class A and second half belong to class B. 

Coordination of objects were taken from a normal distribution with population mean [0 0 0] 

for class A and [1 1 1] for class B. Standard deviation for both populations was set to be 0.4 

(Fig. 5). 

 

 

 
Figure 5. Synthetic dataset includes 400 points. 

First 200 points for each class and normally 

distributed in three-dimensional space). 

 Figure 6. 3D score plot resulted from PCA 

analysis on wine dataset. Explained variance 

for PCs: PC1: 64.6%, PC2:13.7%, PC3:4.7%  

Experimental dataset, which is taken from the UCI machine learning repository, was the 

results of a chemical analysis of 178 wine samples grown in the same region in Italy but 

derived from different cultivars. The analysis determined the quantities of 13 constituents 

(variables) found in each of the three types of wines. Number of instances is 59, 71 and 48 for 

class 1, 2 and 3 respectively. Therefore, data matrix has dimensions 178×13. Fig. 6 shows the 

3D score plot resulted from PCA analysis on this dataset.  
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3. Results and discussion 

3.1. Model quality 
For assessing quality of the built models, simulated datasets were split into training and test 

sets. Training and test sets for all synthetic datasets with equal number of samples (200 

samples) were selected randomly. Almost an equal number of samples from each class were 

included in training set, and as a result in the test set. Samples of the experimental dataset 

were randomly divided into a training set containing 2/3 (120 samples) of all samples with the 

remaining 1/3 (58 samples) forming the test set. Non-error rate percent (NER%) which is 

related to number of correctly classified samples was used as an estimate of the classification 

ability of the built model for classifying test set samples. 

 

3.2. Model optimization 
There were several adjustable parameters for developing each of the six considered 

classification models. In order to properly compare the classification ability of all six 

approaches, they should be at most desirable condition at which all the adjustable parameters 

were optimized. NER% was the criterion for optimizing these parameters. For LDA there is 

no need to optimize the parameters of model, whereas for CPN, SKN, XYF, LVQ and SVM it 

was essential to optimize model parameters and assure the model performs at optimal 

condition.  

Using simulated data sets, parameters of the models other than LDA were optimized based 

on estimation of NER% at different combination of model parameters. For the experimental 

dataset, splitting of the dataset in training and test sets, NER% values were estimated at 

different combination of parameters, as well. Arrangement of samples in the training and test 

set was randomly chosen.  Optimized values for model parameters were chosen due to 

maximum NER% for the test set.  

 

3.2.1. Counter propagation network (CPN) 

In the CP-ANN model, there are several network parameters which should be optimized to 

gain better classification ability. Some parameters like network topology and learning rate 

were adjusted by experience before optimization. Network size (NS×NS) and number of 

epochs (EP) in training procedure can affect the model quality and should be optimized at 
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first. In this study, network sizes tested were 5,10,15,20 and 25, number of epochs (EP) were 

25, 50, 75, 100 and 125. Network topology was set to be square shape and maximum and 

minimum learning rate were set to be 0.2 and 0.001 respectively.  

CP-ANN models were built in all different combinations of EP and NS levels, and NER% 

for the test set were estimated. Randomly initializing the networks, models were built five 

times at all combinations of the two parameters and the combination with highest mean of 

NER% for the test set was chosen as the optimum combination. Relative standard deviation of 

the five times estimation of NER% at each condition was equal to zero. Fig. 7 shows the 

NER% at different combination of NS (from 5 to 25) and EP (from 25 to 100) for the test set 

(dataset 1).  

 
Figure 7. NER% for CP-ANN model at different combination of NS (from 5 to 25) and EP (from 

25 to 100) for the test set (dataset 1). 

 

There are two maximum NER% at (EP=50, NS=20) and (EP=100, NS=20). Combination 

with the less number of epochs (EP) is preferred because of saving time in data processing. 

Similar plots were obtained for other datasets but are not shown here. 

In this study, optimum combination was chosen at NS=20 and EP=50 for the dataset 1 and 

2. For dataset 3 optimum values for NS and EP were 15 and 100 respectively.  

 

3.2.2. Supervised kohonen network (SKN) 

For SKN, network size (NS) and scaling factor (SF) were optimized and the EP value was 

set to be 50 which was the optimal value for EP in CPN for the first and second dataset.  
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Figure 8. NER% for SKN model at different combination of SF (from 0.5 to 2) and NS (from 5 to 

25) for the test set (dataset 3). 

The network sizes tested were 5,10,15,20 and 25, and Scaling factor (SF) was set to be 0.5, 

1, 1.5 and 2. SKN model was build five times at different combinations of these parameters 

and optimum combination was obtained at NS=15 and SF=1 for dataset 1, NS=20 and SF=2 

for dataset 2 and NS=20 and SF=1 for dataset 3. NER% at different combination of 

parameters (dataset 3) is shown in Fig. 8. Optimum values for the parameters were calculated 

using similar approach (related plots are not shown here). 

 

3.2.3. X-Y fused network (XYF) 

Optimization of parameters was performed similar to previous sections and maximum 

NER% for the test set was obtained at NS=15 and EP=50 for dataset 1, NS=15 and EP=100 

for dataset 2 and NS=5 and EP=75 for dataset 3.  

 
Figure 9. NER% for XY-fused model at different combination of EP (from 25 to 100) and NS 

(from 3 to 20) for the test set (dataset 3). 

-37-



 

 

 

As shown in Fig. 9, maximum NER% was obtained in two combinations: (EP=50, NS=4) 

and (EP=75, NS=4), and the one with less number of epochs (EP=50, NS=4) was chosen as 

the optimal combination.  

 

3.2.4. Learning Vector Quantization (LVQ) 

Determination of optimal number of codebooks for LVQ model is necessary. Randomly 

initializing the LVQ model, it was built 10 times using training set for each dataset at different 

number of codebooks. Fig. 10 shows mean of NER% values at different number of codebooks 

for the experimental dataset. Maximum NER% of the test set for datasets 1, 2, 3 and 

experimental dataset were obtained using 20, 45, 8 and 20 codebooks respectively. Learning 

rate and number of epochs in training process was fixed at 0.02 and 50 respectively. 

 
Figure 10. Mean of NER% values for LVQ model at different number of codebooks for the 

experimental dataset. 

 

3.2.5. Support Vector Machine (SVM) 

SVM model with radial basis kernel function has two parameters, kernel width (Kr) and 

penalty parameter (Pn), need to be optimized. In this study, Kr was tested in the range 0.01-

0.5 using an increment equal to 0.01 and Pn tested at values 0.0, 0.1, 0.5, 1.0 and 2.0. 

Optimized values for Kr and Pn were obtained at Kr=0.05 and Pn=0 for dataset 1 and 2 and 

Kr=0.2 and Pn=0.5 for dataset 3. For the experimental dataset, best result was obtain at 

Kr=0.01 and Pn=1. 
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3.3. Model Results 
To investigate the difference between the six classification methods, each simulated dataset 

was generated 50 times and six methods were applied each time and finally we have a 

population of resulting NER% of the test set for each method. The applied methods were used 

when parameters were in optimum conditions, for each considered dataset. These populations 

can help for better comparison of classification ability and model stability. For better 

representation, these populations are shown in box and whisker plot. The box has lines at the 

lower quartile, median, and upper quartile values. Whiskers extend from each end of the box 

to the adjacent values in the data. Position of median and the width of the whiskers are 

indicating model quality and stability respectively. Fig.11 shows box and whisker plot for 

population of the results for dataset 1.  

 
Figure 11. Box and whisker plot for population of the results for dataset 1. 

According to this figure, modeling performance for all methods was good except for LDA. 

It is evident that the two classes can not be completely discriminated using a straight line and 

the points near the boundary could fall in wrong classes. Other methods performed better than 

LDA due to their ability to handle nonlinear discrimination. Among the methods, CP-ANN 

and SVM show better model quality in accord with position of median and whiskers. 

For dataset 2 which is more complicated problem, difference between qualities of models 

is more distinct (Fig.12).  
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Figure 12. Box and whisker plot for population of the results for dataset 2. 

As it was expected, model quality of LDA is lowest as before. CP-ANN and SVM 

performed better in model quality and stability. XYF was slightly better classification ability 

than SKN and LVQ but its stability is worse in compare with CP-ANN and SVM. This could 

be revealing that CP-ANN, as a supervised self organizing map network, has good capability 

to handle such classification problem as well as SVM.  

Moreover, CP-ANN has the capability of mapping input objects in a two dimensional map 

of neurons which let to capture structure of data and easy inspection of the patterns. 

Importance of this advantage will be more distinct in the cases which dimension of data is 

more than two.  

 
Figure 13. Class maps in (a) CP-ANN (20×20) for dataset 1, (b) CP-ANN (20×20) for dataset 2, (c) 

SKN (20×20) for dataset 2, (d) SKN (15×15) for dataset 1, (e) XYF (15×15) for dataset 1 and (f) XYF 

(15×15) for dataset 2. 
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Fig.13(a,b) shows class maps in CP-ANN (20×20) for dataset 1 and 2, which can easily 

give visual information about the patterns of objects in dataset. Class map for SKN 

(Fig.13(c,d)) and XYF (Fig.13(e,f)) was affected by both data structure and class membership 

of the points (samples). It is due to training algorithm and we can’t exclude useful information 

about data structure. 

 
Figure 14. Box and whisker plot for population of the results for dataset 3 

Dataset 3 was generated in a different manner and population of results for the methods is 

shown in Fig.14. In this case LDA was performed slightly better than other methods. In 

nonlinear boundary methods, the position of the boundary is directly depend to the pattern of 

samples in the training set and especially those present near the boundary. Choosing different 

samples in training set have smaller effect on model quality of LDA as this method is based 

on sample distribution over the entire class and the defined linear boundary is calculated 

according to within and between classes variance. In this way, LDA is less sensitive to the 

pattern of boundary samples.   

 
Figure 15. Box and whisker plot for population of the results for experimental dataset. 
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The results for experimental dataset are shown in Fig.15. It can be seen that LDA 

performed significantly well (obtaining up to 96% test set NER% in and outstanding model 

stability) and also SKN and SVM perform better than other methods (obtaining higher than 

90% test set NER% with acceptable model stability). High performance of LDA to classify 

test set samples in experimental dataset could be related to similarity of this data to the third 

simulated data set that includes normally distributed points. Using the simple boundary 

methods like LDA helps the model to capture overall structure of data points and not to be 

over-trained. Complex boundary methods will precisely learn to classify all or most of 

training sample correctly, but will fail to predict the test samples. We can not recommend a 

method, but applying different visualization method to explore data and calculations of 

stability for the build models can guide us to use optimal method for any dataset. 

 

5. Conclusion 
In this study, classification performances of several supervised self organizing maps, 

including counter propagation network (CPN), supervised kohonen networks (SKN) and XY-

fused network (XYF) were compared to linear discriminant analysis (LDA), learning vector 

quantization (LVQ) and support vector machine (SVM). We see that the classification 

performances for CPN, SKN and XYF were comparable with powerful classification methods 

like SVM and LVQ. Also, it is clear that the stability and performance of CPN models was 

good as SVM for the examined cases. In addition, CPN can capture and visually show the 

shape of boundary between classes. An interesting point was that for types of data structures, 

the simple linear discriminant analysis performs better than nonlinear, highly flexible 

classification techniques such as SVM and SOMs. In this way, performance of these methods 

should be checked anytime we deal with a new set of data to make a proper choice of 

classification method. 
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