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Abstract

The Wiener index of a graph is defined as the sum of distances between all pairs
of vertices of the graph. In this paper, we characterize the trees which maximize and
minimize the Wiener index among all trees of given order that have only vertices
of odd degrees.

1 Introduction

All graphs considered in this paper are simple and connected. Let G be a graph with

vertex set V (G) and edge set E(G). The degree dG(v) of a vertex v in G is the number

of edges of G incident with v. The distance between vertices u and v of G is denote by

dG(u, v). The Wiener index of a graph G is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) . (1)

The Wiener index belongs among the oldest graph-based structure descriptors (topo-

logical indices). It was first introduced by Wiener [13] and has been extensively studied

in many literatures. Numerous of its chemical applications and mathematical properties
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are well studied [1,3,6,8,9,11]. For detailed results on this topic, the readers may referred

to [4,5].

Chemists are often interested in the Wiener index of certain trees which represent

molecular structures. Let T be a tree and e = uv an edge of T . Wiener [13] found that

the formula (1) is equal to

W (T ) =
∑

e∈E(T )

nT1(e)nT2(e) (2)

where nT1(e) (resp. nT2(e)) is the number of vertices of the component of T−e containing

u (resp. v). Denote by K1,n−1 and Pn the star and the path with n vertices, respectively.

Entringer et al. [6] proved the following result which bounds the Wiener index of a tree

in term of its order.

Theorem 1 ([6]). Let T be a tree on n vertices, then

(n− 1)2 ≤ W (T ) ≤
(
n+ 1

3

)
.

The lower bound is achieved if and only if T ∼= K1,n−1 and the upper bound is achieved

if and only if T ∼= Pn .

Since every atom has a certain valency, chemists are interested in trees with some

restricted degree conditions, having maximal or minimal Wiener index. Fischermann et

al. [7] determined the trees which have the minimum Wiener index among all trees of

given order and maximum degree. If a graph G has vertices v1, v2, . . . ,vn, then the

sequence (dG(v1), dG(v2), . . . , dG(vn)) is called a degree sequence of G. It is well known

[2] that a sequence (d1, d2, . . . , dn) of positive integers is a degree sequence of an n−vertex

tree if and only if
n∑

i=1

dn = 2(n − 1). A tree T is called a caterpillar if the tree obtained

from T by removing all pendent vertices is a path. Shi [10] obtained the following result.

Theorem 2 ([10]). Let (d1, d2, . . . , dn) be a degree sequence with
n∑

i=1

dn = 2(n− 1), and

Tmax be the tree with maximal Wiener index among all trees which have this particular

degree sequence. Then Tmax is a caterpillar.

Wang [12] and Zhang et al. [14] independently characterized the tree that minimizes

the Wiener index among trees of given degree sequences. Recently, by using Theorem 2,

Zhang et al. [15] characterized the tree that maximizes the Wiener index among trees of

given degree sequences.
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In this paper, we continue to study the extremal Wiener index of trees with specific

degree conditions. It is well known that every nontrivial tree has at least two vertices of

degree one. This motivates the central problem that we consider in this paper.

Problem A. Which trees minimize or maximize the Wiener index among all trees of

given order that have only vertices of odd degrees?

Since the relation
∑

v∈V (G)

dG(v) = 2|E(G)| holds for any graph G, it implies that each

tree that has only vertices of odd degree must have even number of vertices. Let T2n be

the set of all trees on 2n vertices whose vertices are all of odd degrees. Let F2n be the

tree shown in Figure 1.

� � � � � �

� � � �

1 2 3 . . . n

F2n

Fig. 1. The tree with odd vertex degrees, having greatest Wiener index.

The main result of this paper is as follows which settles Problem A.

Theorem 3. Let T ∈ T2n . Then

W (K1,2n−1) ≤ W (T ) ≤ W (F2n)

the lower bound is achieved if and only if T ∼= K1,2n−1 and the upper bound is achieved

if and only if T ∼= F2n .

2 Proof of Theorem 3

Proof. Note that K1,2n−1 ∈ T2n , thus by Theorem 1, we have W (T ) ≥ W (K1,2n−1) with

equality if and only if T ∼= K1,2n−1 .

Now we turn to determine the upper bound of W (T ). Let T ∗ be a tree with maximal

Wiener index in T2n. Suppose (d1, d2, . . . , d2n) is the degree sequence of T
∗. Let Td be the

set of all trees with this degree sequence (d1, d2, . . . , d2n). Clearly Td is a subclass of T2n,

so T ∗ also is a tree with maximal Wiener index in Td. By Theorem 2, T ∗ is a caterpillar.
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Let P = y0y1 . . . y�y�+1 be a longest path in T ∗. Assume that T ∗ �= F2n, then there

exists a vertex yi (1 ≤ i ≤ �) such that dT ∗(yi) = 2t + 1 ≥ 5. Let yi−1 , yi+1, u1, u2,. . . ,

u2t−1 be the neighbors of yi .

Now we are going to construct a tree T ′ �= T ∗ such that T ′ ∈ T2n and W (T ′) > W (T ∗).

In order to do so, we delete the pendent vertex u2t−1 and the edges yiu1, yiu2,. . . , yiu2t−2

from T ∗, split yi into two adjacent vertices y′i and y′′i and further join u1, u2,. . . , u2t−3 to

y′i and join u2t−2 to y′′i . The resulting tree is denoted by T ′. See Figure 2 for an example.

� � � � � � � � � � �
� � � � � � � � �

�
�
�

�
�
�

y0 y1 y2 y3 y4 y0 y1 y′2 y′′2 y3 y4

e1 e2 f1 f2 f3

u1u2u3 u1 u2

=⇒

T ∗ T ′

Fig. 2. The trees used in the proof of Theorem 3.

Obviously, T ′ ∈ T2n. Denote by e1, e2, . . . , e�−1 and f1, f2, . . . , f� the consecutive

edges on the path P1 = y1 . . . yi . . . y� of T ∗ and on the path P2 = y1 . . . y
′
iy

′′
i , . . . y� of

T ′ from y1 to y� , respectively (see Figure 2). Note that T ∗ has |E(T ∗)| − (� − 1) =

(2n− 1)− (�− 1) = 2n− � pendent edges and T ′ has |E(T ′)| − � = (2n− 1)− � pendent

edges. Now by the formula (2) we have

W (T ∗) =
∑

e∈E(T ∗)

nT ∗1(e)nT ∗2(e)

=
∑

e is a pendent edge

nT ∗1(e)nT ∗2(e) +
∑

e is not a pendent edge

nT ∗1(e)nT ∗2(e)

= (2n− �)(2n− 1) +
�−1∑
k=1

nT ∗1(ek)nT ∗2(ek) (3)

and

W (T ′) =
∑

e∈E(T ′)

nT ′1(e)nT ′2(e)

=
∑

e is a pendent edge

nT ′1(e)nT ′2(e) +
∑

e is not a pendent edge

nT ′1(e)nT ′2(e)

= (2n− �− 1)(2n− 1) +
�∑

k=1

nT ′1(fk)nT ′2(fk) . (4)
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It is easily checked that nT ∗1(ej)nT ∗2(ej) = nT ′1(fj)nT ′2(fj) holds for any j ∈ {1, 2, . . . ,
i− 1} and nT ∗1(er)nT ∗2(er) = nT ′1(fr+1)nT ′2(fr+1) holds for any r ∈ {i, i+1, . . . , �− 1}.
Now from (3) and (4), we arrive at

W (T ′)−W (T ∗)

= nT ′1(fi)nT ′2(fi)− (2n− 1)

= nT ′1(fi)nT ′2(fi)− nT ′1(fi)− nT ′2(fi) + 1 (Since nT ′1(fi) + nT ′2(fi) = 2n.)

= [nT ′1(fi)− 1][nT ′2(fi)− 1] > 0 . (Since nT ′1(fi) > 1 , nT ′2(fi) > 1 .)

But this contradicts to the choice of T ∗. �

While Problem A is settled, it is also natural to consider the analogous questions for

general graphs with other degree restrictions. Denote by O2n the set of graphs on 2n

vertices whose vertices are all of odd degree. Denote by En the set of connected graphs

on n vertices whose vertices are all of even degree. An Euler tour of G is a closed walk

that traverses each edge of G exactly once. A graph is Eulerian if it contains an Euler

tour. It is well known [2] that En is the set of all Eulerian graphs on n vertices. The

following problem is worthwhile to study.

Problem B. Characterize the graphs with maximal Wiener index in O2n and in En ,
respectively.

� � � � � � � �
� �

�
��

�
��

�
��

�
��

L

Fig. 3. A 10-vertex graph whose Wiener index exceeds the Wiener index of the tree

F10 .

Although T2n ⊂ O2n and F2n is the unique graph with maximal Wiener index in

T2n, we remark that F2n may not be the graph with maximal Wiener index in O2n. For

an example, let L be the graph shown in Figure 3. Then L ∈ O10. A straightforward

calculation gives that W (L) = 125 > W (F10) = 121. Settling Problem B seems to be

difficult.
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