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Abstract

Fullerene graphs are 3-connected cubic planar graphs with only pentagonal and hexag-
onal faces. A class of fullerene graphs with icosahedral symmetry is called icosahedral
fullerenes, and they are determined by a vector (i, j), 0 ≤ i ≤ j and j > 0. For i = j
or i = 0, the fullerenes are of full icosahedral symmetry. We show that the diameter
of an (i, j)-icosahedral fullerene graph of full icosahedral symmetry is 4i+6j− 1. We
conclude the paper by stating a conjecture on the diameter of any fullerene graph.

1 Introduction

Fullerenes are polyhedral carbon molecules, where atoms are arranged in pentagons

and hexagons. The most symmetric is the famous buckminsterfullerene, C60, whose

discovery in 1985 marked the birth of fullerene chemistry [15]. The name was a

homage to Richard Buckminster Fuller, whose geodetic dome it resembles. From the
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very beginning, fullerenes have been attracting attention of diverse research commu-

nities.

Fullerenes can also be seen as graphs, vertices represent atoms and edges represent

bonds between atoms. A fullerene graph is a 3-connected cubic planar graph with

only pentagonal and hexagonal faces. By the Euler formula, there are precisely 12

pentagons, but there is no restriction on the number of hexagons. Grünbaum and

Motzkin [13] showed that fullerene graphs on n vertices exist for all even n ≥ 24 and

for n = 20, i.e., there exists a fullerene graph with α hexagons where α is any integer

distinct from 1. Although the number of pentagonal faces is negligible compared to

the number of hexagonal faces, their layout is crucial for the shape of a fullerene

graph. There is a class of fullerene graphs of tubular shape, called nanotubes. The

ends of the tube are capped with a subgraph containing six pentagons and possibly

some hexagons. There are fullerene graphs where no two pentagons are adjacent,

i.e., each pentagon is surrounded by five hexagons. Those fullerene graphs satisfy the

isolated pentagon rule or shortly IPR, and they are the most stable fullerenes. If the

centers of the pentagonal faces form an icosahedra, the fullerene is called icosahedral

fullerene. The dodecahedron is the only icosahedral fullerene that does not satisfy

the IPR.

The distance between two vertices u, v ∈ V (G) in a connected graph G is the

length of a shortest path between them, and it is denoted by d(u, v). The distance

between the faces F1 and F2 is the minimal distance between the vertices from F1

and F2 or d(F1, F2) = min{d(u, v) |u ∈ V (F1), v ∈ V (F2)}. A diameter of a con-

nected graph G, diam(G), is the maximum distance between two vertices of G, i.e.,

diam(G) = max{d(u, v) | u, v ∈ V (G)}. The vertices u, v ∈ V (G) are diametral ver-

tices if d(u, v) = diam(G), and any shortest path between them is called a diametral

path. A vertex v that belongs to the border of a pentagonal face is called a pentagonal

vertex. A vertex that is not pentagonal is called hexagonal. A hexagonal patch is

a simply connected set of hexagons in the (oriented) plane with all interior vertices

having valency 3, at most two of the boundary vertices have valency 1 while all the

other vertices have valency 2 or 3. A bisector of an edge (a segment) in the hexagonal

grid is the line orthogonal to the edge passing trough its midpoint.

-206-



A number of graph-theoretical invariants were examined as potential stability

predictors with various degrees of success [1, 7, 9, 14, 17]. As a result, we have

achieved a fairly thorough understanding of fullerene graphs and their properties.

For more results and questions on fullerenes see [6, 8, 10, 11, 16].

As we conjecture at the end of the paper that fullerenes with full icosahedral

symmetry have the smallest diameter and perhaps these fullerenes are the most stable

since they are the most spherical ones [3]. From this point of view, we suspect that

the diameter could be used as a measure of stability, in a way that smaller diameter

could imply more stable fullerene.

From the results in [2] we derive the upper and lower bound of the diameter of a

fullerene graph.

Theorem 1.1. Let G be a fullerene graph with n vertices. Then,
√
24n− 15− 3

6
≤ diam(G) ≤ n

5
+ 1 .

For more precise results on diameter of fullerene graphs consider [2]. As it was shown

in [2], the diameter of the nanotubes is linear in the number of vertices. On the other

hand, the diameter of a fullerene graph G on n vertices having icosahedral symmetry

is small, i.e., it is of order Θ(
√
n).

In this paper we determine the diameter of an icosahedral fullerene graph with full

icosahedral symmetry, and prove that each pentagonal vertex is diametral. Hexagonal

vertices on the other side are not necessarily diametral. Even more, for an arbitrary

vertex x ∈ V (G) there is a pair of diametral pentagonal vertices u, v ∈ V (G) \ {x}
and a diametral path between them passing through x.

In order to determine the diameter of a fullerene graph with full icosahedral sym-

metry, we consider the two cases: (0, i)- and (i, i)-icosahedral fullerene graphs, where

0 < i.

2 Construction of icosahedral fullerene graphs

The common feature of all icosahedral fullerenes is their geometrical shape. Icosa-

hedral fullerene graphs are a class of fullerene graphs where the midpoints of all 12
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pentagons form a regular icosahedron. The simplest icosahedral fullerene graph is

the dodecahedron, C20. Creating bigger icosahedral fullerene graphs means adding

hexagons around each pentagon in C20 wisely. Caspar and Klug [4] and Coxeter [5]

suggested a method that works with the icosahedral fullerene graph dual: geodesic

domes, i.e., triangulations of the sphere with vertices of degree 5 and 6. Their method

is filling the triangular faces of the icosahedron with equilateral triangles from the

hexagonal tessellation of the plane.

Goldberg [12] used a hexagonal lattice to determine the vertices of the icosahedron

triangular faces. Even more, Goldberg showed that the number of vertices n in a

polyhedra of icosahedral symmetry can be related to two integers i and j by the

following equation, conveniently called the Goldberg equation

n = 20(i2 + ij + j2). (1)

The integers i and j in the Goldberg equation can be considered as components of

a two-dimensional Goldberg vector �G = (i, j). To avoid the mirror effect, we always

assume that 0 ≤ i ≤ j and 0 < j.

A

C

B

�G = (2, 3)

Figure 1. Construction of a (2, 3)-triangle, the face of a (2, 3)-icosahedral
fullerene graph. The vertices of the equilateral triangle ABC are
centers of pentagons.

Soon after the discovery of C60, Goldberg vector turned out to be very useful in

constructing bigger icosahedral fullerenes. This vector determines the distance and

positions of the vertices of the (i, j)-triangle in the hexagonal lattice. See Figure

1 for a construction method of an (i, j)-triangle. Precisely 20 such (i, j)-triangles

produce an (i, j)-icosahedral fullerene in a manner shown on Figure ??. In other
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words, Goldberg vector defines the way of adding hexagons around each pentagonal

face. The vertices of the triangle are centers of the 12 pentagons in the fullerene. The

pair of the triangles ABC and EB′C ′, as shown on Figure ??, is a pair of opposite

triangles. There are exactly 10 such pairs. The pentagons with centers in A and E

(Figure ??) are called antipodal pentagons (similarly, the pentagons with centers in

B and B′, as well as those with centers C and C ′ are antipodal).

A A A A A

C
B B

D D

E E E E E

B′ C ′

Figure 2. A (2, 3)-icosahedral fullerene. Its triangular faces are constructed as
on Figure 1. The vertices with a same name coincide. The vertices
of each triangular are centers of the pentagons. The pentagons with
center A and center E are antipodal pentagons, and the triangles
ABC and EB′C ′ form a pair of opposite triangles.

The (full) icosahedral group Ih, is the point group of symmetries of the icosahedron

and dodecahedron. This group is equivalent to the group direct product A5×Z2 of the

alternating group A5, and cyclic group Z2. The (i, i)- and (0, i)-icosahedral fullerene

graphs, i > 0, have full icosahedral symmetry group, i.e., every element of this class

of graphs has a symmetry group Ih.

3 Some properties of a hexagonal lattice

As we already saw in the previous section, icosahedral fullerenes can be represented

in a hexagonal lattice. Due to this fact, we present some properties of a hexagonal

lattice needed in the next sections.
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Tilling a plane with hexagons, means adding hexagons in three different directions,

denoted by �i, �j and �k on Figure 3. Without loss of generality we can assume that

one of the directions is horizontal, say �k. Now, every vertex a is incident to precisely

one edge normal to �k, i.e., is incident to a vertical edge ea. Also, a is incident to a

hexagonal face ha, not containing ea. We say that a is a top vertex if the vertical

edge ea is above the hexagon ha. If the vertical edge ea is below the hexagon ha, then

we say that a is a bottom vertex. For example in Figure 3 (a), the vertex a is a top

vertex, and the vertex b is a bottom vertex.

Let a and b be two different vertices in a hexagonal lattice. We can assume that a

is up and right from b, or they are in a same line of hexagons (in some of the directions

�i, �j or �k). Let ha and hb be the hexagons defined above for a and b respectively. The

lines parallel to�i, �j and �k passing trough the centers of ha and hb form three different

parallelograms, the smallest one is the parallelogram determined by the vertices a and

b. In the case when a and b belong to the same line of hexagons, this parallelogram

is a segment.

The parallelogram determined by the vertices a and b defines a unique (hexagonal)

parallelogram patch. Depending on the type of the vertices a and b, there are three

types of (hexagonal) parallelogram patches, as shown on Figure 3.

a

b

�i

�j

�k

�i

�j

�k

a

b �i

�j

�k

a

b

Type-a Type-b Type-c

Figure 3. All three types of parallelogram patches defined by the vertices a
and b in a hexagonal lattice. Type-a: the vertex a is top vertex and
b is bottom vertex. Type-b: both of the vertices are of the same
type. Type-c: The vertex a is bottom vertex and the vertex b is top
vertex.

The first property determines the distance, i.e., one of the shortest paths between

any two vertices in a hexagonal lattice.

Property 3.1. Let a and b be two vertices in a hexagonal lattice, defining a (hexag-

onal) parallelogram patch P. One of the shortest paths between the vertices a and b

-210-



consists of consecutive bordering edges of P.

Moreover, every vertex from the (hexagonal) parallelogram patch belongs to a

shortest path between the vertices determining the patch.

Property 3.2. Let a and b be two vertices in a hexagonal lattice. Let x be a vertex

from the (hexagonal) parallelogram patch determined by a and b. Then, there is a

shortest path between a and b that contains x.

Notice that, if a vertex x does not belong to a (hexagonal) parallelogram patch

determined by the vertices a and b, then there is no shortest path between a and b

containing x.

The final property of a hexagonal lattice needed is obvious.

Property 3.3. Let a and b be adjacent vertices in a hexagonal lattice. Let p be the

bisector of the edge ab dividing the lattice into two sections. The section containing

the vertex a also contains all the vertices closer to a than to b (and vice versa).

4 Diameter of full icosahedral-symmetry fullerene

graphs

From the structure of the icosahedral fullerene graphs it is clear that the most distant

vertices are vertices in opposite triangles. Even more the maximal distance between

two pentagonal vertices will be achieved for antipodal pentagon vertices. Combining

these observations lead to the main result.

In order to determine the diameter of full icosahedral-symmetry fullerene graphs,

we apply Property 3.3 and find vertices from the fullerene graph closer to a specific

pentagonal vertex than to any other vertex from the same pentagon. There are also

vertices equally distanced from two adjacent pentagonal vertices, a and b, but closer

to a and b than to any other vertex from the same pentagon. We show that every

pentagonal vertex is diametral, but that does not hold for all hexagonal vertices.
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4.1 Diameter of (0, i)-icosahedral fullerene graphs

First we calculate the diameter of a (0, i)-icosahedral fullerene graph, i > 0. In this

case, unlike the others, every hexagonal vertex belongs to a diametral path between

any pair of diametral pentagon vertices.

Theorem 4.1. The diameter of a (0, i)-icosahedral fullerene graph G, with i > 0 is

diam(G) = 6i− 1.

Proof. Let v be a pentagonal vertex. Due to the symmetry, we can assume that

v = a as shown on Figure 4. We want to determine the closest vertex (vertices) to

the vertex a from the antipodal pentagon. In order to do that, we apply Property 3.3

twice, once on each edge incident to a.

From the structure of a (0, i)-icosahedral fullerene graphs, it is obvious that the

bisector of the bordering edge of a pentagon overlaps with an edge of a (0, i)-triangle.

Therefore, we find two different bisectors of a pentagonal edge. As a result of this

“phenomenon”, there are vertices that are equally distanced from the vertices a and

b, since they are at the same time on the “left” and on the “right” side from the

bisector of the edge ab.

Consider that the vertices of the fullerene are grouped in ten sections A, B, . . . , CD

and DE as depicted in Figure 4. All the vertices left from the bisector of the edge ab,

i.e., the sections A, AE, AB are closer to the vertex a than to b. At the same time

the vertices on the right side of the bisector (the sections B, AB, BC) are closer to

b. This implies that the vertices from the section AB are equally distant from the

vertices a and b.

The same analysis can be done for all five pentagonal vertices. Combining all

of these analysis, we conclude that the vertices from the section A are closer to the

vertex a than to any other pentagonal vertex from the same pentagon. The vertices

in the section AB (resp. AE) are at same distance from the vertex a and from the

vertex b (resp. from the vertex a and the vertex e), but closer to a and b (resp. a and

e) than to any other vertex from the same pentagon (Figure 4).

Now, it is clear that the closest antipodal pentagon vertices to the vertex a are

c′ and d′. The union of the sections A and AB is the parallelogram defined by the
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vertices a and d′, respectively the union of the sections A and AE is the parallelogram

defined by the vertices a and c′. Observe that the parallelogram patch defined by these

vertices (a and d′ or a and c′) is of type-a. Due to the symmetry of the graph, the

same holds for the vertices a and c′.

c′ d′ e′ a′ b′

edcba

A

AE AB BC C D DE

EDCB

Figure 4. A (0, 4)-icosahedral fullerene graph, and the sections of vertices
closer to a specific pentagonal vertex. The vertices in the section
A are closer to the vertex a, those vertices in the sections AB and
AE are equally distanced to a and b, respectively to a and e. The
diametral vertex of the vertex a is the vertex a′.

By Property 3.2, for every vertex x from the sections A and AB there is a short-

est path between a and d′ that contains x. From the above, Property 3.1 and the

construction of (0, i)-triangle (Figure 1), we conclude that the distance between two

antipodal pentagons is 6i− 3. Moreover the following holds:

Claim 1. The distance between a pentagonal vertex v ∈ V (G) and its closest vertices

from the antipodal pentagon is 6i−3. Moreover, there are precisely two such vertices.

Notice that a path between the vertices a and e′ that goes trough b is comprised

by the shortest path between b and e′ and the edge ab. This path is of length 6i− 2,

and there is no shorter path since the vertex e′ is closer to b than to a. Clearly there

are paths of length 6i − 1 between the vertices a and a′, and these paths are the

shortest. If there is shorter path between a and a′, then the distance between b and

a′, or between e and a′ is 6i− 3 what contradicts with Claim 1. So, we have that the

following claim holds.

Claim 2. The maximum distance between two pentagonal vertices is 6i− 1.

Observe that, for every pentagonal vertex v, there is a unique pentagonal vertex
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u such that d(u, v) = 6i− 1. Next claim determines the upper bound of the distances

between pentagonal and hexagonal vertex.

Claim 3. Let u and v be pentagonal vertices at distance 6i−1. Let w be an arbitrary

vertex. There is a shortest path between u and v that goes trough w.

In order to prove this claim, let v = a and u = a′. If w is in the sections A or AB,

by Property 3.2, there is a path P1 between a and d′ of length 6i−3 that contains the

vertex w, so the desired path is P = P1d
′e′a′. If w is in the sections B or BC, there is

a path P2 from b to e′ trough w of length 6i− 3, i.e., P = abP2e
′a′ is a path of length

6i− 1 between a and a′ that contains w. If w is in one of the sections C or CD, then

the required path comprised of the 2-path abc and a path P3 from c to a′ containing

w. By the symmetry of the graph, all the cases are covered, and that proves this claim.

Directly from Claim 3 follows that the distance between any pentagonal and hexag-

onal vertices is less then 6i− 1.

Let w1 and w2 are two hexagonal vertices. By Claim 3, there are paths between u

and v of length 6i− 1 going trough w1 and w2. The union of those two paths gives a

closed walk of length at most 2(6i− 1). Therefore we have that the distance between

any two hexagonal vertices is at most 6i− 1. So, now we have:

Claim 4. The distance between any two hexagonal vertices is at most 6i− 1.

Finally, this claim completes the proof of the theorem.

By the icosahedral symmetry of the fullerene graph and the previous theorem

follows:

Corollary 4.1. Let G be a (0, i)-icosahedral fullerene graph, i > 0. Then, every

pentagon vertex in G is diametral. Even more for every pentagonal vertex, there is a

unique (pentagonal) vertex at distance diam(G).

On the other side, there are hexagonal vertices that are not diametral. Notice

that the number of vertices at maximum distance from a hexagonal vertex is not

necessarily one as shown in Example 4.1.
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s

d1 d2 d3

Figure 5. A (0, 3)-icosahedral fullerene graph. The vertex s is not diametral.
Blue vertices are at distance 4 from s, white at distance 8, and green
vertices are at distance 12. The most distanced vertices from s are
the vertices d1, d2, and d3, which are on distance 15.

Example 4.1. By Theorem 4.1, the diameter of the (0, 3)-icosahedral fullerene is 17.

Let s be a hexagonal vertex from the considered fullerene, as shown on Figure 5. The

most distanced vertices from s are d1, d2, and d3 and d(s, di) = 15, i = 1, 2, 3. The

vertex s is not diametral, and there are three different vertices at maximal distance

from s.

4.2 Diameter of (i, i)-icosahedral fullerene graphs

Another type of fullerene graphs with full icosahedral symmetry are fullerenes with

Goldberg vector �G = (i, i) where i > 0. In this section we determine the diameter of

such graphs.

Theorem 4.2. The diameter of an (i, i)-icosahedral fullerene graph G where i > 0 is

diam(G) = 10i− 1.

Proof. Similarly as in the proof of Theorem 4.1 we show that every pentagonal vertex

is diametral. Due to the symmetry of the graph we can chose any pentagonal vertex,

let say vertex a as shown on Figure 6.

First we will determine the vertices closer to a than to any other vertex from the

same pentagon. Apply Property 3.3 for the vertices a and b, later apply the same

property for the vertices a and e. It is clear that the vertices c′ and d′ are equally

distanced from the vertex a, and at the same time they are the closest vertices to a

from the antipodal pentagon (see Figure 6). The parallelogram patch defined by the

vertices a and c′ (or d′) is of type-c.
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The bisector of the edge ab passes trough the center of a pentagon, in this case the

point x1, and brakes into two lines. This can easily be seen if we rotate the triangle

x1x3x4 such that the points x4 and x5 are identified. In such way we get the vertices

equally distanced form a and b. The vertices right from the line x2x4 do not belong

in the parallelogram patch defined by a and d′, but belong to the parallelogram patch

defined by b and e′, therefore they are closer to b than to a. In the same manner

we find the vertices closer to a than to e, as well as vertices equally distanced from

them, but closer to a and e than to any other vertex from the same pentagon. The

sections of vertices closer to a different pentagonal vertices of the same pentagon

are illustrated on Figure 6. The construction of an (i, j)-icosahedral fullerene graph,

Property 3.1 and the previous observation give the following claim.

e a b c d

e′d′c′b′ a′

d e a b c

a′e′d′c′ b′

D

E A B C D

DE AE AE AB AB BC BC CD CD DE

x2

x3x1

x4x5

Figure 6. A (3, 3)-icosahedral fullerene graph. The vertices in the section A
are closer to the vertex a than to any other vertex from the same
pentagon. The vertices in the section AB (resp. AE) are equally
distanced to a and b (resp. to a and e), but closer to a and b (resp.
a and e) than to any other vertex from the same pentagon. The
diametral vertex of the vertex a is the vertex a′.

Claim 1. The distance between two antipodal pentagons is 10i− 3.

Notice, that by Property 3.2 all the vertices from the sections A, AB and AE,

belong to a shortest path between a and c′ or between a and d′. So, there are paths

of length 10i− 1 between a and a′ and these paths are the shortest. One such path is

comprised by a 2-path abc and one of the shortest paths between the vertices c and

a′. By this and Claim 1 we have the following.

-216-



Claim 2. The maximum distance between any two pentagonal vertices is 10i− 1.

Notice that the distance between the vertex a and any other hexagonal vertex

is less than 10i − 1. If the hexagonal vertex x belongs in the sections B or BC

(resp. E or DE), the distance d(x, b) < 10i − 3 (resp. d(x, e) < 10i − 3). So

the shortest path between a and x is comprised by the edge ab (resp. ae) and the

shortest path between b and x (resp. e and x). Similarly if the vertex x belongs to

the sections C or CD (resp. D or CD), the shortest path between the vertices a and

x is comprised by the 2-path abc (resp. aed) and the shortest path between c and x

(resp. d and x). Similarly as the case of (0, i)-icosahedral fullerene graphs, i > 0, for

every pentagonal vertex v there is a unique pentagonal vertex u at maximal distance

from v. The distance between these two vertices in (i, i)-icosahedral fullerene graph

i > 0 is d(u, v) = 10i − 1. Next we should determine the distance between any two

hexagonal vertices.

e a b c d

e′d′c′b′ a′

d e a b c

a′e′d′c′ b′

Figure 7. The uncolored part of the fullerene contains the vertices that belong
to a shortest path between a and a′. This part is an union of the
(hexagonal) parallelogram patches determined by the vertices: a
and c′, a and d′, b and e′, c and a′, d and a′, or the vertices e
and b′, since every vertex from these parallelograms belongs to a
path of length 10i − 1 between the vertices a and a′. The shaded
parallelograms are the sections of vertices that might not belong to
a shortest path between the vertices a and a′.

Claim 3. Let F0 and F1 be antipodal pentagons. Then for any two hexagonal vertices

w1 and w2, there is a pair of pentagonal vertices v ∈ V (F0) and u ∈ V (F1) at distance

10i − 1 such that there are shortest paths P1 and P2 between u and v containing w1

and w2 respectively.

To prove this claim, first let locate the vertices that belong to a shortest path
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between the vertices a and a′. Clearly all the vertices from the sections A, AB and

AE belong to such a path. Further, we have that all the vertices that belong to a

shortest path between the vertices b and e′ also belong to a path of length 10i − 1

between a and a′. By Property 3.2, every vertex x from the (hexagonal) parallelogram

patch determined by the vertices b and e′ belongs to a shortest path Px between b

and e′, and the required path is abPxe
′a′. Similarly, each vertex from the (hexagonal)

parallelogram patch determined by the vertices c and a′ belong to a shortest pat

between a and a′. This path is comprised by the 2-path abc and the shortest path

between c and a′ containing the corresponding vertex. Due to the symmetry of

the graph we find all the vertices that belong to a shortest path between a and a′.

These vertices belong to the uncolored section of the fullerene graph as illustrated on

Figure 7. Respectively, the complement of this section contains vertices that might

not belong to such a path.

e a b c d

e′d′c′b′ a′

d e a b c

a′e′d′c′ b′

S1
S2 S3 S4 S5 S6 S7 S8 S9 S10

S1

Figure 8. The vertices from the sections sections S1, S3, S6 and S8 might not
belong to a shortest path between a and a′, as shown on Figure 7.
Using the symmetry of the graph we find that sections of vertices
that might not belong to a shortest path between the vertices: b and
b′ (sections S3, S5, S8 and S10), c and c′ (sections S2, S5, S7 and
S10), d and d′ (sections S2, S4, S7 and S9), and e and e′ (sections
S1, S4, S6 and S9).

By the symmetry of the graph we can find these sections for all five vertices on the

border of F0 as shown on Figure 8. On Figure 7, we can see that if w1 or w2 do not

belong to none of the shaded sections according to some vertex, let say a, then we can

choose v = a and u = a′. If only one of the vertices belongs to a shaded section, say

section S1, then v can be one of the vertices {b, c, d}. Now, let both vertices belong

to some of the shaded sections. There are ten such sections (Figure 8). Without loss

of generality we can assume that w1 belongs to the section S1. We consider two cases:
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• If w2 belongs to some of the sections S1, S3, S5, S6, S8 or S10, then we choose

v = d and u = d′.

• If w2 belongs to some of the sections S2, S4, S7 or S9, then v = b and u = b′.

This proves the Claim 3. Notice that there are more different possibilities for the

choices for u and v.

Now, by Claim 3, we have that for every pair of hexagonal vertices, there is a

closed walk of length at most 2(10i−1) going trough both of the vertices. That gives

the following claim.

Claim 4. The distance between any two hexagonal vertices is not greater than 10i−1.

This claim establishes the theorem.

Theorem 4.1 and Theorem 4.2 can be combined together. Then we obtain the

theorem for a diameter of fullerene graphs with full icosahedral symmetry.

Theorem 4.3. Let G be an (i, j)-icosahedral fullerene graph, such that 0 = i < j or

0 < i = j. Then, the diameter of G is given by diam(G) = 4i+ 6j − 1.

Applying Goldberg equation (1) and Theorem 4.3 we conclude that the diameter

of a fullerene graph with full icosahedral symmetry is of order Θ(
√
n). If we consider

an (i, i)-icosahedral fullerene F (i > 0) then by (1), n = 60i2. By Theorem 4.3,

diam(F ) = 10i − 1, i.e., diam(F ) = 10
√

n
60

− 1 =
√

5n
3
− 1. As we believe that

the icosahedral fullerenes have the smallest diameter, it leads us to conjecture the

following:

Conjecture 4.1. For every fullerene graph F on n vertices holds diam(F ) ≥
⌊√

5
3
n
⌋
−

1.
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