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Abstract

Let G be a graph with n vertices and μ1, μ2, . . . , μn denote the Laplacian eigen-
values ofG. The Laplacian Estrada index ofG is defined as LEE(G) = eμ1+· · ·+eμn .
We show that if G has c connected componenets and maximum degree Δ, then
LEE(G) ≥ c + eΔ+1 + (n − c − 1)e(2m−Δ−1)/(n−c−1) with equality if and only if G
is either a star or the union of c copies of a complete graph on Δ+ 1 vertices. This
improves a known lower bound.

1 Introduction

Throughout this paper we consider simple graphs, that is finite and undirected graphs

without loops and multiple edges. If G is a graph with vertex set {1, . . . , n}, the adjacency
matrix of G is an n × n matrix A = [aij], where aij = 1 if there is an edge between the

vertices i and j, and 0 otherwise. The Laplacian matrix of G is the matrix L = D − A

where D is a diagonal matrix with (d1, . . . , dn) on the main diagonal in which di is the

degree of the vertex i. Since L is a real symmetric matrix, its eigenvalues μ1, μ2, . . . , μn are

real numbers. These are referred to as the Laplacian eigenvalues of G. In what follows

we assume that μ1 ≥ μ2 ≥ · · · ≥ μn. The Laplacian matrix is positive semi-definite

matrix, so μi ≥ 0 and the multiplicity of 0 as an eigenvalue of L is equal to the number of

connected components of G. For details on Laplacian eigenvalues of graphs we refer the

reader to [3, 15, 16].
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The Estrada index of G defined by E. Estrada [7, 8, 9] as

EE(G) =
n∑

i=1

eλi ,

where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G. The Estrada index

has already found a remarkable variety of applications. Initially it was used to quantify

the degree of folding of long-chain molecules, especially proteins [7, 8, 9]; for this purpose

the EE-values of pertinently constructed weighted graphs were employed. Another, fully

unrelated, application of EE (of simple graphs) was proposed by Estrada and Rodŕıguez–

Velázquez [11, 12]. They showed that EE provides a measure of the centrality of complex

(communication, social, metabolic, etc.) networks. In addition to this, in [13] a connection

between EE and the concept of extended atomic branching was considered. An application

of the Estrada index in statistical thermodynamic has also been reported [10].

Mathematical properties of the Estrada index were studied in a number of recent works

[5, 17, 22]; for review see [6].

Quite recently, in analogy to Estrada index, the Laplacian Estrada index of a graph

G was introduced in [14] as

LEE(G) =

n∑
i=1

eμi . (1)

Independently the authors [20] defined the Laplacian Estrada index as

LEELSC = LEELSC(G) =
n∑

i=1

eμi−2m/n

where the graph G has n vertices and m edges. Since

LEE = e2m/n · LEELSC

the two “Laplacian Estrada indices” are essentially equivalent. In what follows we use

the definition (1) which looks simpler than LEELSC .

Various properties of LEE were established in [14, 24] and, of course, in [20]. See also

[1, 19, 21, 23, 25] for more recent results.

In this paper we find a lower bound for the Laplacian Estrada index of a graph in

terms of its number of vertices, the number of edges and maximum degree. Our bound

improves a bound presented in [2].
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2 Lower bound for Laplacian Estrada index

In this section we find a lower bound for Laplacian Estrada index of a graph in terms of

its number of vertices, number of edges and maximum degree. We denote the complete

graph on n vertices by Kn, and the star graph on n vertices by Sn. The nonzero Laplacian

eigenvalues of Kn are n with multiplicity n − 1; and those of the star Sn is n with

multiplicity 1 and 1 with multiplicity n− 2 (see [15, 16]).

In [2] the following was proved.

Theorem 1. ([2]) Let G be a graph with n vertices, m edges, and c connected components.

Then

LEE(G) ≥ c+ (n− c)e2m/(n−c) . (2)

Equality holds if and only if G is a union of copies of Ks, for some fixed integers s, with

(possibly) some isolated vertices.

In Theorem 2, we improve this lower bound. Proposition 1 shows that our bound (3) is

always better than (2).

Lemma 1. ([15]) If G is a connected graph with n ≥ 2 vertices, then μ1 ≥ Δ+1; equality

holds if and only if Δ = n− 1.

Lemma 2. ([4]) Let G be a connected graph on n vertices with two distinct Laplacian

eigenvalues. Then G is a complete graph.

Lemma 3. ([4]) Let G be graph on n vertices with three distinct Laplacian eigenvalues

θ1 > θ2 > 0 and let θ1, θ2 have multiplicities m1,m2, respectively. Then only two vertex

degrees k1 and k2 can occur in G. Suppose there are n1 vertices of degree k1 and n2 vertices

of degree k2. Then

(i) θ1 + θ2 = k1 + k2 + 1

(ii) m1θ1 +m2θ2 = n1k1 + n2k2 .

Lemma 4. Let G a graph on n vertices with three distinct Laplacian eigenvalues μ1 >

μ2 > 0. If μ1 = n = Δ+ 1 and μ1 has multiplicity 1, then G is the star K1,n−1.

-177-



Proof. We know μ1 = n and G has a vertex of degree n− 1. By Lemma 3, G has only

two vertex degrees k1 = n − 1 and k2. From Lemma 2(i), we have μ2 = k2. Since the

multiplicity of μ2 is n− 2, by Lemma 2(ii), we see k2 = 1. This completes the proof. �

Theorem 2. Let G be a graph with n vertices, m edges, c connected components and

maximum degree Δ. Then

LEE(G) ≥ c+ eΔ+1 + (n− c− 1)e
2m−Δ−1
n−c−1 . (3)

Equality holds if and only if G is either a star or the union of c copies of a complete graph

on Δ+ 1 vertices.

Proof. Since G has c connected components, μn = · · · = μn−c+1 = 0. Therefore,

LEE(G) = c+
n−c∑
i=1

eμi

≥ c+ eμ1 + (n− c− 1)e
μ2+···+μn−c

n−c−1 (4)

= c+ eμ1 + (n− c− 1)e
2m−μ1
n−c−1

where (4) is obtained by applying the arithmetic–geometric mean inequality and the last

inequality by the fact that μ1 + μ2 + · · ·+ μn−c = 2m. Now let

f(x) := ex + (n− c− 1)e
2m−x
n−c−1 .

Then f ′(x) = ex − e
2m−x
n−c−1 . So f is increasing for x ≥ 2m

n−c
. We claim that Δ + 1 ≥ 2m

n−c
.

To prove this, assume that the connected components of G have n1, . . . , nc vertices with

maximum degrees Δ1, . . . ,Δc, respectively. Then

2m ≤ n1Δ1 + · · ·+ ncΔc

≤ (n1 − 1)Δ1 + (n1 − 1) + · · ·+ (nc − 1)Δc + (nc − 1)

≤ (n− c)Δ + (n− c)

proving the claim. Since μ1 ≥ Δ+ 1 by Lemma 1, we conclude that

f(μ1) ≥ f(Δ + 1) (5)

from which (3) follows.

Now we consider the case of equality. If the equality occurs in (3), then the equalities

should occur in both (4) and (5). We may assume that Δ = Δ1. Equality in (4) implies
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μ2 = · · · = μn−c and equality in (5) implies μ1 = Δ1+1 = n1 by Lemma 1. First suppose

that μ2 = μ1, then each component of G has only two distinct Laplacian eigenvalues, and

so by Lemma 2 it must be a complete graph. It turns out that G is a union of some

copies of Kn1 . Now suppose that μ2 < μ1. From Lemma 4, it follows that one of the

components of G is a Sn and also μ2 = 1. So G cannot have more than one components,

and so G ∼= Sn. �

Now we show that the bound (3) is better than (2).

Proposition 1. With the notations of Theorem 2, we have

(n− c)e
2m
n−c ≤ eΔ+1 + (n− c− 1)e

2m−Δ−1
n−c−1 .

Proof. We have

eΔ+1 + (n− c− 1)e
2m−Δ−1
n−c−1 = eΔ+1 +

n−c−1∑
i=1

e
2m−Δ−1
n−c−1

≥ (n− c)e
Δ+1+(n−c−1) 2m−Δ−1

n−c−1
n−c

= (n− c)e
2m
n−c .

Note that second line is obtained by the arithmetic–geometric mean inequality. �
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[6] H. Deng, S. Radenković, I. Gutman, The Estrada index, in: D. Cvetković, I. Gutman
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