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Abstract

Bounds for the incidence energy of connected bipartite graphs were recently reported. We

now extend these results to connected non-bipartite graphs. In addition, these bounds are

generalized so as to apply to the sum of α-th powers of signless Laplacian eigenvalues, for any

real α.

1 Introduction

The energy of a graph is defined as the sum of the absolute values of the eigenvalues of its

adjacency matrix [14]. After the great success of this concept [15,20,27], the natural idea

was to extend it to other matrices. The first such attempt was to conceive the “energy”

of the Laplacian matrix [22,44], followed by a plethora of other “graph energies” [16,27].

A significant step forward in the theory of these novel “graph energies” was made by

Nikiforov [33]. According to Nikiforov, the energy of any matrix is equal to the sum of

singular values of this matrix.

Recall that the singular values of a (real) matrix M are equal to the positive square

roots of the eigenvalues of MMT . In particular, the ordinary graph energy coincides with

the energy of the adjacency matrix, whereas the Laplacian energy of an (n,m)-graph G is
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the energy of the matrix L(G)− (2m/n) In, where L(G) and In are the Laplacian matrix

of G and the unit matrix of order n.

The first non-trivial matrix energy defined via singular values was the incidence energy

[24], namely the energy of the vertex–edge incidence matrix.

Let I(G) be the vertex–edge incidence matrix of the graph G. For a graph G with

vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}, the (i, j)-entry

of I(G) is equal to 1 if the vertex vi is incident to the edge ej , and is zero otherwise. Let

ξ1, ξ2, . . . , ξn be the singular values of I(G). Then the incidence energy of the graph G is

defined as [24]

IE = IE(G) =
n∑

i=1

ξi .

Some basic properties of the incidence energy were established in [18,19, 24,37,38, 42].

It was soon recognized [18] that the incidence energy is intimately related with the

eigenvalues of the Laplacian and signless Laplacian matrices. Therefore, for the con-

siderations that follow, we need to define these matrices and recall their main spectral

properties [8–11,31,32].

Let G be a simple connected graph with n vertices and m edges and vertex set V (G) =

{v1, v2, . . . , vn}. For vi ∈ V (G), the degree of the vertex vi, denoted by di , is the number

of vertices adjacent to vi .

The Laplacian matrix of the graph G is defined as L(G) = D(G)−A(G), where A(G)

is the (0,1)-adjacency matrix of G, and D(G) the diagonal matrix of the vertex degrees.

The eigenvalues of L(G) are said to be the Laplacian eigenvalues of G and will be denoted

by μ1 ≥ μ2 ≥ · · · ≥ μn . It is well known that μn = 0 and that the multiplicity of zero

is equal to the number of connected components of G [13]. The sum of the Laplacian

eigenvalues is equal to 2m. For more details on Laplacian eigenvalues see [31, 32].

The signless Laplacian matrix of the graph G is defined as Q(G) = D(G)+A(G) and

its eigenvalues are denoted by q1 ≥ q2 ≥ · · · ≥ qn . The signless Laplacian eigenvalues are

real non-negative numbers. Their sum is also equal to 2m. For more details on signless

Laplacian eigenvalues see [8–11].

As well known in graph theory, I(G) I(G)T = Q(G). From this identity it immediately

follows [18]

IE(G) =
n∑

i=1

√
qi . (1)

Independently of, and somewhat earlier than, the introduction of the incidence energy
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concept, Liu and Liu [29] considered the quantity LEL defined as

LEL = LEL(G) =
n∑

i=1

√
μi

and named it Laplacian–energy like invariant of the graph G. The authors of [29] believed

that LEL has properties analogous to the Laplacian energy, but it was later found [23] that

it is much more similar to the ordinary graph energy. For survey and more information

on LEL see [28].

For the present considerations, it is important that because for bipartite graphs the

Laplacian and signless Laplacian eigenvalues coincide [8,31,32], for bipartite graphs LEL

is equal to the incidence energy [18].

In the present work we obtain some new estimates of the incidence energy. However,

we will be able to establish more general results, of which the incidence–energy results

are straightforward special cases. The details of this generalized approach are outlined in

the subsequent section.

2 Sum of powers of Laplacian and signless

Laplacian eigenvalues

Let α be a real number. In order to avoid trivialities, we may require that α �= 0 and

α �= 1. For a connected graph G, several authors [1,5,30,36,40,41,45] considered the sum

of the α-th powers of the non-zero Laplacian eigenvalues,

σα = σα(G) =
n−1∑
i=1

μα
i . (2)

The cases α = 0 and α = 1 are trivial as σ0(G) = n − 1 and σ1(G) = 2m. Note that

σ1/2 ≡ LEL.

Some properties of σ2 were established in [25]. The author of [25], fully unjustified,

referred to σ2(G) as to the Laplacian energy of the graph G. In fact, σ2 is just the second

Laplacian spectral moment, and its dependence on the structure of the graph G is trivially

simple.

It is worth noting that for a connected graph G with n vertices, nσ−1(G) is equal to

the Kirchhoff index, an invariant having extensive applications in the theory of electric

circuits, probabilistic theory, and chemistry [2–4,12,21,35].
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The graph invariant σα and especially its estimates weremuch studied in the literature.

For instance, Zhou established bounds of σα and also discussed further properties for σ2

and σ1/2 [40]. The results obtained in [40] were eventually improved [30,36]. More bounds

on σα are found in [1, 41, 45]. In [45] lower and upper bounds for incidence energy and

lower bounds for Kirchhoff index and Laplacian Estrada index of bipartite graphs were

also deduced.

Our main concern in this paper is the sum

sα = sα(G) =
n∑

i=1

qαi

which is just the signless–Laplacian variant of Eq. (2). Also the sum of the α-th powers of

the signless Laplacian eigenvalues was studied in the literature [1,26], but to a somewhat

lesser extent than σα .

The author of the paper [26] named sα “α-incidence energy”, because its special case

for α = 1/2 coincides with IE, cf. Eq. (1). This name for sα is certainly not adequate,

and “sum of powers of the signless Laplacian eigenvalues” should be preferred [1]. For the

case when α is a positive integer, the name “signless Laplacian spectral moment” would

be justified.

Formally speaking, sα would be the “energy” of the signless Laplacian matrix raised

to the power of α. However, Nikiforov’s matrix–energy concept [33] is purposeful only for

square and symmetric matrices whose trace (sum of diagonal entries) is zero.1

Returning to the sum of powers of signless Laplacian eigenvalues, we first note that

the cases α = 0 and α = 1 are trivial as s0(G) = n and s1(G) = 2m, respectively.

Evidently, s1/2(G) is equal to the incidence energy of G. Note further that σα(G) and

sα(G) coincide in the case of bipartite graphs. This is an immediate consequence of the

well known fact that the Laplacian and signless Laplacian eigenvalues of bipartite graphs

coincide [8, 31, 32]. Some bounds for sα(G) were established in [26].

The rest of the paper is organized in the following way. In Section 3, we give some

useful lemmas that will be used later. In Section 4, we present some lower and upper

bound on sα(G) for a connected graph G and show that some of our results improve the

1Recall that the “Laplacian energy” of an (n,m)-graph G is not the energy of the Laplacian matrix
L(G), but of the modified matrix L(G) − (2m/n) In. The trace of the signless Laplacian matrix Q(G)
is 2m. Therefore, the consistent definition of “α-incidence energy” would be the energy of the matrix
Q(G)α − (2m/n)α In. The present authors hope that nobody ever would endeavor to examine this
awkward and ill-conceived “graph energy”.
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results obtained in [26]. These results yield, as immediate special cases, estimates for the

incidence energy.

3 Lemmas

Let Zg(G) be the first Zagreb index of a graph G, defined as the sum of squares of the

vertex degrees of G [17,34]. Let L(G) denote the line graph of the graph G and let G1×G2

be the Cartesian product of the graphs G1 and G2 [7]. We now introduce an auxiliary

quantity for a graph G as

T = T (G) =
1

2

[
Δ+ δ +

√
(Δ− δ)2 + 4Δ

]
(3)

where Δ and δ are the maximum and the minimum vertex degree of G, respectively.

Lemma 3.1. ([10]) Let G be a connected non-bipartite graph with n vertices and signless

Laplacian eigenvalues q1 ≥ q2 ≥ · · · ≥ qn . Then

n∏
i=1

qi =
2t(G×K2)

t(G)

where t(G) and t(G×K2) are the number of spanning trees of G and G×K2 , respectively.

Lemma 3.2. ([42, 43]) Let G be a graph with at least two edges. Then

q1 ≥ Zg(G)

m

with equality if and only if L(G) is regular.

Lemma 3.3. ( [6, 39]) Let G be a connected graph with n ≥ 3 vertices and let Δ be the

maximum vertex degree of G. Then

q1 ≥ T ≥ Δ+ 1

with either equalities if and only if G is a star graph K1,n−1 .

Lemma 3.4. ([8]) Let G be a connected graph with diameter d. If G has exactly k distinct

signless Laplacian eigenvalues, then d+ 1 ≤ k.
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4 Main Results

Theorem 4.1. Let G be a connected graph with n vertices, m edges, Zagreb index Zg(G),

and t(G) spanning trees. If G is bipartite, then

IE(G) ≥
√

Zg(G)

m
+ (n− 2)

(
nm t(G)

Zg(G)

)1/(2(n−2))

(4)

with equality if and only if G ∼= K1,n−1 or (provided n is even) G ∼= Kn/2,n/2 .

If G is non-bipartite, then

IE(G) ≥
√

Zg(G)

m
+ (n− 1)

(
2mt(G×K2)

Zg(G)t(G)

)1/(2(n−1))

(5)

with equality if and only if G ∼= Kn .

The inequality (4) was earlier established by Zhou and Ilić [45], whereas (5) is stated

here for the first time.

Instead of proving Theorem 4.1, we demonstrate the validity of a more general result,

from which Theorem 4.1 follows as an immediate special case for α = 1/2.

Theorem 4.2. Let G be a connected graph with n ≥ 3 vertices, m edges, Zagreb index

Zg(G), and t(G) spanning trees. Let α be a real number. If G is bipartite, then

sα(G) ≥
(
Zg(G)

m

)α

+ (n− 2)

(
nm t(G)

Zg(G)

)α/(n−2)

(6)

with equality if and only if G ∼= K1,n−1 or (provided n is even) G ∼= Kn/2,n/2 .

If G is non-bipartite, then

sα(G) ≥
(
Zg(G)

m

)α

+ (n− 1)

(
2mt (G×K2)

Zg(G) t(G)

)α/(n−1)

(7)

with equality if and only if G ∼= Kn .

Proof. Inequality (6) has been obtained by Zhou and Ilić [45]. Therefore, its proof will

be omitted.

Using Lemma 3.1 and the arithmetic–geometric mean inequality, we obtain

sα(G) = qα1 +
n∑

i=2

qαi ≥ qα1 + (n− 1)

(
n∏

i=2

qαi

)1/(n−1)

= qα1 + (n− 1)

(
2t(G×K2)

t(G) q1

)α/(n−1)
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with equality if and only if q2 = · · · = qn .

Consider now the following function:

f(x) = xα + (n− 1)

(
2t(G×K2)

t(G) x

)α/(n−1)

.

It is easy to see that f(x) is increasing for x >
(

2t(G×K2)
t(G)

)1/n
for both α > 0 and α < 0.

By Lemma 3.2 and the Cauchy–Schwarz inequality, we have [42]

q1 ≥ Zg(G)

m
≥ 2

√
Zg(G)

n
>

2m

n
.

Using the arithmetic–geometric inequality and Lemma 3.1, we get

2m

n
=

1

n

n∑
i=1

qi ≥
(

n∏
i=1

qi

)1/n

=

(
2t(G×K2)

t(G)

)1/n

.

Therefore

sα(G) ≥ f

(
Zg(G)

m

)
=

(
Zg(G)

m

)α

+ (n− 1)

(
2mt(G×K2)

Zg(G) t(G)

)α/(n−1)

.

Hence (7) follows. Equality holds in (7) if and only if q1 = Zg(G)/m and q2 = · · · = qn .

Suppose that the equality holds in (7). Then by Lemma 3.2, we get that L(G) is

regular. Note further that q1 > q2 = · · · = qn , otherwise we would have that q1 =

2m/n < 2
√
Zg(G)/n ≤ Zg(G)/m , which is a contradiction. Thus, G has exactly two

distinct signless Laplacian eigenvalues. Then, by Lemma 3.4, we conclude that G ∼= Kn .

Conversely, it can be easily verified that the equality holds in (7) for the complete

graph Kn .

Setting α = 1/2 into the inequalities (6) and (7), we readily arrive at the inequalities

(4) and (5) for the incidence energy.

The following results were given by Zhou and Ilić in [45].

Theorem 4.3. Let G be a connected bipartite graph with n ≥ 3 vertices and m edges.

(i) If α < 0 or α > 1, then

sα(G) ≥
(
Zg(G)

m

)α

+

(
2m− Zg(G)

m

)α
(n− 2)α−1

. (8)

(ii) If 0 < α < 1, then

sα(G) ≤
(
Zg(G)

m

)α

+

(
2m− Zg(G)

m

)α
(n− 2)α−1

. (9)

-149-



Equality in both (8) and (9) occurs if and only if G ∼= K1,n−1 or (provided n is even)

G ∼= Kn/2,n/2 .

(iii) As a special case of (9) for α = 1/2,

IE(G) ≤
√

Zg(G)

m
+

√
(n− 2)

(
2m− Zg(G)

m

)
. (10)

Theorem 4.4. Let G be a connected non-bipartite graph with n ≥ 3 vertices and m edges.

(i) If α < 0 or α > 1, then

sα(G) ≥
(
Zg(G)

m

)α

+

(
2m− Zg(G)

m

)α
(n− 1)α−1

. (11)

(ii) If 0 < α < 1, then

sα(G) ≤
(
Zg(G)

m

)α

+

(
2m− Zg(G)

m

)α
(n− 1)α−1

. (12)

Equality in both (11) and (12) occurs if and only if G ∼= Kn .

Proof. Note that xα is convex when x > 0 and α < 0 or α > 1. Therefore we get(
n∑

i=2

1

n− 1
qi

)α

≤
n∑

i=2

1

n− 1
qαi

i. e.,
n∑

i=2

qαi ≥ 1

(n− 1)α−1

(
n∑

i=2

qi

)α

with equality if and only if q2 = · · · = qn . Then

sα(G) ≥ qα1 +
1

(n− 1)α−1

(
n∑

i=2

qi

)α

= qα1 +
(2m− q1)

α

(n− 1)α−1
.

Consider the auxiliary function

g(x) = xα +
(2m− x)α

(n− 1)α−1

and note that it is increasing for x > 2m/n, see [26]. By Lemma 3.2, and bearing in mind

that q1 ≥ Zg(G)/m ≥ 2
√
Zg(G)/n > 2m/n, we get

sα(G) ≥ g

(
Zg(G)

m

)
=

(
Zg(G)

m

)α

+

(
2m− Zg(G)

m

)α
(n− 1)α−1

.
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for α < 0 or α > 1. Hence (11) follows.

Now we consider the case of 0 < α < 1. Note that xα is concave when x > 0 and

0 < α < 1. Thus (
n∑

i=2

1

n− 1
qi

)α

≥
n∑

i=2

1

n− 1
qαi

with equality if and only if q2 = · · · = qn .

Note that g(x) is decreasing for x > 2m/n, see [26]. Then, by a parallel argument as

above, we can prove (12).

For connected non-bipartite connected graphs, either equality in (11) or (12) holds if

and only if q1 = Zg(G)/m and q2 = · · · = qn . Then, by using similar arguments as in the

proof of Theorem 4.2, we conclude that G ∼= Kn .

For α = 1/2, Theorem 4.4 yields the following corollary.

Corollary 4.5. Let G be a connected non-bipartite graph with n ≥ 3 vertices and m edges.

Then

IE(G) ≤
√

Zg(G)

m
+

√
(n− 1)

(
2m− Zg(G)

m

)
(13)

with equality if and only if G ∼= Kn .

In view of (10), the inequality (13) holds also for bipartite graphs, which then coincides

with Proposition 1 in [42].

Theorem 4.6. ([26]) Let G be a connected graph with n ≥ 3 vertices and m edges. Let

α �= 0, 1. Then the following holds:

(i) If α < 0 or α > 1, then

sα(G) ≥
(
2

√
Zg(G)

n

)α

+

(
2m− 2

√
Zg(G)

n

)α

(n− 1)α−1 (14)

with equality if and only if G ∼= Kn .

(ii) If 0 < α < 1, then

sα(G) ≤
(
2

√
Zg(G)

n

)α

+

(
2m− 2

√
Zg(G)

n

)α

(n− 1)α−1 (15)

with equality if and only if G ∼= Kn .
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Remark 4.7. From the proof of Theorem 4.4, we conclude that if α < 0 or α > 1, then

the lower bound (11) is better than the lower bound (14) and if 0 < α < 1, then the

upper bound (12) is better than the upper bound (15). Thus our Theorem 4.4 provides an

improvement of Rao Li’s Theorem 4.6.

Theorem 4.8. Let G be a connected graph with n ≥ 3 vertices. If G is bipartite, then

IE(G) ≥
√
T + (n− 2)

(
n t(G)

T

)1/(2(n−2))

with equality if and only if G ∼= K1,n−1 .

If G is non-bipartite, then

IE(G) >
√
T + (n− 1)

(
2t(G×K2)

t(G)T

)1/(2(n−1))

.

Proof. Theorem 4.8 is an immediate special case of the below Theorem 4.9, obtained by

setting α = 1/2.

Theorem 4.9. Let G be a connected graph with n ≥ 3 vertices and let the parameter T

be given by Eq. (3). Let α be a real number. If G is bipartite, then

sα(G) ≥ T α + (n− 2)

(
n t(G)

T

)α/(n−2)

(16)

with equality if and only if G ∼= K1,n−1 .

If G is non-bipartite, then

sα(G) > T α + (n− 1)

(
2t(G×K2)

t(G)T

)α/(n−1)

. (17)

Proof. Inequality (16) was earlier communicated in [5].

By Lemma 3.3, q1 ≥ T ≥ 1 + Δ > Δ ≥ 2m/n ≥
(

2t(G×K2)
t(G)

)1/n
. Thus by similar

arguments as in the proof of Theorem 4.2, we get that sα(G) ≥ f(T ). Then (17) follows

and the equality holds in (17) if and only if q1 = T and q2 = · · · = qn .

The condition q2 = · · · = qn would imply that G ∼= Kn . However, q1(Kn) is equal to

2n− 2, which differs from T (Kn) = n− 1 +
√
n− 1. Thus we conclude that (17) cannot

become an equality.

This completes the proof of the theorem.

Theorem 4.10. Let G be a connected bipartite graph with n ≥ 3 vertices and m edges.

(i) If α < 0 or α > 1, then

sα(G) ≥ T α +
(2m− T )α

(n− 2)α−1
. (18)
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(ii) If 0 < α < 1, then

sα(G) ≤ T α +
(2m− T )α

(n− 2)α−1
. (19)

Equality in both (18) and (19) occurs if and only if G ∼= K1,n−1 .

Let G be a connected non-bipartite graph with n ≥ 3 vertices and m edges.

(iii) If α < 0 or α > 1, then

sα(G) > T α +
(2m− T )α

(n− 1)α−1
. (20)

(iv) If 0 < α < 1, then

sα(G) < T α +
(2m− T )α

(n− 1)α−1
. (21)

Proof. Inequalities (18) and (19) was previously proven in [5].

By Lemma 3.3, we have q1 ≥ T ≥ 1 +Δ > Δ ≥ 2m/n. Thus by similar arguments as

in the proof of Theorem 4.4, we get that sα(G) ≥ g(T ) for α < 0 or α > 1. Then (20)

follows.

From the proof of Theorem 4.4, we also obtain sα(G) ≤ g(T ) for 0 < α < 1 and then

(21) follows.

Either equality in (20) or (21) holds if and only if q1 = T and q2 = · · · = qn . By

similar arguments as in the proof of Theorem 4.9, we conclude that the above inequalities

cannot become equalities.

From Theorem 4.10, we also have the following sharp upper bound for the incidence

energy of connected graphs.

Corollary 4.11. Let G be a connected graph with n ≥ 3 vertices and m edges. If G is

bipartite, then

IE(G) ≤
√
T +
√
(n− 2)(2m− T )

with equality if and only if G ∼= K1,n−1 . If G is non-bipartite, then

IE(G) <
√
T +
√
(n− 1)(2m− T ) .

Rao Li [26] obtained also the following result:

Theorem 4.12. ([26]) Let G be a connected graph with n ≥ 3 vertices, m edges, and

maximum vertex degree Δ. Let α �= 0, 1. Then the following holds:

(i) If α < 0 or α > 1, then

sα(G) > (1 + Δ)α +
(2m− 1−Δ)α

(n− 1)α−1
. (22)
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(ii) If 0 < α < 1, then

sα(G) < (1 + Δ)α +
(2m− 1−Δ)α

(n− 1)α−1
. (23)

Remark 4.13. From the proof of Theorem 4.10, we conclude that if α < 0 or α > 1,

then the lower bound (20) is better than the lower bound (22) and if 0 < α < 1, then the

upper bound (21) is better than the upper bound (23). Thus our Theorem 4.10 provides

an improvement of Rao Li’s Theorem 4.12 for the case of non-bipartite graphs.
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Note added in proof: After the completion of this paper, the article M. Liu, B. Liu,

On sum of powers of the signless Laplacian eigenvalues of graphs, Hacettepe J. Math.

Stat. 41 (2012) 527–536 came to our attention. In it some results identical to ours are

communicated.
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