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Abstract

A novel algorithm for permanent of sparse graph is proposed, which combines
a new permanent expansion formula and graph bisection. Hence the improved
algorithm for permental polynomial of sparse graph is followed. Computational
results on the permanents and permanental polynomials of fullerene graphs are
presented. The new algorithms increase the computable scale for permanents and
permanental polynomials dramatically on PC within acceptable time.

1 Introduction

The permanent of an n× n matrix A = [aij] is defined as

per(A) =
∑
σ∈Λn

n∏
i=1

aiσ(i) (1)

where Λn denotes the set of all possible permutations of {1, 2, ..., n}.
The permanent function arises in a number of fields, including mathematics [1], phys-

ical sciences [2,3] and molecular chemistry [4–6]. However, computing the permanent of a

matrix is proved to be a #P -complete problem in counting [7]. Even for 3-regular matri-

ces, which are with 3 nonzero entries in each row and column, evaluating their permanents

is still a #P -complete problem [8].
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The best-known algorithm for precise evaluation of the permanent of general matrix

is due to Ryser, Nijenhuis and Wilf [9]. It is O(n2n−1) in time complexity. This method

only works for small matrices. It is only possible to make the precise calculation faster,

if the special structure properties of matrices can be used intensively. In this paper, we

will focus on sparse matrices. Several precise algorithms have been proposed by exploring

the structure properties of sparse matrices intensively, such as Kallman’s method [10],

expansion algorithm [11] and partially structure-preserving algorithm [12].

The permanental polynomial of a graph G is defined as

P (G, x) = per(xI − A), (2)

where A is the adjacency matrix of the graph G with n vertices, and I is the identity

matrix of order n.

For a graph with n vertices, its permanental polynomial can be computed by n/2 + 1

permanents of n × n matrices and an (n + 1)-element FFT [13]. Hence the efficiency

of the algorithm for permanental polynomial is determined by that of the algorithm for

permanents.

In this paper, a new permanent expansion formula is given. Then a novel algorithm

for permanent of sparse graph is proposed, which is based on graph bisection. Hence the

improved algorithm for permental polynomial of sparse graph is followed. The fullerene

graphs used in [10, 12, 13] are calculated by new methods. The computational results

show that the new permanent algorithm is faster than the algorithm proposed in [12]

when n ≥ 70 and the new permanental polynomial algorithm is faster than the algorithm

proposed in [13] algorithm when n ≥ 30. The algorithms proposed here increase the

computable scale from C100 to C150 for permanents and from C60 to C90 for permanental

polynomials on PC under the same time and precision tolerance.

In the next section, the new permanent expansion formula is presented. In section

3, graph bisection problem and algorithms are introduced briefly. Then our sparse per-

manent and permanental polynomial algorithms are proposed, which combine the new

permanent expansion formula and graph bisection. The numerical results are given in

section 4. Some discussions are made in section 5.
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2 A Permanent Expansion in Block

Consider a 0-1 matrix M = [mij]p×q. If elements mi1,j1 , ...,mik,jk have no row or column in

common, the set of k elements is called a k-permutation of matrix M ; and if
k∏

s=1

misjs =

1, then the k-permutation is called nonzero.

Let [A|{i1, ..., ik}, {j1, ..., js}] be the (n− k)× (n− s) matrix obtained by deleting the

i1th,· · · ,ikth rows and j1th,· · · ,jsth columns from the matrix A. The main result of this

section is as follows. The proof of this theorem is presented in the Appendix.

Theorem 2.1. Assume

A =

[
A11 A12

A21 A22

]
,

where A11, A22 are n1 × n1 and n2 × n2 respectively. Let ns = min{n1, n2}. The set

consisting of all the nonzero k permutations in A12 is denoted as Λ1k, the set consisting

of all the nonzero k permutations in A21 is denoted as Λ2k, (1 ≤ k ≤ ns). Then

perm

[
A11 A12

A21 A22

]
= perm(A11) · perm(A22)+

ns∑
k=1

∑
ai1j1 ,...,aikjk

∈Λ1k

as1l1 ,...,asklk
∈Λ2k

perm[A11|{i1, ..., ik}, {l1, ..., lk}] · perm[A22|{s1, ..., sk}, {j1, ..., jk}].

It is clear that the sparser the off-diagonal blocks in matrix A, the fewer expansion

terms in the expansion. The graph bisection algorithm is applied to achieve this goal.

3 The Algorithms

3.1 Graph bisection

Consider a graph G(V,E), where V denotes the set of vertices and E denotes the set of

edges. The graph bisection problem is to partition V into two parts (subsets) V1 and V2,

such that the parts are disjoint and the number of edges between them is minimized.

Graph bisection is an NP-complete problem. The problem has many applications,

such as in VLSI placement and routing problems [14]. Many fast heuristics have be

developed [15,16].

Fullerene type graphs are exactly small average degree graphs. Thus we adopt com-

paction combining with Kernighan-Lin algorithm [15] in this paper.
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Essentially, the bisection algorithm gives a reordering of n vertices of the graph G.

The adjacency matrix with new vertex order is B = PAP T , where P is a permutation

matrix.

3.2 The Permanent Algorithm Based on Graph Partition

The permanent expansion formula in Theorem 2.1 could be efficiently used in constructing

a numerical algorithm for permanent only when the matrices A12 and A21 are sparse

enough. For n vertices of the graph G, we use the graph bisection algorithm to reorder

the rows and columns of A, and evaluate the permanent via expanding the matrix that

has been reordered.

The permutation matrix P is obtained by graph bisection algorithm. Then let

B = PAP T =

[
B11 B12

B21 B22

]
,

in which the nonzero elements are gathered in diagonal blocks B11 and B22 and perm(A) =

perm(B). Here B11 is n1 × n1 matrix and B22 is n2 × n2 matrix.

For any k-permutations σ1 = {bi1,j1 , · · · , bik,jk} in B12, σ2 = {bs1,l1 , · · · , bsk,lk} in B21,

let [B11|{i1, ..., ik}, {l1, ..., lk}] and [B22|{s1, ..., sk}, {j1, ..., jk}] be denoted as [B11|σ1, σ2]

and [B22|σ1, σ2].

The function H (hybrid algorithm), which is proposed to compute the permanent

of sparse matrix in [11], is called directly in the following algorithm. Then we give an

algorithm for sparse permanents based on graph bisection as follows.

Algorithm SP (sparse permanent algorithm based on graph bisection)

Input: A sparse graph G and its adjacency matrix A

Step 1: Using graph bisection algorithm to obtain the permutation matrix P .

Let B = PAP T =

[
B11 B12

B21 B22

]
.

Step 2: Finding all the nonzero permutations of B12, denoted by Λ1k (k = 1, · · · ,m1),
and all the nonzero permutations of B21, denoted by Λ2k (k = 1, · · · ,m2).

Step 3: Let m = min(m1,m2) and p = H(B11) ·H(B22),
for k=1 to m

p = p+
∑

σ1∈Λ1k,σ2∈Λ2k

H([B11|σ1, σ2]) ·H([B22|σ1, σ2]).

Output: perm(A) = p.
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3.3 The Improved Permanental Polynomial Algorithm

let ωN = e(−2πi)/N be the Nth root of unity. Take xj be the ωj
n+1 (j = 0, 1, · · · , n). The

values of pn(xi) = per(xiI −A) with i = 0, 1, 2, · · · , n are computed by the algorithm SP,

then all the coefficients of per(xI − A) can be solved by the following linear system of

equations.⎛
⎜⎜⎜⎜⎜⎝

1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1
...

...
...

. . .
...

1 xn−1 x2
n−1 · · · xn

n−1

1 xn x2
n · · · xn

n

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a0
a1
...

an−1

an

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

per(x0I − A)
per(x1I − A)

...
per(xn−1I − A)
per(xnI − A)

⎞
⎟⎟⎟⎟⎟⎠ . (3)

The system (3) is the discrete Fourier transformation and can be solved rapidly, ro-

bustly and accurately by Fast Fourier Transformation (FFT) in O(n log n) time.

4 Numerical Results

In order to illustrate the efficiency of our algorithms, we have applied them to fullerene

graphs. A fullerene Cn is a polyhedral carbon cage with n atoms. The adjacency matrices

of fullerenes are symmetric 3-regular (0,1) matrices. The permanent and permanental

polynomial of a chemical graph G is of interest in chemical graph theory [4,6,17–21]. For

the permanents of this kind of matrix, several precise algorithms have been proposed by

exploring the structure properties of matrices intensively.

So far as we know, the partially structure-preserving algorithm proposed in [12] is the

most efficient algorithm for permanents of fullerene structure. And the the best one for

permannetal polynomial is the algorithm proposed in [13], which adapts the permanent

algorithm to FFT. Our new algorithms are compared with them.

The numerical experiments are carried on a Linux system using Intel Core i3 530

CPU(2930 MHz) and 4 GB RAM. Fortran 90 and MATLAB are used as programming lan-

guage. All computations are performed under double-precision and quadruple-precision

arithmetic.

4.1 Results on Permanents of Fullerene Graphs

Some fullerenes with the number of carbon atoms from 30 to 120 are computed. The

data are taken from [22]. The computational results are shown in Table 1, which give the
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comparison between the new algorithm and the partially structure-preserving algorithm.

For simplicity, we denote the partially structure-preserving algorithm as algorithm P, and

the graph bisection based algorithm proposed in this paper as algorithm SP.

Note that C82 was the largest computed fullerenes reported before. We compute C120

with algorithm SP simply using PC. Because the permanent of C120 is over 16 significant

bits, quadruple-precision is necessary for computing the permanents of C≥120.

When n = 30, the computational time of algorithm P is far shorter than that of

algorithm SP. The computational times of the two algorithms are almost the same when

n = 70. The computational time of algorithm SP is only no more than half of that of

algorithm P when n increases to 80. When n > 100, the algorithm P can hardly afford

the computational costs.

Table 1. Computational results of algorithm B for fullerenes

Computational time (second)

Fullerene n Per(A) Algorithm P Algorithm SPB Speedup

C30(C2ν) 30 29621 0.004 0.063 0.066
C44(T ) 44 2478744 0.12 0.53 0.226
C60(Ih) 60 395974320 5.34 13.80 0.387
C70(D5h) 70 9193937544 55.75 42.39 1.315
C80(C2) 80 189275868081 360.44 147.24 2.452
C90(C2v) 90 5206290577049 4703.23 484.56 9.705
C100(C2) 100 116149608133433 65712.58 836.22 78.581
C120(Td) 120 81917875997012096 * 19315.03 *

40 60 80 100 120
−10

−5

0

5

10

15

20

25

n

lo
g 2(T

)

Algorithm P
Algorithm SP
Fitting line of P
Fitting line of SP

slope=0.202

slope=0.337

Figure 1. The comparison between the partially structure-preserving algorithm (P)
and graph bisection based algorithm (SP)
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As n grows from n = 30 to n = 100, the computational times increase about 12,000

times for algorithm SP and more than 107 times for algorithm P. This indicates that the

algorithm SP may still be promising as n goes larger.

We further observe that the logarithm of running times are almost linearly increase

with respect to n for both algorithmd SP and P. The increase scope of logarithm of running

time is about 0.202 with n for algorithm SP, and about 0.337 with n for algorithm P. The

relations between log2(T ) and n on algorithm SP and P are shown in Fig.1, where the T

denotes the running time. For fullerenes, the time complexity of algorithm SP is roughly

O(2n/5) and that of algorithm P is roughly O(2n/3). As n becomes larger, such difference

is crucial.

4.2 Results on Permanental Polynomials of Fullerene Graphs

We compare the improved permanental polynomial algorithm, which is denoted by algo-

rithm I for simplicity, with the algorithm proposed in [13], which is denoted by algorithm

F. The Table 2 gives the comparison between these two algorithms for C20 to C52. The

computations are made under double-precision.

Table 2. The comparision of computational times between algorithm F and I for
fullerenes

Fullerene n Algorithm F Algorithm I Speedup
C20 20 0.01 0.006 1.67
C30(C2ν) 30 0.73 0.35 2.09
C40(D2h) 40 36.58 7.52 4.86
C44(T ) 44 191.77 38.20 5.02
C50(D5h) 50 2128.14 365.60 5.82
C52(D2) 52 5406.21 892.32 6.06

Table 3. Computing time (seconds) for the coefficients of the permanental polyno-
mials

Fullerene C30(C2ν) C40(D2h) C44(T ) C50(D5h)

CPU time 15.25 130.40 620.60 1448.97

Fullerene C52(D2) C56(Td) C60(Ih) C70(D5h)

CPU time 5015.64 8756.15 15180 171970

When n > 54, the quadruple-precision is necessary due to the effect of rounding error.
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Table 3 presents the running times of computing the permanental polynomials of C30 to

C70 with quadruple-precision by our new method. The logarithm of running times still

grow almost linearly with respect to n, as shown in Fig 2.

30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

n

lo
g 2(T

)

slope=0.338

Figure 2. The relations between log2(T ) and n

The linear regression equation is given by

Y = 0.33798n− 6.05771, R2 = 0.989142 (4)

The slope of the line is about 0.338, hence the time complexity of Algorithm I is roughly

O(20.24n) for fullerene graphs. Note that the time compulexity of Algorithm F is roughly

O(20.59n) [13]. The labeled two triangles denote the predictions for the computing times

of C80 and C90. They are about 675 and 6982 hours respectively. The algorithm can be

parallelized easily. Hence the computation for C≥80 is promising.

Then we consider the accuracy of the computation for permanental polynomials of

fullerene graphs. The coefficients of a permanental polynomial are all integer, while

Fast Fourier transformation gives output in real numbers. The part of FFT shows the

computational precision. Let cof Cn be the coefficients vector of Cn derived from FFT

directly. Take

error = max
1≤k≤n+1

|round(cof Cn(k))− cof Cn(k)|

be a measure of the computational precision. Table 4 gives the trend of the computational

precision with n from 30 to 70. The round error is less than 10−12 when n is up to 70.

Fig 3 shows the error trend. The linear regression equation is given by

Y = 0.31262n− 35.19053, R2 = 0.982561 (5)
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According to this trend, the permanental polynomial of larger fullerenes will be ac-

curately computed, because the computational precision is adequate. The two triangles

denote the predictions of the errors, and they are no more than 10−5 and thus acceptable.

Table 4. The trend of the computational precision with n

Fullerene C30(C2ν) C40(D2h) C44(T ) C50(D5h)

error 4.23×10−26 3.03×10−23 4.34×10−22 1.40×10−20

Fullerene C52(D2) C56(Td) C60(Ih) C70(D5h)

error 4.20×10−20 8.32×10−19 1.13×10−17 4.57×10−13

30 40 50 60 70 80 90 100
−30

−25

−20

−15

−10

−5

n

lo
g 10

(e
rr

or
)

slope = 0.313

Figure 3. The error trend

5 Discussions and Conclusions

In this paper, a novel algorithm based on graph bisection is proposed for computing the

permanents of sparse matrices. For fullerene-type graph, the efficiency of computation

and computable scale of permanents and permanental polynomials achieve the significant

increase. The computational times of the new algorithms increase much slower than

those of the other existing algorithms when n grows. This shows that the new methods

are promising for larger fullerenes. And this makes it possible to compute the permanents

of large fullerenes in bulk and explore the way in which they depend on the molecular
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structure more profoundly [21]. Though the examples computed in this paper are all

fullerenes, the algorithms are equally applicable to other types of chemical structures as

well.

The efficiency of the new algorithms relies on the performance of the graph bisection.

The sparser the matrix B12 and B21 in Algorithm SP, the more efficient in the permanent

evaluation. The graph bisection used in the paper can be regarded as a preconditioner

for the algorithm on sparse permanents induced by Theorem 2.1. It is one of the most

popular algorithm, but not necessarily the best here. Finding more efficient bisection

algorithm for this kind of structure is a meaningful way to improve the algorithm further.

Appendix

Consider the permanent expansion in block. The following result is well known [1].

Lemma 5.1. Assume

A =

[
A11 0
0 A22

]
,

where A is an n× n matrix, both A11 and A22 are not square matrices. Then

perm(A) = 0.

The proof of Theorem 2.1

Let

Ax =

[
A11 x · A12

x · A21 A22

]
,

where x is regarded as a parameter. It is clear that

perm(Ax) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

Therefore perm(A) = a0 + a1 + · · ·+ an.

According to all the nonzero permutations of A12 and A21 to do Laplace expansion for

perm(Ax), the coefficient at can be represented as

∑
p+q=t

∑
ai1j1 ,...,aipjp∈Λ1p

as1l1 ,...,asqlq∈Λ2q

perm

[
[A11|{i1, · · · , ip}, {l1, · · · , lq}] 0

0 [A22|{s1, · · · , sq}, {j1, · · · , jp}]

]
.

By the result of Lemma 1, when p �= q,

perm

[
[A11|{i1, · · · , ip}, {l1, · · · , lq}] 0

0 [A22|{s1, · · · , sq}, {j1, · · · , jp}]

]
= 0.
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Hence at = 0 when t is odd.
Only when p = q = t

2
, at may be nonzero. Hence the coefficient of the highest order

term of perm(Ax) is 2ns. For any 1 ≤ k ≤ ns,

a2k =
∑

ai1j1 ,...,aikjk
∈Λ1k

as1l1 ,...,asklk
∈Λ2k

perm

[
[A11|{i1, · · · , ik}, {l1, · · · , lk}] 0

0 [A22|{s1, · · · , sk}, {j1, · · · , jk}]

]

=
∑

ai1j1 ,...,aikjk
∈Λ1k

as1l1 ,...,asklk
∈Λ2k

perm([A11|{i1, · · · , ik}, {l1, · · · , lk}]) · perm([A22|{s1, · · · , sk}, {j1, · · · , jk}]).

It is easy to know that a0 = perm(A11) · perm(A22). Hence we have

perm

[
A11 A12

A21 A22

]
= perm(A11) · perm(A22)+

ns∑
k=1

∑
ai1j1 ,...,aikjk

∈Λ1k

as1l1 ,...,asklk
∈Λ2k

perm[A11|{i1, ..., ik}, {l1, ..., lk}]perm[A22|{s1, ..., sk}, {j1, ..., jk}].
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