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Abstract 

The work is aimed at studying structural regularities of isobaric-isothermal subsolidus 
cross-sections of ternary phase diagrams with either stoichiometric phases or limited solid 
solutions. Topological cross-section scheme is presented in the form of a graph with trivalent 
inner faces. The graph contains not more than three bivalent vertexes. The work presents the 
relation between quantity parameters of the graphs. Their generation algorithm has been 
developed and carried out in the form of a program. The experiment planning program on the 
construction of cross-sections in real phase diagrams has been carried out. 

  

1. Introduction  

The space (Т-х-y) of isobaric ternary phase diagram is a prism, with (х, y) composition 

simplex lying on the base, while the lateral edges are parallel to temperature axis Т. Phase 

diagram is a complex three-dimensional structure in the form of space partition to the 

volumes corresponding to existence phases and phase complexes. Experimental investigation 

of isothermal cross-sections is one of the main methods to study isobaric Т-х-y diagrams. Let 

the domain of existence of phases �, � and г present in such a cross-section. The domain of 

existence of ternary phase complex ��� is a triangle, where the vertexes belong to the 

boundaries of one-phase domains and the laterals – to two-phase domains ��, �� and ��. 

Each of them is formed from a continuous set of linear tie lines joining the composition points 
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of coexisting phases [1, 2]. Let’s consider an isothermal cross-section which contains neither 

liquid nor gas phases. The exterior outline of the cross-section is a Gibbs triangle, with the 

vertexes corresponding to the components, i.e. having coordinates (0, 0), (0, 1) and (1, 0). 

Let’s consider the case when there are no continuous solid solutions in the cross-section. Then 

one-phase, two-phase and three-phase domains may be substituted by points, lines and 

triangles correspondently. The points of binary compounds with coordinates (х, 0), (0, у), and 

(х, 1 – х) lie on the sides of  the outline. The points of ternary compounds with coordinates (х, 

у) are situated inside the Gibbs triangle. In this case, straight line segments joining the 

compositions of coexisting phases divide this triangle into the set of intrinsic triangles which 

symbolize three-phase complexes. The obtained triangulation scheme reflects the topology of 

an isothermal subsolidus cross-section of a phase diagram. If in the cross-section of a real 

diagram there are only stoichiometric phases, the triangulation scheme coincides with the 

isothermal cross-section. Information on phase diagrams is necessary for the synthesis of new 

phases as well as obtaining one- and multiphase materials. Therefore, experimental studies of 

isothermal cross-sections are being carried out; the results of the research are placed in 

various data bases. In this connection, forecasting the possible triangulation schemes and their 

classification as well as optimization of the experiments on building isothermal cross-sections 

seems especially urgent.   
Let q phases be present in the system and for each of them the dependence of Gibbs 

energy on composition Gi(xi, yi) is known, where 1 ≤ i ≤ q. As such, it is easy to calculate the 

value G for a random mixture of phases with total composition (х, у). Let’s build the surface 

min G(x, у) corresponding to the minimal value of G in any point of the Gibbs triangle (х, у). 

Isothermal cross-section Т-х-у of the phase diagram represents the projection of this surface 

on the Gibbs triangle. Thus, if we measure thermodynamic properties of the phases, 

isothermal cross-section can be computed.  With the shortage of thermodynamic data and the 

complexity of obtaining them, usually isothermal cross-sections are defined experimentally.  

For this purpose, the set of samples with different compositions are synthesized and brought 

into equilibrium state by long-duration annealing at a preset temperature. Then, the obtained 

phases and their compositions are identified in each particular sample.   
When the data on thermodynamic properties of the phases in the system is lacking, it 

seems possible to construct a triangulation scheme for the system with the given binary and 

ternary compounds with the help of geometrical thermodynamics. To this end, random values 

Gi are assigned to each stoichiometric phase (xi, yi), after that a minimal surface G(x, y) is 

built. Its projection on the Gibbs triangle represents a triangulation scheme. Varying Gi, one 
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can construct all possible triangulation schemes for a predetermined set of phases. This 

method is useful to visualize thermodynamic approach, but it seems rather useless for 

enumerating all possible triangulation variants, especially for the systems with a large number 

of compounds. To solve this task in general case, it is relevant to use the topological method 

which we applied for enumerating ternary solid-liquid diagrams [3]. The set of topological 

characteristics of the diagrams can be used for their classification [4]. It is necessary to 

mention that topological approach has also been applied to describe phase diagrams of both 

one-component and binary systems [5-7].  

2. Topological properties of triangulation schemes  
Let’s consider subsolidus cross-section of the system with М binary and N ternary 

compounds. Its triangulation scheme is a graph with v vertexes, f faces and е edges. Let vex = 

eex = М + 3 vertexes and edges belong to the outer face of the graph (component face) which 

is situated on the outline of the Gibbs triangle. As vin = N of the vertexes and еin of the edges 

being situated inside the outline. The graph has an multiangular outer face and f – 1 inner 

triangular faces. For such graphs, the ratios [8] are true  

М + 3 + 3(f – 1) = 2e.                                                   (1) 

f = M + 2N + 2,      e = 2M + 3N + 3,       ein = M + 3N,      v = M + N + 3.               (2) 

∑(6 – т)vm = 2(М + 6),  ∑(4 – т)vm = 6 – 2N,                                       (3) 

where vm – the number of т-valent vertexes. 

      The example of triangulation in the system when M = 4, N = 2 is shown in Figure 1. For 

this diagram f = 10, v = 9, vex = 7, е = 17, еin = 10, е2 = е5 = е6 = 1, е3 = е4 = 3.  

 
                                  Figure 1. Example of triangulation. 
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To record the number of vertexes with different valence it is useful to use the formula 

2133435161. It seems relevant to mention that 0 ≤ v2 ≤ 3. 

To derive the formula of triangulation graphs it makes to apply the ratios (3). Thus, at М 

= 1, N = 2, one can find f = 7, v = 6, vin = 2, е = 11, еin = 7. In such a graph, the maximal 

valence of the vertex equals five. Therefore, the following equations 4v2 + 3v3 + 2v4 + v5 = 14 

and 2v2 + v3 + 0v4 – v5 = 2 seem true. The formulae 3244, 334251, 3452, 21314351, 21324152 

correspond to these ratios. Figure 2 shows eight possible triangulation schemes which 

correspond to these formulae.  

 
      Figure 2. Triangulation graphs at M = 1, N = 2. 
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It is necessary to notice that the bivalent vertex corresponds to the component, while two 

other vertexes of the triangle in this case can correspond to either the second component and a 

binary compound or two binary compounds. It is obvious that the case when v2 = 3 

corresponds to the system without compounds or can be realized at M ≥ 3 if the points of 

binary compounds lie on the three sides of the outline. The case v2 = 2 can be realized at M ≥ 

1. The cases v2 = 1 can be realized at M ≥ 1 and N ≥ 1. 

Let any triangulation graph correspond to a planar graph with trivalent vertexes. To 

construct such a graph, one can add a new vertex outside the Gibbs triangle and joint it by the 

edges with other points of binary compounds. Next, construct a dual graph to the obtained 

graph. Each of such dual graphs presents a Schlegel projection of a polyhedron with trivalent 

vertexes on one of its faces. Figure 3 shows such a graph for triangulations 21324152 given in 

Figure 2, which per se is a Schlegel projection of a polyhedron 324362 with two triangle, three 

quadrilateral, and two hexagonal faces. 

 
Figure 3. Dual graph for 21324152 triangulation scheme which is a Schlegel projection of 

a 324362 polyhedron on the quadrangular face. 
 

3. Typological classification and coding of triangulation schemes  
The increase in the number of compounds in the system leads to a sharp increase in the 

number of possible triangulation schemes. To regulate such information it seems reasonable 

to classify triangulation schemes, which can be useful for the development of data 

compression and storage methods as well as construction of possible triangulation schemes. 

Since the most general characteristics of phase diagrams are of typological nature, it sounds 

reasonable to select triangulation schemes with the vertexes labeled by the symbols of the 

components and compounds or dual polyhedron graphs as the objects of classification. The 

large number of classification objects with various properties makes it necessary to create a 

hierarchical classification system.  When choosing classification criteria for the upper levels, 

k1

k2

k3

c1

t1 t2

-799-



 

it makes sense to focus on the basic chemical features of the system, while the taxons of the 

lower levels can be of purely topological nature. The classification of triangulation schemes 

given below is aimed at enumerating possible triangulation schemes and optimization of 

experimental building of such schemes. 
To classify topological types of triangulation phase diagrams we suggest the following 

set of classification criteria.  

1. Code of compound (CС). From the set of ternary systems let’s single out the type with 

the specified number of binary M and ternary N compounds. The sequence of these numbers 

M, N is called code of compounds. 

2. Code of boundary systems (CBS). Let’s divide (M, N)-systems into the classes with 

different allocation of binary compounds on the sides of concentration triangle. The 

components are indicated by the symbols k1, k2 and k3, while the binary compounds – сi (1 ≤ i 

≤ M). Code of boundary systems is formed from the component codes between which the 

symbols of binary compounds are located, for example, k1k2, k2c1k3, k3c2c3k1. The combination 

of these records in ascending order of the number of binary compounds forms CBS, which 

consists of three symbols of the components and М symbols of binary compounds. For the 

given example CBS = k1k2c1k3c2c3. 

3. Code of vertexes valence (CVV) shows the number of vertexes with different valence 

in a triangulation graph. It coincides with the formulae of the graphs given above, for 

example, 21324152 for the graph in Figure 2.  

4. Code of triangulation (CT) represents the enumeration of inner edges of triangulation 

graphs. They correspond to two-phase complexes (tie lines) of a ternary system. CT is 

recorded in the form of a succession М + 3N of the pairs of symbols divided by the sign «/».  

We suggest using the following record order of tie lines’ symbols. Let’s choose in CBS the 

first vertex incidental to the inner edges of the triangulation graph and enumerate the symbols 

of these edges in a clockwise direction from the lateral of the outer triangle. Ternary 

compounds are indicated by the symbols tj (1 ≤ j ≤ N); they are numbered in the order of 

occurrence of their symbols in CT. Repeat this procedure for the rest of the vertexes in CBS. 

As a result, the sequence of tie lines incident to the outer vertexes of the triangulation graph 

can be made. Next, in a lexicographical order one can record the sequence of tie lines joining 

the vertexes of ternary compounds.  

To illustrate, let’s consider classification characteristics of the triangulation scheme 

shown in Figure 1, where: СC = 4, 2; CBS = k1c1k2c2k3c3c4; CVV = 35425161; CT = 
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k1t1/k1t2/c1t2/k2t2/c2t2/c2t1/k3t1/c3t1/c4t1/t1t2. It seems obvious that the set of the characteristics 

mentioned above is sufficient for a complete overall description of any triangulation graph. 

 

4. Enumeration of topological types of phase diagram triangulations  
The basis of enumeration algorithm is the above mentioned duality relation between 

triangulation schemes and cubic graphs of polyhedrons, which has made it possible to use the 

earlier created data base on polyhedrons with trivalent vertexes [9]. Suppose the number of M 

binary and N ternary compounds in a three-component system is specified.    

1. Select all polyhedrons with the number of edges M + N + 4 containing the face M + 3 

from the data base of simple polyhedrons [9]. Let’s call each of such faces a component face 

and indicate it as k-face. For such a polyhedron one can form an automorphism group of and 

determine all nonequivalent k-faces. 

2. For the selected k-face of a simple polyhedron Р it is possible to create a code of 

vertexes valence which corresponds to the pair (P, k). Next, the list of all CVV values is made.  

3. Three random edges of k-face are labeled by symbol ‘k’, while the rest M edges – by 

symbol ‘c’. Lexicographically maximum word W (k, c) specified by the condition: ‘k’ > ‘c’ is 

made correspondent to the labeled k-face. This word is a code of boundary systems. Next, the 

list of all CBS values is made. Given the CBS, the set of all binary compounds is divided into 

three subsets with the number of compounds m1 ≤ m2 ≤ m3, where m1, m2 and m3 are the 

numbers of compounds in binary systems (k1k2), (k2k3) and (k3k1), correspondingly. After that, 

Schlegel diagram D of polyhedron Р on k-face is made. Next, a geometrically dual graph to 

diagram D is constructed, where one vertex vk corresponding to k-face is removed. As a result, 

one can obtain T ternary phase diagram triangulation; the vertexes are labeled as kl, ci and tj. 

Finally, Т triangulation code is created and the list of all CT is composed.  

This algorithm makes it possible to generate the totality of topological triangulation 

schemes corresponding to the given set of classification characteristics. As a result, on the 

basis of this algorithm, the program has been developed. It is possible to define by this 

program, for example, that there are 244 schemes of topologically nonequivalent 

triangulations in the systems of three binary and two ternary compounds (CС – 3, 2), with 38 

of them corresponding to the criterion (CVV = 21324352). Out of these 38 diagrams, 28 

schemes correspond to the criterion (CVV = k1k2c1k3c2c3). Table 1 shows the number of 

nonequivalent triangulation schemes for the systems with different numbers of binary and 
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ternary compounds. Besides, the program makes it possible to look through topological 

schemes of all triangulations which correspond to the classification criteria. 

Table 1. The number of nonequivalent triangulation schemes for the systems with different 
numbers of binary and ternary compounds. 

 

5. Optimization of experimental determination of triangulation in ternary 

phase diagrams  
This task deals with planning experiments on the study of isothermal cross-sections of 

ternary phase diagrams. The researcher is supposed to be aware of the compositions of all 
binary and ternary compounds in the system and identify the presence of the components and 
compounds in experimental samples after reaching their equilibrium state. For the given set of 
binary and ternary compounds (i.e. parameters CС and CBS) there is a variety of triangulation 
options where only one corresponds to the equilibrium phase diagram. The idea of experiment 
planning is to define the number of samples and choose their total composition in order to 
determine the set of all stable binary and ternary associations of an equilibrium diagram with 
the minimal number of experiments. Optimization algorithms can be based on the choice of 
compositions of two-phase or three-phase samples or their combination.  

The method suggested in [10] is based on constructing a complete graph of a subsolidus 
cross-section of a phase diagram with the specified vertexes coordinates. Next, out of the set 
of cross points of inner edges of a complete graph, the number of significant points is selected 
where the phase composition of the samples is determined experimentally. Finally, it is 
possible to determine which edge of the triangulation graph each point belongs to. The set of 
significant points should be sufficient for unambiguous creation of the scheme of a 
triangulation. To decrease the number of samples it makes sense to select significant points on 
the edges of a complete graph with the largest number of crossings. The method is efficient 
for the systems with a small number of compounds. However, it is difficult to apply this 
method at a large number of compounds. Besides, this method does not seem to determine, in 
an optimal way, the number of significant points sufficient for defining phase diagram 
triangulation. The suggested program which works in an interactive mode can easily solve 
these problems. When setting the task, the user inputs the number and composition of binary 
and ternary compounds existing in the system into the program. The program proposes the 

              
            М  

N 
0 1 2 3 

0 1 1 1 4 
1 1 2 8 38 
2 2 10 50 293 
3 6 37 244 1682 
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user an optimal set of compositions of the samples for experimental study. The given set is 
sufficient for creating any possible triangulation which corresponds to the specified 
parameters of the system. Having determined experimentally the phase composition of the 
recommended samples, the user inputs these results into the program which defines the 
required triangulation.    
      The specific of the solution algorithm is as follows:  

1. Creating a complete graph. The compositions of all binary and ternary compounds are 
specified. The points corresponding to these compositions are placed on the Gibbs triangle. 
Next, the graph is constructed, with the vertexes being the composition points of the 
compounds; each two points are jointed by the edge if and only if they don’t lie on the one 
side of the Gibbs triangle. After that, label the constructed graph with the symbol G. The 
edges of graph G are considered as unlabeled. Finally, all the pairs of the intersecting edges 
are examined, the coordinates of crossing points are computed, and the list of these points is 
made. Let’s label this set of points with Р. 

2. The algorithm of creating a significant set.  
2.1. Let’s call equilibrium r(pi) in the point pi out of set Р the list of phases on the end of 
the tie line which passes through this point or in the vertexes of one of the triangles in which 
this point is located. Let’s call the list of equilibriums r(p1), r(p2),…r(pk) a contradictory one if 
there exists such an index i, which results in the lack of equilibrium r(pi) from equilibriums 
r(p1), r(p2),…r(pi-1); otherwise, the list of equilibriums is called non-contradictory.  
2.2. Let the subset of points p1,p2,…,рk from Р be called a significant one if, after removing 
from graph G all the edges crossing the edges which correspond to the specified equilibriums, 
for any list of non-contradictory equilibriums r(p1), r(p2),…r(pk), the obtained graph is a 
planar one. 
2.3. From the set P a random point p1 is selected. From graph G remove the edges crossing 
the edge which correspond to the specified equilibrium r(p1). If the obtained graph is a planar 
one, the significant set is considered as formed and consisting of the only point p1. For the list 
of equilibriums R={r(p1), r(p2),…r(pk-1)} let’s call point p covered by this list if point p lies 
either on the edges of set R, or belongs to one of its triangles. Next, the significant set is 
added by point p2 from Р, which is not covered by the list of equilibriums R={r(p1)}. The 
given list is extended to R ={r(p1),r(p2)}. After that, the edges which cross the edges 
corresponding to the list of equilibriums R are removed from graph G. The last procedure is 
repeated unless the planar graph is obtained.   

3. Algorithm of constructing triangulation on significant points.  

3.1. For the selected (significant) point p two-phase or three-phase equilibrium r(p) is 
defined, which determines either the corresponding edge or a triangle. In graph G, the edges 
corresponding to the given equilibrium are labeled, while the crossing edges are removed.   
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3.2. The previous step is repeated unless a planar graph T – a required triangulation – is 
constructed.  

 To illustrate, let’s consider phase diagram triangulation Li2O-MoO3-ZnO, where М = 6, N 
= 1; to construct such a phase diagram triangulation 27 samples were studied [11]. The use of 
the program has shown that the minimal number of samples sufficient for the solution of the 
given task equals 4. 

 

6. Conclusion  
The present classification together with the programs described above can be used in data 

bases on phase diagrams. The use of the experiment planning programs in the study of phase 
diagrams can significantly simplify the experimental construction of isothermal cross-sections 
of ternary phase diagrams with both phases of constant composition and limited solid 
solutions.     
 
References 
[1] R. Vogel, Die heterogenen Gliechgewichte, Acad. Verlagsgesellshaft, Leipzig, 1959. 
[2] M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformation. Their 

Thermodynamic Basis, Cambridge Univ. Press, Cambridge, 1998. 
[3] V. I. Kosyakov, V. A. Shestakov,  E. V. Grachev, Enumeration of melting diagrams of 

three_component systems with stoichiometric compounds,  Russ. J. Inorg. Chem. 55 
(2010) 611-619.  

[4] V. I. Kosyakov, V. A. Shestakov, E. V. Grachev, Topological classification of ternary 
phase diagrams with stoichiometric compounds, Russ. J. Inorg. Chem. 55 (2010) 780-
784.  

[5] F. B. Kujawa , C. A. Dunning , H. P. Eugster, The derivation of stable unary phase 
diagrams through the use of dual networks,  Am. J. Sci. 263 (1965) 429-444.   

[6] V. I. Kosyakov, V. A. Shestakov, E. V. Grachev, Trialing of the topological types of 
phase diagrams for unary systems,  Russ. J. Inorg. Chem.  56 (2011) 1458 -1463. 

[7] L. Pogliani, Phase diagrams and physicochemical graphs. How did it start, MATCH 
Commun. Math. Comput. Chem. 49 (2003) 141-152. 

[8] V. I. Kosyakov, V. A. Shestakov, E. V. Grachev, Triangulation schemes of 
three_component systems, Dokl. Phys. Chem. 443 (2012) 53-56.  

[9] V. Y. Komarov, S. F. Solodovnikov,  E. V. Grachev, V. I. Kosyakov, A. Y. Manakov, 
A. V. Kurnosov,  V. A. Shestakov,  Phase formation and structure of high-pressure gas 
hydrates and modeling of tetrahedral frameworks with uniform polyhedral cavities, 
Crystallogr. Rev. 13 (2007) 257-297. 

[10] L. Niepel, M. Malinovsky, Triangulation of phase diagrams, Chem. Zvĕsti. 32 (1978) 
810-820. 

[11] L. Xue, D. Chen, Z. Lin, P. Lv, F. Huang, J. Liang, Subsolidus phase relation in the 
system ZnO—Li2O—MoO3, J. Alloys Compd. 430 (2007) 67-70. 

-804-


