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Abstract
In this paper, we explore the discrimination power of existing molecular ID

numbers as the potential of these measures has not yet been investigated on a large
scale. First, we find that many ID numbers are computationally insufficient and,
hence, can not be calculated on large sets of graphs. Second, we also determine
the discrimination power of recently developed eigenvalue-based indices which pos-
sess polynomial time complexity. Particularly we find that some of these measures
outperform specific molecular ID numbers in terms of their discrimination power.

1 Introduction

Network-based methods have been proven useful in various disciplines. Hence, there is a

strong need to understand the mathematical apparatus in-depth. A standard method to

characterize the structure of complex networks are structural graph descriptors [13, 10, 11,

26]. A challenging problem when designing such structural descriptors for networks is to

convert structural information into numbers or hashes uniquely [2, 8, 15, 14, 19, 21]. Also,

this relates to investigate the discrimination power or uniqueness of a structural graph

measure by using specific sets of graphs, see [3, 4, 8, 12, 14]. In the eighties, Randić and

Balaban made an attempt in this direction by introducing several molecular identification

numbers representing topological indices [17, 19, 21, 20]. Note that the discrimination

power of those ID numbers has been first explored by Szymanski et al. [17]. Apart from

investigating the uniqueness of these measures, applications thereof in QSAR and drug

design have also been reported, see [5, 6].
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To define the Randić molecular ID, he summed certain property functions involving

vertex degrees of all edges along all possible paths in a graph [19]. This measure turned

out to be highly discriminating for alkane trees. Afterwards, Szymanski et al. [18] found

counterexamples that the Randić molecular ID does not represent a complete graph in-

variant for alkane trees, i.e., it is not fully unique on this graph class. Further, the Balaban

ID has been defined by using distance sums rather than vertex degrees in the path weight-

ing scheme [2]. However, the discrimination power of this measure has only been little

investigated [2].

When investigating the computational complexity of these ID numbers, it turned out

that these measures are not suitable to characterize either large graphs or large sets of

graphs efficiently as the number of all paths in a graph is approximately n!. In particular,

the time complexity of the ID’s increases tremendously with cyclic graphs. In order to

reduce the time complexity, Ivanciuc et al. [24] developed similar quantities by summing

edge properties along the shortest paths (not all paths). Also, Szymanski et al. [18]

defined new quantities by considering weighted walks rather than paths and improved the

time complexity of the resulting quantities. However, we prove in Section 3 that these

measures are less unique than the ID’s by using chemical and exhaustively generated

graphs. Finally, Randić [21] explored so-called ring ID’s which assign numerical values to

ring structures with high discrimination power. Hence, a large cyclic molecular structure

could be decomposed into several ring-like subgraphs which can be characterized uniquely

by using the ring ID’s. But note that the ring ID’s do not allow deriving scores for

characterizing cyclic graphs globally. Related indices namely the so-called prime ID’s also

developed by Randić [19] turned out to be highly unique for chemical alkane trees.

The contributions of this paper is twofold: First, we compare the uniqueness of the

molecular ID numbers on a large scale by using chemical alkane trees and exhaustively

generated graphs. Here, exhaustively generated graphs are graphs without any structural

constraints, e.g., bounded degrees, hierarchy etc. We find that the molecular ID numbers

are not suitable to tackle this problem for exhaustively generated graphs due to their

insufficient computational complexity. Second, we also evaluate the uniqueness of recently

developed eigenvalue-based entropies [9] and prove that these indices outperform some of

the ID numbers. As a strong point, the eigenvalue-based entropies due to Dehmer et al.

[9] have a much better time complexity than the ID numbers. Note that in this paper, we
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will not develop any new graph measures. Instead, the main contribution is to perform a

numerical study to demonstrate that classical molecular ID numbers are not sufficient to

evaluate the uniqueness compared to recently developed eigenvalue-based indices [9].

2 Materials and Methods

In this section, we briefly recall the definitions of the ID numbers we are going to apply

in this paper. Also, we state the eigenvalue-based entropies due to Dehmer et al. [9].

2.1 Molecular ID Numbers

Let G = (V,E) be a connected graph, |V | := N . We start by stating the general formula

of the Randić and Balaban ID number [2, 19], namely

IDC,B(G) := N +
∑
mpij

wij. (1)

mpij are all paths of length m > 0 and wij is a distinctively defined path weight. In case

of IDC , we define

wij =
m∏
b=1

(kb(1)kb(2))
−1/2
b . (2)

Note that the sum runs over all edges in the graph and kb(1), kb(2) are the vertex degrees

of the two vertices incident to the b-th edge [26].

In order to define IDB, the path weight has been defined by [2, 26]

wij =
m∏
b=1

(σb(1) · σb(2))
−1/2
b , (3)

where σk is the vertex distance degree [2, 26] and b(1), b(2) are the vertices adjacent to

the edge b.

Instead of summing the path weights over all paths mpij between two vertices vi and

vj, Ivanciuc and Balaban [24] developed related measures

IDmin(G) := N +
∑

minpij

wij, (4)

by only considering the shortest paths minpij . By using the path weights wij represented

by Equation 2, 3, the corresponding formulas for IDmin
C and IDmin

B follow straightfor-

wardly.
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Finally, Szymanski et al. [18] further developed this general approach and defined the

so-called Weighted ID number by [18, 26]:

WID(G) := N − 1

N
+

ID∗

N2
, (5)

where

ID∗ :=
N∑
i=1

N∑
j=1

w∗
ij, (6)

W ∗ :=
N−1∑
k=0

σχk. (7)

σχk stands for the k-th power of distance-sum-connectivity matrix [18, 26].

2.2 Eigenvalue-based Entropies

Recently, a family of eigenvalue-based entropies HMs has been proposed by Dehmer et al.

[9]:

Hs
M(G) :=

k∑
i=1

|λi|
1
s

k∑
j=1

|λj|
1
s

log
|λi|

1
s

k∑
j=1

|λj|
1
s

. (8)

λ1, λ2, . . . , λk are the non-zero eigenvalues of a molecular matrix M [9].

Index Symbol

Randić Connectivity ID Number [19] IDC

min Randić Connectivity ID Number [24] IDmin
C

Balaban ID Number [2] IDB

min Balaban ID Number [24] IDmin
B

Weighted ID Number [18] WID
H1

M by using the distance path matrix [9, 26] HDP

H1
M by using the extended adjacency matrix [9, 26] HEA

H1
M by using the augmented vertex degree matrix [9, 26] HAV

H1
M by using the first weighted structure function matrix [9, 26] HIM1

H1
M by using the second weighted structure function matrix [9, 26] HIM2

Table 1. The descriptors and their symbols.

See Table 1 for the explanation of the used symbols HDP , HEA, HAV , HIM1 and HIM2 .

It is known that simple algorithms to calculate the eigenvalues of a n× n matrix require

cubic time complexity, see [7]. Hence, the time complexity for this family of eigenvalue-

based entropies (Equation 8) is O(n3).
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2.3 Datasets and Software

The datasets Ci, 19 ≤ i ≤ 22, are alkane trees with i vertices (carbon atoms) generated

by using Molgen [1].

Finally, the sets Ni, 9 ≤ i ≤ 10, are exhaustively generated non-isomorphic unlabeled

graphs having i vertices each generated by using the Nauty package [22].

To calculate the descriptors shown in Section 2, we used the R package QuACN [23] which

is public available via the CRAN-archive. QuACN contains already over 150 quantitative

network measures which have been used in disciplines such as social network analysis,

mathematical chemistry and network physics.

3 Results

We start interpreting the numerical results with Table 2.

C19 C20 C21 C22

Index ndv S ndv S ndv S ndv S
IDC 46 0,999690 174 0,999525 454 0,999501 1327 0,999418
IDB 0 1,000000 4 0,999989 4 0,999996 132 0,999942
IDmin

C 46 0,999690 176 0,999520 454 0,999501 1327 0,999418
IDmin

B 0 1,000000 4 0,999989 4 0,999996 132 0,999942
WID 4 0,99997 144 0,999607 308 0,999662 2674 0,998827
H1

DP 0 1,000000 0 1,000000 0 1,000000 0 1,000000
H1

EA 0 1,000000 0 1,000000 2 0,999998 0 1,000000
H1

AV 48 0,999676 98 0,999732 82 0,999910 236 0,999896
H1

IM1
0 1,000000 0 1,000000 0 1,000000 0 1,000000

H1
IM2

0 1,000000 0 1,000000 0 1,000000 0 1,000000

Table 2. Chemical alkane trees with |V | = 19, 20, 21, 22. |C19| = 148284, |C20| =
366319, |C21| = 910726, |C22| = 2278658.

In general, ndv are the number of non-distinguishable values and S is the well-known

sensitivity measure due to Konstantinova [14]. First, we see that the uniqueness of several

indices such as IDC , ID
min
C , IDB, ID

min
B and WID slightly decreases with an increasing

size of the underlying set of graphs. This is in accordance with an earlier finding [8]

that many topological graph measures induce a dependency between their uniqueness

and the size of the graph set in question. But in any way, the uniqueness of all measures

evaluated on alkane trees is very high. Interestingly, all eigenvalue-based entropies, except

H1
AV , possess a better discrimination power than the molecular ID numbers for the alkane

trees. This proves that these measures capture structural information significantly. In
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particular, H1
DP , H

1
EA, H

1
IM1

, H1
IM2

are fully unique for all sets of chemical alkane trees.

Based on the fact that the entropies have cubic time complexity (in n), the calculation of

the uniqueness is much more efficient than by using the ID numbers. Particularly IDC

and IDB turned out computationally insufficient for all large sets of graphs we have used

in this study.

Table 3, 4 show the results by using exhaustively generated graphs without any struc-

tural constraints. Note that these graphs contain cycles. We see that IDC and IDB are

fully unique for N6, . . . , N9. Due to the insufficient time complexity of these measures, it

turned out to be impossible to generate all values for N10 (see Table 4).

N6 N7 N8

Index ndv S ndv S ndv S
IDC 0 1,000000 0 1,000000 0 1,000000
IDB 0 1,000000 0 1,000000 0 1,000000
IDmin

C 0 1,000000 4 0,995311 263 0,976343
IDmin

B 0 1,000000 0 1,000000 240 0,978411
WID 4 0,964286 24 0,971864 284 0,974454
H1

DP 0 1,000000 20 0,976553 512 0,953944
H1

EA 2 0,982143 8 0,990621 46 0,995862
H1

AV 0 1,000000 0 1,000000 0 1,000000
H1

IM1
5 0,955357 16 0,981243 140 0,987407

H1
IM2

5 0,955357 10 0,988277 99 0,991095

Table 3. Exhaustively generated sets of non-isomorphic and generated graphs.
|N6| = 112, |N7| = 853 and |N8| = 11117.

N9 N10

Index ndv S ndv S
IDC 0 1,000000
IDB 0 1,000000
IDmin

C 19842 0,924000 1912752 0,836748
IDmin

B 18341 0,929750 1782776 0,847841
WID 3343 0,987195 73073 0,993763
H1

DP 19982 0,923464 1141560 0,902569
H1

EA 479 0,998165 16394 0,998601
H1

AV 0 1,000000 6940 0,999408
H1

IM1
4402 0,983139 350726 0,970066

H1
IM2

3693 0,985855 302916 0,974146

Table 4. Exhaustively generated sets of non-isomorphic and generated graphs.
|N9| = 261080 and |N10| = 11716571.
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The second best measure is H1
AV (see Table 3, 4) whose computational complexity is

only cubic. Also, this measure does not have a strong dependency between its uniqueness

and the size of the graph set. This makes it a useful index for discriminating graphs on

a large scale.

All other eigenvalue-based indices possess lower discrimination power than H1
AV but

they are able to distinguish ≥ 97% of the graphs of N10, except H
1
DP . We emphasize that

N10 contains almost 12 million graphs. An alternative to IDC and IDB for discriminating

graphs on a large scale (e.g., see N10) is WID as it can distinguish ≥ 99% of the graphs

of N10 and has a better computational complexity. This can be understood by the fact

that Szymanski et al. [18] used only shortest paths and not all paths involved.

Further, we observe that the discrimination power of IDmin
C and IDmin

B is worse than

by calculating all other indices based on the set N10. Again, this proves the intuitive con-

jecture that determining the shortest paths instead of all paths may lead to an aggravation

of the discrimination power. Because of their still high computational complexity, they

turned out to be not feasible for discriminating graphs uniquely among all used molecular

ID numbers.

4 Discussion

In this paper, we determined the discrimination power of existing molecular ID numbers

on a large scale. Not surprisingly, most of the molecular ID numbers, particularly the one

due to Randić and Balaban ID [2, 19] possess insufficient time complexity. As a result,

the discrimination power of these measures by using N10 could not be determined. Inter-

estingly, we found that recently developed eigenvalue-based entropies clearly outperform

some ID numbers in terms of their uniqueness by using exhaustively generated graphs and

chemical alkane trees. Particularly for exhaustively generated alkane trees, these indices

did not produce any degeneracies. Also, all ID numbers turned out to be less unique than

by using the eigenvalue-based entropies.

Again, this shows that the discrimination power of a structural graph measure strongly

depends the underlying graph class, see [8]. Crucially, we see that the potential of many

existing measures has not yet been investigated properly for tackling this problem. In

particular, it is surprising that even eigenvalue-based measures outperform the ID numbers

in terms of their uniqueness as many examples can be found in the literature, where
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eigenvalue-based quantities failed to characterize graphs structurally, see [16, 25]. As a

conclusive remark, this calls for exploring existing measures more deeply on a large scale

rather than developing new measures.
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[12] M. V. Diudea, A. Ilić, K. Varmuza, M. Dehmer, Network analysis using a novel highly

discriminating topological index, Complexity 16 (2011) 32–39.

[13] F. Emmert-Streib, M. Dehmer, Information theoretic measures of UHG graphs with

low computational complexity, Appl. Math. Comput. 190 (2007) 1783–1794.

[14] E. V. Konstantinova, The discrimination ability of some topological and information

distance indices for graphs of unbranched hexagonal systems, J. Chem. Inf. Comput.

Sci. 36 (1996) 54–57.

[15] W. D. Ihlenfeldt, J. Gasteiger, Hash codes for the indentification and classification

of molecular structure elements, J. Comput. Chem. 15 (1994) 793–813.

[16] O. Ivanciuc, T. Ivanciuc, M. V. Diudea, Polynomials and spectra of molecular graphs,

Roman. Chem. Quart. Rev. 7 (1999) 41–67.

[17] K. Szymanski, W. Müller, J. Knop, N. Trinajstić, On Randić’s molecular identifica-
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[20] M. Randić, Molecular ID numbers: By design, J. Chem. Inf. Comput. Sci. 26 (1986)

134–136.
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