MATCH

Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Terminal Wiener Index of Line Graphs

Harishchandra S. Ramane¹, Kishori P. Narayankar², Shailaja S. Shirkol³, Asha B. Ganagi¹

¹Department of Mathematics, Gogte Institute of Technology, Udyambag, Belgaum - 590008, India, hsramane@yahoo.com , abganagi@yahoo.co.in

²Department of Mathematics, Mangalore University, Mangalore - 574199, India, kishori_pn@yahoo.co.in

³Department of Mathematics, Vishwanath Rao Deshpande Rural Institute of Technology, Haliyal - 581329, India, shaila_shirkol@rediffmail.com

(Received August 8, 2012)

Abstract

The terminal Wiener index of a graph is defined as the sum of the distances between the pendent vertices of a graph. In this paper we obtain results for the terminal Wiener index of line graphs.

1. Introduction

Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G) = \{e_1, e_2, \ldots, e_m\}$. The degree of a vertex v in G is the number of edges incident to it and is denoted by $deg_G(v)$. If $deg_G(v) = 1$ then v is called a *pendent vertex*. An edge e = uv of a graph G is called a *pendent edge* if $deg_G(u) = 1$ or $deg_G(v) = 1$. Two edges are said to be *independent* if they are not adjacent to each other. An edge e is called a *bridge* if removal of e from G increases the number of components. The *distance* between the vertices v_i and v_j in G is equal to the length of a shortest path joining them and is denoted by $d(v_i, v_i|G)$.

The Wiener index W = W(G) of a graph G is defined as the sum of the distances between all pairs of vertices of G, that is,

$$W = W(G) = \sum_{1 \le i < j \le n} d(v_i, v_j | G) .$$

This molecular structure descriptor was conceived by Harold Wiener [21] in 1947. For details on its chemical applications and mathematical properties one may refer to [4,5,8, 13,14,18,20] and the references cited therein.

If G has k pendent vertices labeled by v_1, v_2, \ldots, v_k , then its *terminal distance matrix* is the square matrix of order k whose (i, j)-th entry is $d(v_i, v_j | G)$. Terminal distance matrices were used for modeling amino acid sequences of proteins and of the genetic code [10, 16, 17].

The terminal Wiener index TW(G) of a connected graph G is defined as the sum of the distances between all pairs of its pendent vertices.

Thus, if $V_T(G) = \{v_1, v_2, \dots, v_k\}$ is the set of all pendent vertices of G, then

$$TW(G) = \sum_{\{v_i, v_j\} \subseteq V_T(G)} d(v_i, v_j | G) = \sum_{1 \le i < j \le k} d(v_i, v_j | G)$$

This distance–based molecular structure descriptor was recently put forward by Gutman, Furtula and Petrović [7]. The same idea was, independently, developed by Székely, Wang, and Wu [19].

If the graph G has no pendent vertex or has only one pendent vertex, then TW(G) = 0. If G has at least two pendent vertices then $TW(G) \ge 1$. More details on the terminal Wiener index are found in the review [6] and in the recent papers [3,9].

Of the numerous results on the Wiener index of line graphs are we mention here [1, 2, 11, 12, 15, 22]. In this paper we offer a few results on the terminal Wiener index of line graphs.

2. Terminal Wiener index of line graphs

The line graph of G, denoted by L(G) is the graph whose vertices are the edges of G and two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent in G.

Observations

- 1. Let e = uv be an edge of G such that $deg_G(u) = 1$ and $deg_G(v) = 2$. Then $deg_{L(G)}(e) = deg_G(u) + deg_G(v) 2 = 1$. Therefore e is a pendent vertex of L(G).
- 2. Let e = uv be a pendent edge of G such that $deg_G(u) = 1$ and $deg_G(v) = 2$. Then v is a pendent vertex of G', where G' is the graph obtained by removing pendent vertices of G.

We define the set $D_2(G)$ as

 $D_2(G) = \{v \mid deg_G(v) = 2 \text{ and one neighbour of } v \text{ is pendent} \}.$

Theorem 2.1. Let G be a connected graph with $n \ge 4$ vertices and let $D_2(G) = \{v_1, v_2, \ldots, v_q\}$. Then

$$TW(L(G)) = \sum_{1 \le i < j \le q} d(v_i, v_j | G) + \frac{q(q-1)}{2} .$$
(1)

Proof. Let $E_k = \{e_1, e_2, \ldots, e_k\}$ be the set of pendent edges of G and $E_q = \{e_1, e_2, \ldots, e_q\}$ be the subset of E_k where for each $e_i \in E_q$, the edge e_i is incident to $v_i \in D_2(G)$, $i = 1, 2, \ldots, q$. Thus, if $e_i = uv \in E_q$ then $deg_G(u) = 1$ and $deg_G(v) = 2$ (or vice versa), $i = 1, 2, \ldots, q$.

Consider two edges $e_i = uv_i$ and $e_j = v_j w$ of E_q where $deg_G(u) = deg_G(w) = 1$ and $deg_G(v_i) = deg_G(v_j) = 2, i = 1, 2, ..., q$.

Therefore e_i and e_j are the pendent vertices of L(G) and $d(e_i, e_j | L(G)) = d(v_i, v_j | G) + 1$. Therefore

$$TW(L(G)) = \sum_{1 \le i < j \le q} d(e_i, e_j | L(G)) = \sum_{1 \le i < j \le q} [d(v_i, v_j | G) + 1]$$
$$= \sum_{1 \le i < j \le q} d(v_i, v_j | G) + \frac{q(q-1)}{2} . \square$$

Corollary 2.2. TW(L(G)) = 0 if and only if the graph G satisfies one of the following conditions. (i) G has no edge e = uv where $deg_G(u) = 1$ and $deg_G(v) = 2$. (ii) G has only one edge e = uv where $deg_G(u) = 1$ and $deg_G(v) = 2$. (iii) G has no pendent vertices. (iv) G has only one pendent vertex. (v) G has no vertex of degree 2.

-778-

Theorem 2.3. Let G be a connected graph with $n \ge 4$ vertices and G' be the graph obtained from G by removing pendent vertices of G. If p is the number of pendent vertices of G', then

$$TW(L(G)) \le TW(G') + \frac{p(p-1)}{2}$$

Equality holds if and only if (i) $G = K_{1,n-1}$ or (ii) G has no bridge e such that one of the component of G - e is $K_{1,s}$, $s \ge 2$ and $G \ne K_{1,n-1}$.

Proof. Let $D_2(G) = \{v_1, v_2, \dots, v_q\}$. Then the number of pendent vertices of G' is at least q. Let p be the number of pendent vertices of G'. Then $p \ge q$. From Theorem 2.1,

$$TW(L(G)) = \sum_{1 \le i < j \le q} d(v_i, v_j | G) + \frac{q(q-1)}{2} \le \sum_{\{u,v\} \subseteq V_T(G')} d(u, v | G') + \frac{p(p-1)}{2}$$
$$= TW(G') + \frac{p(p-1)}{2} .$$

For equality we consider the following cases:

Case 1. It is obvious that equality holds for $G = K_{1,n-1}$.

Case 2. If $G \neq K_{1,n-1}$ and if there is no edge e in G such that one of the components of G - e is $K_{1,s}$, $s \geq 2$, then q = p. That is, the vertices of the set $D_2(G)$ become pendent in G'. Therefore

$$\sum_{1 \le i < j \le p} d(v_i, v_j | G) = \sum_{\{v_i, v_j\} \subseteq V_T(G')} d(v_i, v_j | G') \ .$$

Substituting this in Eq. (1) we get

$$TW(L(G)) = \sum_{\{v_i, v_j\} \subseteq V_T(G')} d(v_i, v_j | G') + \frac{p(p-1)}{2} = TW(G') + \frac{p(p-1)}{2} .$$

Conversely, let G contain a bridge e such that one of the component of G - e is $K_{1,s}$, $s \ge 2$. Then p > q implying

$$\sum_{1 \le i < j \le q} d(v_i, v_j | G) < \sum_{\{v_i, v_j\} \subseteq V_T(G')} d(v_i, v_j | G') .$$
(2)

From Eq. (1),

$$TW(L(G)) = \sum_{1 \le i < j \le q} d(v_i, v_j | G) + \frac{q(q-1)}{2}$$

<
$$\sum_{\{v_i, v_j\} \le V_T(G')} d(v_i, v_j | G') + \frac{p(p-1)}{2}$$
 by Eq. (2) and $q < p$
=
$$TW(G') + \frac{p(p-1)}{2}$$

which is a contradiction. This completes the proof. \Box

Corollary 2.4. Let G be a connected graph with $n \ge 4$ vertices and G' be the graph obtained from G by removing pendent vertices. Let p be the number of pendent vertices of G'. If all pendent edges of G are mutually independent, then

$$TW(L(G)) = TW(G') + \frac{p(p-1)}{2}$$

Proof. Follows from the equality part of Theorem 2.3.

3. Terminal Wiener index of line graphs of some graphs

Let the vertices of G be v_1, v_2, \ldots, v_n then G^+ is the graph obtained from G by adding n new vertices v'_1, v'_2, \ldots, v'_n and joining v'_i to v_i by an edge, $i = 1, 2, \ldots, n$.

Theorem 3.1. If G has k pendent vertices, then $L(G^+)$ also has k pendent vertices.

Proof. If G has n vertices of which k are pendent vertices, then G^+ has n pendent edges of which k pendent edges say e_1, e_2, \ldots, e_k are such that for each $e_i = uv, i = 0, 1, 2, \ldots, k$, $deg_{G^+}(u) = 1$ and $deg_{G^+}(v) = 2$.

Therefore $deg_{L(G^+)}(e_i) = deg_{G^+}(u) + deg_{G^+}(v) - 2 = 1, i = 0, 1, 2, \dots, k$. Therefore $L(G^+)$ has k pendent vertices. \Box

Theorem 3.2. Let G be a connected graph with k pendent vertices, then

$$TW(L(G^+)) = TW(G) + \frac{k(k-1)}{2}$$

Proof. If n is the number of vertices of G, then G^+ has n pendent edges of which k pendent edges say e_1, e_2, \ldots, e_k are such that for each $e_i = uv$, $i = 0, 1, 2, \ldots, k$, $deg_{G^+}(u) = 1$ and $deg_{G^+}(v) = 2$, since G has k pendent vertices. Removing pendent vertices of G^+ we get the graph G. Knowing that the pendent edges of G^+ are mutually independent, from Corollary 2.4,

$$TW(L(G^+)) = TW(G) + \frac{k(k-1)}{2}$$
.

Let K_n and S_n be the *complete graph* and *star*, respectively, on *n* vertices.

Corollary 3.3. $TW(L(S_n^+)) = TW(K_{n-1}^+).$

Proof. Star S_n has n-1 pendent vertices. Therefore from Theorem 3.2,

$$TW(L(S_n^+)) = TW(S_n) + \frac{(n-1)(n-2)}{2}$$

= $\frac{2(n-1)(n-2)}{2} + \frac{(n-1)(n-2)}{2}$
= $\frac{3(n-1)(n-2)}{2}$
= $TW(K_{n-1}^+)$.

Theorem 3.4. Let G be a connected graph with k pendent vertices and $H_t = L(H_{t-1}^+)$, t = 1, 2, ..., where $H_0 = G$ and $H_1 = L(G^+)$, then

$$TW(H_t) = TW(G) + \frac{tk(k-1)}{2}$$

Proof. As G has k pendent vertices, from Theorem 3.1, the graph H_t also has k pendent vertices, $t = 1, 2, \ldots$ From Theorem 3.2,

$$TW(H_1) = TW(L(G^+)) = TW(G) + \frac{k(k-1)}{2}$$

By induction, let

$$TW(H_{t-1}) = TW(G) + \frac{(t-1)k(k-1)}{2}$$

Therefore

$$TW(H_t) = TW(L(H_{t-1}^+))$$

= $TW(H_{t-1}) + \frac{k(k-1)}{2}$
= $TW(G) + \frac{(t-1)k(k-1)}{2} + \frac{k(k-1)}{2}$
= $TW(G) + \frac{tk(k-1)}{2}$.

The subdivision graph S(G) is obtained from G by inserting a new vertex of degree 2 on each edge of G. The graph $S_l(G)$ is obtained from G by inserting l new vertices of degree 2 on each edge of G. Thus $S_1(G) = S(G)$.

Theorem 3.5. Let G be a connected graph with k pendent vertices. Then

$$TW(L(S_l(G)) = (l+1)TW(G) - \frac{k(k-1)}{2} , \ l \ge 1.$$

Proof. If G has k pendent vertices then $S_l(G)$ also has k pendent vertices. That is $S_l(G)$ has k pendent edges.

If u and v are pendent vertices of G, then u and v are pendent vertices of $S_l(G)$. Let u' and v' be the subdivision vertices where u' is adjacent to u and v' is adjacent to vin $S_l(G)$, where u and v are pendent vertices of G. Let $(S_l(G))'$ be the graph obtained by removing all pendent vertices of $S_l(G)$. Therefore u' and v' are pendent vertices of $(S_l(G))'$ and $d(u', v'|(S_l(G))') = (l+1)d(u, v|G) - 2$. Since the pendent edges of $S_l(G)$ are mutually independent, from Corollary 2.4,

$$TW(L(S_{l}(G)) = TW((S_{l}(G))') + \frac{k(k-1)}{2}$$

$$= \sum_{\{u',v'\} \subseteq V_{T}((S_{l}(G))')} d(u',v'|(S_{l}(G))') + \frac{k(k-1)}{2}$$

$$= \sum_{\{u,v\} \subseteq V_{T}(G)} [(l+1)d(u,v|G) - 2] + \frac{k(k-1)}{2}$$

$$= (l+1) \sum_{\{u,v\} \subseteq V_{T}(G)} d(u,v|G) - \frac{2k(k-1)}{2} + \frac{k(k-1)}{2}$$

$$= (l+1)TW(G) - \frac{k(k-1)}{2} . \square$$

Acknowledgement. K. P. Narayankar thanks University Grants Commission (UGC), Govt. of India, for support through MRP No. 39-36/2010 (SR). All authors thank Prof. Ivan Gutman for help in finalizing this paper.

References

- [1] F. Buckley, Mean distance of line graphs, Congr. Numer. **32**(1981) 153–162.
- [2] N. Cohen, D. Dimitrov, R. Krakovski, R. Škrekovski, V. Vukašinović, On Wiener index of graphs and their line graphs, *MATCH Commun. Math. Comput. Chem.* 64 (2010) 683–698.
- [3] X. Deng, J. Zhang, Equiseparability on terminal Wiener index, in: A. V. Goldberg, Y. Zhou (Eds.), Algorithmic Aspects in Information and Management, Springer, Berlin, 2009, pp. 166–174.
- [4] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211–249.
- [5] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247–294.

- [6] I. Gutman, B. Furtula, A survey on terminal Wiener index, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors – Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010, pp. 173–190.
- [7] I. Gutman, B. Furtula, M. Petrović, Terminal Wiener index, J. Math. Chem. 46 (2009) 522–531.
- [8] I. Gutman, Y. Yeh, S. Lee, Y. Luo, Some recent results in the theory of the Wiener number, *Indian J. Chem.* **32A** (1993) 651–661.
- [9] A. Heydari, I. Gutman, On the terminal Wiener index of thorn graphs, *Kragujevac*, J. Sci. 32 (2010) 57–64.
- [10] B. Horvat, T. Pisanski, M. Randić, Terminal polynomials and star-like graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 493–512.
- [11] M. Knor, P. Potočnik, R. Škrekovski, The Wiener index in iterated line graphs, *Discr. Appl. Math.* 160 (2012) 2234–2245.
- [12] M. Knor, P. Potočnik, R. Skrekovski, On a conjecture about Wiener index in iterated line graphs of trees, *Discr. Math.* **312** (2012) 1094–1105.
- [13] X. Lin, On the Wiener index and circumference, MATCH Commun. Math. Comput. Chem. 67 (2012) 331–336.
- [14] S. Nikolić, N. Trinajstić, Z. Mihalić, The Wiener index: development and applications, Croat. Chem. Acta 68 (1995) 105–129.
- [15] H. S. Ramane, D. S. Revankar, A. B. Ganagi, On the Wiener index of a graph, J. Indones. Math. Soc. 18 (2012) 57–66.
- [16] M. Randić, J. Zupan, Highly compact 2D graphical representation of DNA sequences, SAR QSAR Environ. Res. 15 (2004) 191–205.
- [17] M. Randić, J. Zupan, D. Vikić–Topić, On representation of properties by starlike graphs, J. Mol. Graph. Modell. 26 (2007) 290–305.
- [18] N. S. Schmuck, S. G. Wagner, H. Wang, Greedy trees, caterpillars and Wiener-type graph invariants, *MATCH Commun. Math. Comput. Chem.* 68 (2012) 273–292.
- [19] L. A. Székely, H. Wang, T. Wu, The sum of distances between the leaves of a tree and the 'semi-regular' property, *Discr. Math.* **311** (2011) 1197–1203.
- [20] H. B. Walikar, V. S. Shigehalli, H. S. Ramane, Bounds on the Wiener number of a graph, MATCH Commun. Math. Comput. Chem. 50 (2004) 117–132.
- [21] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
- [22] B. Wu, Wiener index of line graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 699–706.