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Abstract

The terminal Wiener index of a graph is defined as the sum of the distances between the

pendent vertices of a graph. In this paper we obtain results for the terminal Wiener index of

line graphs.

1. Introduction

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set

E(G) = {e1, e2, . . . , em}. The degree of a vertex v in G is the number of edges incident to

it and is denoted by degG(v). If degG(v) = 1 then v is called a pendent vertex . An edge

e = uv of a graph G is called a pendent edge if degG(u) = 1 or degG(v) = 1. Two edges

are said to be independent if they are not adjacent to each other. An edge e is called a

bridge if removal of e from G increases the number of components. The distance between

the vertices vi and vj in G is equal to the length of a shortest path joining them and is

denoted by d(vi, vj|G).
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The Wiener index W = W (G) of a graph G is defined as the sum of the distances

between all pairs of vertices of G, that is,

W = W (G) =
∑

1≤i<j≤n

d(vi, vj|G) .

This molecular structure descriptor was conceived by Harold Wiener [21] in 1947. For

details on its chemical applications and mathematical properties one may refer to [4,5,8,

13,14, 18,20] and the references cited therein.

If G has k pendent vertices labeled by v1, v2, . . . , vk , then its terminal distance matrix

is the square matrix of order k whose (i, j)-th entry is d(vi, vj|G). Terminal distance

matrices were used for modeling amino acid sequences of proteins and of the genetic

code [10,16,17].

The terminal Wiener index TW (G) of a connected graph G is defined as the sum of

the distances between all pairs of its pendent vertices.

Thus, if VT (G) = {v1, v2, . . . , vk} is the set of all pendent vertices of G, then

TW (G) =
∑

{vi,vj}⊆VT (G)

d(vi, vj|G) =
∑

1≤i<j≤k

d(vi, vj|G) .

This distance–based molecular structure descriptor was recently put forward by Gutman,

Furtula and Petrović [7]. The same idea was, independently, developed by Székely, Wang,

and Wu [19].

If the graph G has no pendent vertex or has only one pendent vertex, then TW (G) = 0.

If G has at least two pendent vertices then TW (G) ≥ 1. More details on the terminal

Wiener index are found in the review [6] and in the recent papers [3, 9].

Of the numerous results on the Wiener index of line graphs are we mention here

[1, 2, 11, 12, 15, 22]. In this paper we offer a few results on the terminal Wiener index of

line graphs.

2. Terminal Wiener index of line graphs

The line graph of G, denoted by L(G) is the graph whose vertices are the edges of G

and two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent

in G.
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Observations

1. Let e = uv be an edge of G such that degG(u) = 1 and degG(v) = 2. Then

degL(G)(e) = degG(u) + degG(v)− 2 = 1. Therefore e is a pendent vertex of L(G).

2. Let e = uv be a pendent edge of G such that degG(u) = 1 and degG(v) = 2. Then

v is a pendent vertex of G′, where G′ is the graph obtained by removing pendent

vertices of G.

We define the set D2(G) as

D2(G) = {v | degG(v) = 2 and one neighbour of v is pendent} .

Theorem 2.1. Let G be a connected graph with n ≥ 4 vertices and let D2(G) =

{v1, v2, . . . , vq}. Then

TW (L(G)) =
∑

1≤i<j≤q

d(vi, vj|G) +
q(q − 1)

2
. (1)

Proof. Let Ek = {e1, e2, . . . , ek} be the set of pendent edges of G and Eq = {e1, e2, . . . , eq}
be the subset of Ek where for each ei ∈ Eq, the edge ei is incident to vi ∈ D2(G),

i = 1, 2, . . . , q. Thus, if ei = uv ∈ Eq then degG(u) = 1 and degG(v) = 2 (or vice versa),

i = 1, 2, . . . , q.

Consider two edges ei = uvi and ej = vjw of Eq where degG(u) = degG(w) = 1 and

degG(vi) = degG(vj) = 2, i = 1, 2, . . . , q.

Therefore ei and ej are the pendent vertices of L(G) and d(ei, ej|L(G)) = d(vi, vj|G)+1.

Therefore

TW (L(G)) =
∑

1≤i<j≤q

d(ei, ej|L(G)) =
∑

1≤i<j≤q

[d(vi, vj|G) + 1]

=
∑

1≤i<j≤q

d(vi, vj|G) +
q(q − 1)

2
. �

Corollary 2.2. TW (L(G)) = 0 if and only if the graph G satisfies one of the following

conditions. (i) G has no edge e = uv where degG(u) = 1 and degG(v) = 2. (ii) G has only

one edge e = uv where degG(u) = 1 and degG(v) = 2. (iii) G has no pendent vertices.

(iv) G has only one pendent vertex. (v) G has no vertex of degree 2.
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Theorem 2.3. Let G be a connected graph with n ≥ 4 vertices and G′ be the graph

obtained from G by removing pendent vertices of G. If p is the number of pendent vertices

of G′, then

TW (L(G)) ≤ TW (G′) +
p(p− 1)

2
.

Equality holds if and only if (i) G = K1,n−1 or (ii) G has no bridge e such that one of the

component of G− e is K1,s, s ≥ 2 and G �= K1,n−1.

Proof. Let D2(G) = {v1, v2, . . . , vq}. Then the number of pendent vertices of G′ is at least

q. Let p be the number of pendent vertices of G′. Then p ≥ q. From Theorem 2.1,

TW (L(G)) =
∑

1≤i<j≤q

d(vi, vj|G) +
q(q − 1)

2
≤

∑
{u,v}⊆VT (G′)

d(u, v|G′) +
p(p− 1)

2

= TW (G′) +
p(p− 1)

2
.

For equality we consider the following cases:

Case 1. It is obvious that equality holds for G = K1,n−1 .

Case 2. If G �= K1,n−1 and if there is no edge e in G such that one of the components of

G − e is K1,s, s ≥ 2, then q = p. That is, the vertices of the set D2(G) become pendent

in G′. Therefore ∑
1≤i<j≤p

d(vi, vj|G) =
∑

{vi,vj}⊆VT (G′)

d(vi, vj|G′) .

Substituting this in Eq. (1) we get

TW (L(G)) =
∑

{vi,vj}⊆VT (G′)

d(vi, vj|G′) +
p(p− 1)

2
= TW (G′) +

p(p− 1)

2
.

Conversely, let G contain a bridge e such that one of the component of G− e is K1,s,

s ≥ 2. Then p > q implying

∑
1≤i<j≤q

d(vi, vj|G) <
∑

{vi,vj}⊆VT (G′)

d(vi, vj|G′) . (2)

From Eq. (1),

TW (L(G)) =
∑

1≤i<j≤q

d(vi, vj|G) +
q(q − 1)

2

<
∑

{vi,vj}⊆VT (G′)

d(vi, vj|G′) +
p(p− 1)

2
by Eq. (2) and q < p

= TW (G′) +
p(p− 1)

2
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which is a contradiction. This completes the proof. �

Corollary 2.4. Let G be a connected graph with n ≥ 4 vertices and G′ be the graph

obtained from G by removing pendent vertices. Let p be the number of pendent vertices of

G′. If all pendent edges of G are mutually independent, then

TW (L(G)) = TW (G′) +
p(p− 1)

2
.

Proof. Follows from the equality part of Theorem 2.3. �

3. Terminal Wiener index of line graphs of some graphs

Let the vertices of G be v1, v2, . . . , vn then G+ is the graph obtained from G by adding

n new vertices v′1, v
′
2, . . . , v

′
n and joining v′i to vi by an edge, i = 1, 2, . . . , n.

Theorem 3.1. If G has k pendent vertices, then L(G+) also has k pendent vertices.

Proof. If G has n vertices of which k are pendent vertices, then G+ has n pendent edges of

which k pendent edges say e1, e2, . . . , ek are such that for each ei = uv, i = 0, 1, 2, . . . , k,

degG+(u) = 1 and degG+(v) = 2.

Therefore degL(G+)(ei) = degG+(u) + degG+(v) − 2 = 1, i = 0, 1, 2, . . . , k. Therefore

L(G+) has k pendent vertices. �

Theorem 3.2. Let G be a connected graph with k pendent vertices, then

TW (L(G+)) = TW (G) +
k(k − 1)

2
.

Proof. If n is the number of vertices of G, then G+ has n pendent edges of which k pendent

edges say e1, e2, . . . , ek are such that for each ei = uv, i = 0, 1, 2, . . . , k, degG+(u) = 1 and

degG+(v) = 2, since G has k pendent vertices. Removing pendent vertices of G+ we get

the graph G. Knowing that the pendent edges of G+ are mutually independent, from

Corollary 2.4,

TW (L(G+)) = TW (G) +
k(k − 1)

2
. �

Let Kn and Sn be the complete graph and star , respectively, on n vertices.
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Corollary 3.3. TW (L(S+
n )) = TW (K+

n−1).

Proof. Star Sn has n− 1 pendent vertices. Therefore from Theorem 3.2,

TW (L(S+
n )) = TW (Sn) +

(n− 1)(n− 2)

2

=
2(n− 1)(n− 2)

2
+

(n− 1)(n− 2)

2

=
3(n− 1)(n− 2)

2
= TW (K+

n−1) . �

Theorem 3.4. Let G be a connected graph with k pendent vertices and Ht = L(H+
t−1),

t = 1, 2, . . ., where H0 = G and H1 = L(G+), then

TW (Ht) = TW (G) +
tk(k − 1)

2
.

Proof. As G has k pendent vertices, from Theorem 3.1, the graph Ht also has k pendent

vertices, t = 1, 2, . . .. From Theorem 3.2,

TW (H1) = TW (L(G+)) = TW (G) +
k(k − 1)

2
.

By induction, let

TW (Ht−1) = TW (G) +
(t− 1)k(k − 1)

2
.

Therefore

TW (Ht) = TW (L(H+
t−1))

= TW (Ht−1) +
k(k − 1)

2

= TW (G) +
(t− 1)k(k − 1)

2
+

k(k − 1)

2

= TW (G) +
tk(k − 1)

2
. �

The subdivision graph S(G) is obtained from G by inserting a new vertex of degree

2 on each edge of G. The graph Sl(G) is obtained from G by inserting l new vertices of

degree 2 on each edge of G. Thus S1(G) = S(G).

Theorem 3.5. Let G be a connected graph with k pendent vertices. Then

TW (L(Sl(G)) = (l + 1)TW (G)− k(k − 1)

2
, l ≥ 1 .
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Proof. If G has k pendent vertices then Sl(G) also has k pendent vertices. That is Sl(G)

has k pendent edges.

If u and v are pendent vertices of G, then u and v are pendent vertices of Sl(G). Let

u′ and v′ be the subdivision vertices where u′ is adjacent to u and v′ is adjacent to v

in Sl(G), where u and v are pendent vertices of G. Let (Sl(G))′ be the graph obtained

by removing all pendent vertices of Sl(G). Therefore u′ and v′ are pendent vertices of

(Sl(G))′ and d(u′, v′|(Sl(G))′) = (l + 1)d(u, v|G) − 2. Since the pendent edges of Sl(G)

are mutually independent, from Corollary 2.4,

TW (L(Sl(G)) = TW ((Sl(G))′) +
k(k − 1)

2

=
∑

{u′,v′}⊆VT ((Sl(G))′)

d(u′, v′|(Sl(G))′) +
k(k − 1)

2

=
∑

{u,v}⊆VT (G)

[(l + 1)d(u, v|G)− 2] +
k(k − 1)

2

= (l + 1)
∑

{u,v}⊆VT (G)

d(u, v|G)− 2k(k − 1)

2
+

k(k − 1)

2

= (l + 1)TW (G)− k(k − 1)

2
. �
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[11] M. Knor, P. Potočnik, R. Škrekovski, The Wiener index in iterated line graphs, Discr.

Appl. Math. 160 (2012) 2234–2245.

[12] M. Knor, P. Potočnik, R. Škrekovski, On a conjecture about Wiener index in iterated

line graphs of trees, Discr. Math. 312 (2012) 1094–1105.

[13] X. Lin, On the Wiener index and circumference, MATCH Commun. Math. Comput.

Chem. 67 (2012) 331–336.
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