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Abstract

Let G = (V, E) be a simple graph with n = |V | vertices and m = |E| edges. The first

and the second Zagreb indices of G are defined as M1(G) =
∑

u∈V d2u =
∑

uv∈E [du + dv] and

M2(G) =
∑

uv∈E du dv, respectively, where du denotes the degree of vertex u. We compare the

multiplicative versions of these indices.

1 Introduction

The first and the second Zagreb indices are among the oldest topological indices [2, 8,

12, 17–19], defined in 1972 by Gutman [10]. These indices have since been used to study

molecular complexity, chirality, ZE-isomerism and hetero-systems. In this paper, we are

concerned with finite graphs without loops, multiple, or directed edges. Let G = (V,E)

be a simple graph with n = |V | vertices and m = |E| edges. The degree of a vertex v ∈ V

is denoted as dv. The first Zagreb index is defined as the sum of the squares of the degrees

of the vertices:

M1(G) =
∑
v∈V

d2v
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and the second Zagreb index is defined as the sum of the product of the degrees of adjacent

vertices:

M2(G) =
∑
uv∈E

du dv .

For the sake of simplicity, we often use M1 and M2 instead of M1(G) and M2(G), respec-

tively. The first Zagreb index can also be expressed as a sum over the edges of G [5, 10]:

M1(G) =
∑
uv∈E

[du + dv] . (1)

Gutman [7, 9] has recently proposed to consider the multiplicative variants of Zagreb

indices as:

Π1 = Π1(G) =
∏
u∈V

d2u

Π2 = Π2(G) =
∏
uv∈E

du dv . (2)

Bearing in mind the identity (1), Eliasi and et. al. [6] considered a new multiplicative

version of the first Zagreb index, namely:

Π∗
1 = Π∗

1(G) =
∏

uv∈E(G)

[du + dv] . (3)

It should be noted that in the general case, the indices Π1(G) and Π∗
1(G) assume different

values. In this paper we show that these indices have the same value only for cycles.

Comparing the values of these indices on the same graph was one very natural aim,

which gave, and still gives, very interesting results and we do it here. For example the

next conjecture was proposed [3]:

Conjecture 1. For all simple graphs G with n vertices and m edges,

M1(G)

n
≤ M2(G)

m
. (4)

As in [1] is maintained, the inequality (4) holds for trees [15], unicycles graphs [14],

and graphs of maximum degree four, so called molecular graphs [11], graphs with only

two distinct vertex degrees, but does not hold in general ( [1, 11, 13]).

We give a multiplicative version of this conjuncture and solve it.
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2 Preliminaries

As usual, the cycle of order n is denoted by Cn , the star of order n is denoted by Sn and

the complete graph of order n by Kn . We denote for the sake of simplicity by mi,j the

number of edges that connect vertices of degrees i and j in the graph G and by nk the

number of vertices in G of degree k. We have

ni = mii +
∑
j∈N

mij (5)

|V (G)| =
∑
i∈N

ni (6)

|E(G)| =
∑
i≤j∈N

mij . (7)

Lemma 2.1. Let x, y ∈ Nsuch that x �= y. Then,

ln x

x
+

ln y

y
<

ln x

y
+

ln y

x
. (8)

Proof: Without loss of generality, we may assume that x < y. Note that xy−x < yy−x,

hence by multiplying both sides by (xy)x, we get xyyx < xxyy and by applying logarithm,

y ln x+ x ln y < x ln x+ y ln x. Dividing the last inequality by xy, we get (8).

3 Comparing the multiplicative versions of Zagreb

indices

In the following theorem we compare between Π1 and Π∗
1, the two multiplicative versions

of the first Zagreb index.

Theorem 3.1. Let G be a simple connected graphs G of order n. Then

Π1(G) ≤ Π∗
1(G) . (9)

The equality holds if and only if G ∼= Cn .
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Proof: By notations in the earlier section we have

lnΠ1 = 2
∑

u∈V (G)

ln du = 2
n−1∑
i=1

ni ln i

= 2
n−1∑
i=1

(
mii +

∑
j∈Nmij

i

)
ln i

= 2
n−1∑
i=1

(
mii +

∑
j∈N

mij

)
ln i

i

= 2
∑
i≤j∈N

mij

(
ln i

i
+

ln j

j

)
. (10)

Also

lnΠ∗
1(G) =

∑
i≤j∈N

mij ln(i+ j). (11)

Therefore, by (10) and (11) we obtain

lnΠ∗
1(G)− lnΠ1(G) =

∑
i≤j∈N

mij

[
ln(i+ j)− 2

(
ln i

i
+

ln j

j

)]
. (12)

Let

f(i, j) = ln(i+ j)− 2

(
ln i

i
+

ln j

j

)
. (13)

If i ≥ 2 and j ≥ 2, then 1
2
ln(i+ j) ≥ ln i

i
and 1

2
ln(i+ j) ≥ ln j

j
. Hence f(i, j) ≥ 0 and

by considering (12) we obtain Π∗
1(G) ≥ Π1(G).

If j ≥ 2 and i = 1, then 1
2
ln(1 + j) ≥ ln j

j
. Hence f(i, j) = f(1, j) ≥ 0 and therefore

by (12), Π∗
1(G) ≥ Π1(G). Note that f(i, j) = 0 if and only if i = j = 2 or equivalently

G ∼= Cn .

Theorem 3.2. Let G be a simple connected graph with minimum degree δ. Then

Π2(G) ≤ Π1(G)
n
2
− 1

2

δn(n−1)−2m
.

The equality holds if and only if there is a vertex u ∈ V (G), such that for each v ∈ V (G)

if vu �∈ E(G), then dv = δ.

Proof: Let u be a vertex of G and N(u) = {v ∈ V (G)|uv ∈ E(G)}. Then
∑

v∈N(u)

ln dv +
∑

v �∈N(u)

ln dv =
∑

v∈V (G)

ln dv =
1

2
lnΠ1(G) .
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Therefore ∑
v∈N(u)

ln dv =
1

2
lnΠ1(G)−

∑
v �∈N(u)

ln dv

≤ 1

2
lnΠ1(G)− ln du − (n− 1− du) ln(δ) .

Hence∑
u∈V (G)

∑
v∈N(u)

ln dv ≤
∑

u∈V (G)

1

2
lnΠ1(G)−

∑
u∈V (G)

ln du −
∑

u∈V (G)

(n− 1− du) ln(δ)

=

(
n

2
− 1

2

)
lnΠ1 − n(n− 1) ln(δ) + 2m ln(δ) . (14)

But

lnΠ2(G) =
∑

uv∈E(G)

[ln du + ln dv]

=
1

2

∑
u∈V (G)

∑
v∈N(U)

[ln du + ln dv]

=
1

2

∑
u∈V (G)

∑
v∈N(U)

ln du +
1

2

∑
u∈V (G)

∑
v∈N(U)

ln dv .

Therefore

lnΠ2(G) =
∑

u∈V (G)

du ln du =
∑

u∈V (G)

∑
v∈N(U)

ln dv . (15)

By (14) and (15) we obtain

Π2(G) ≤ Π1(G)
n
2
− 1

2

δn(n−1)−2m
.

The equality holds if and only if there is a vertex u ∈ V (G), such that for each v ∈ V (G)

if vu �∈ E(G), then dv = δ.

Theorem 3.3. Let G be a graph with m edges. Then√
Π2(G) ≤ Π∗

1(G)

2m
.

Moreover, equality holds only for regular graphs.

Proof: We have√
Π2(G)

Π∗
1(G)

=

∏
uv∈E(G)

√
du dv

2m
∏

uv∈E(G)
du+dv

2

=
1

2m

∏
uv∈E(G)

√
du dv

du+dv
2

≤ 1

2m
. (16)

In (16) the equality holds if and only if for each edge uv ∈ E(G), du = dv and thus G is

a regular graph.
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Theorem 3.4. Let G be a graph with m edges, maximum degree Δ and minimum degree

δ, respectively. Then √
Π2(G) ≥ Π∗

1(G)

( √
Δδ

Δ+ δ

)m

.

The equality holds if and only if for every edge of G, its end vertices have degrees Δ and

δ.

Proof: For any edge uv of G, assume that du ≤ dv . Then√
Π2(G)

Π∗
1(G)

=
1

2m

∏
uv∈E(G)

2
√
du dv

[du + dv]
=

1

2m

∏
uv∈E(G)

f(du/dv) (17)

where f(x) = 2
√
x

1+x
. This function is increasing for 1

n+1
≤ x ≤ 1. Note f(du

dv
) ≥ f( δ

Δ
) =

2
√
Δδ

Δ+δ
, with equality if and only if du = δ and dv = Δ. This and equation (17) complete

the proof.

Corollary 3.5. Let G be a graph with n vertices and m edges. Then

√
Π2(G) ≥ Π∗

1(G)

(√
n− 1

n

)m

.

The equality holds if and only if G is the star.

Theorem 3.6. Let G be a molecular graph, i.e Δ(G) ≤ 4. Then

Π∗
1(G)4 ≥ Π2(G)3.

Proof: Let g(x, y) = (x+y)4−(xy)3. Then for each x, y ∈ {1, 2, 3, 4} we have g(x, y) ≥ 0.

Therefore (x + y)4 ≥ (xy)3. Since G is a molecular graph, for each u ∈ V (G) we have

du ∈ {1, 2, 3, 4}. Hence
∏

uv∈E(G)

(du + dv)
4 ≥

∏
uv∈E(G)

(du dv)
3

and thus

Π∗
1(G)4 ≥ Π2(G)3 .

The result follows.

-770-



Let G = K2,3. Then |V (G)|
√

Π∗
1(G) = 6.898, |V (G)|

√
Π1(G) = 5.53 and |E(G)|

√
Π2(G) = 6.

So |V (G)|
√
Π∗

1(G) ≥ |E(G)|
√

Π2(G) ≥ |V (G)|
√
Π1(G).

Now let H = P5. Then |V (H)|
√

Π∗
1(H) = 2.7, |V (H)|

√
Π1(H) = 2.29 and |E(H)|

√
Π2(H) = 2.8.

So |E(H)|
√

Π2(H) ≥ |V (H)|
√

Π∗
1(H) ≥ |V (H)|

√
Π1(H).

Now we consider the following theorem that is multiplicative version of Conjecture (1).

Theorem 3.7. Let G be a graph with n vertices and m edges. Then

n

√∏
u∈V

d2u ≤ m

√ ∏
uv∈E

du dv .

Moreover, equality holds only for regular graphs.

Proof: Note that the following sequence of the relations is equivalent:

n

√∏
u∈V

d2u ≤ n

√ ∏
uv∈E

du dv

ln n

√∏
u∈V

d2u ≤ ln m

√ ∏
uv∈E

du dv

∑
u∈V 2 ln du

n
≤

∑
uv∈E (ln du + ln dv)

m

∑
uv∈E

(
2 ln du
du

+ 2 ln dv
dv

)
∑

uv∈E
(

1
du

+ 1
dv

) ≤
∑

uv∈E (ln du + ln dv)∑
uv∈E 1

∑
uv∈E

(
2 ln du
du

+
2 ln dv
dv

)
·
∑
pq∈E

1−
∑
uv∈E

(
1

du
+

1

dv

) ∑
pq∈E

(ln dp + ln dq) ≤ 0

∑
uv∈E

∑
pq∈E

(
2 ln du
du

+
2 ln dv
dv

−
(

1

du
+

1

dv

)
(ln dp + ln dq)

)
≤ 0

∑
{uv,pq}∈(E2)

[
2 ln du
du

+
2 ln dv
dv

−
(

1

du
+

1

dv

)
(ln dp + ln dq) +

2 ln dp
dp

+
2 ln dq

dq − (1/dp + 1/dq) (ln du + ln dv)

]
+

∑
uv∈E

[
2 ln du
du

+
2 ln dv
dv

−
(

1

du
+

1

dv

)
(ln du + ln dv)

]
≤ 0
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∑
{uv,pq}∈(E2)

[(
ln du
du

+
ln dp
dp

)
−

(
ln du
dp

+
ln dp
du

)]
+

[(
ln dv
dv

+
ln dp
dp

)
−

(
ln dv
dp

+
ln dp
dv

)]

+

[(
ln du
du

+
ln dq
dq

)
−

(
ln du
dq

+
ln dq
du

)]
+

[(
ln dv
dv

+
ln dq
dq

)
−

(
ln dv
dq

+
ln dq
dv

)]

+
∑
uv∈E

[(
ln du
du

+
ln dv
dv

)
−

(
ln du
v

+
ln dv
u

)]
≤ 0 .

The last inequality follows form Lemma (2.1) and equality holds only when u = v =

p = q for all summands in the first sum and u = v for all summands in the second sum,

i. e., when the graph is regular.
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