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Abstract

The Hosoya polynomial (also called Wiener polynomial) of a graph G with the

vertex set V (G) is defined as H(G, x) =
∑

{u,v}⊆V (G) x
dG(u,v) on variable x, where

the sum is over all unordered pairs {u, v} of distinct vertices in G, dG(u, v) is the

distance of two vertices u, v in G. In 2004, Yang and Yeh evaluated H(G, x) for

certain graphs of chemical interest, and posted an open problem for evaluating the

Hosoya polynomial of the circumcoronene Cr of order r. In this paper, we solve

this problem and give analytical expressions associated with r. The topological

indices—Wiener index and hyper-Wiener index of Cr can also be obtained from

H(Cr, x) through this work.
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1 Introduction

The Wiener index was first introduced by Wiener [21] in 1947 for approximating the

boiling points of alkanes. The effect of approximation was surprisingly good. Since then,

the Wiener index has attracted the attention of chemists. Especially, since mathematical

researchers participate in the field in 1970’s, the Wiener index was extensively studied in

the literature. About its mathematical properties and chemical applications, the reader

can refer to Refs. [1, 17], two recent surveys [2, 3] and two special issues [9, 10] and

references therein. Concretely, the Wiener index of a connected graph G with the vertex

set V (G) is defined as:

W (G) =
∑

{u,v}⊆V (G)

dG(u, v),

where dG(u, v) is the distance between a pair of vertices u and v in G.

The Hosoya polynomial of a connected graph G, introduced by Hosoya [13], is defined

as:

H(G, x) =
∑

{u,v}⊆V (G)

xdG(u,v), (1)

where the sum is over all unordered pairs {u, v} (possibly identical) of vertices in G.

Wiener polynomial not only contains more information about distance in the graph

than any of the hitherto proposed distance-based topological indices, but also evaluates

some of them. For example, the Wiener index is equal to the first derivative of Hosoya

polynomial in x = 1; another topological index—hyper-Wiener index [15, 18], which is

defined as

WW (G) =
1

2

∑
{u,v}⊆V (G)

(
dG(u, v) + d2G(u, v)

)
, (2)

is equal to the half of the second derivative of the Hosoya polynomialmultiplied by x in x =

1. Also the Wiener vector recently proposed by Guo et al. [12] is the coefficient sequence

of the first derivative of the polynomial, etc. So Hosoya polynomial and the quantities

derived from it will play a significant role in QSAR/QSPR studies, and abundant literature

appeared on this topic for the theoretical consideration [5, 7] and computation [11, 22,

23, 24, 25, 27, 28].

In 2004, Yang and Yeh [27] computed Hosoya polynomials of some interesting chem-

ical graphs, such as polygonal chains made by hexagons, which are the abstractions of
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aromatic compound, and regular two-dimensional hexagonal patterns. In the same pa-

per, they mentioned circumcoronene series Cr (see Fig. 1), which is a kind of graphs with

chemical research interest. The Hosoya polynomial Cr is still intractable.

In this paper, we give analytical expressions of H(Cr, x) by means of recursive skills

and the isometric subgraph property in graph theory. As corollaries, the Wiener index

and the hyper-Wiener index of Cr can be obtained from H(Cr, x).

2 Preliminary

Given two positive integers p and q, let us construct a rectangular hexagon system (RHS)

of size (p, q), denoted by R(p, q), as follows. There are q horizontal levels marked from 0 to

q−1 and each level contains 2p+1 vertices lying as a zigzag path. In level i(0 � i � q−1),

we label the vertices v−p,i, v−(p−1),i, · · · , vp−1,i, vp,i from left to right. By linking edges

vertically between two adjacent levels, we obtain R(p, q) in honeycomb shape (also see

Fig. 1). Because R(p, q) is bipartite, we can color its vertices with black and white as in

Fig. 1.

A circumcoronene of order r, denoted by Cr, is a benzenoid system consisting of one

central hexagon, surrounded by r − 1 layers of hexagonal cells, r � 1. Note that Cr is

a molecular graph, corresponding to benzene (r = 1), coronene (r = 2), circumcoronene

(r = 3), circumcircumcoronene (r = 4), etc [6]. Comparing with R(p, q), Cr is a big

regular hexagon such that r layers of hexagons wrap up together but not a big rectangle

(see Fig. 1).

Here we embed Cr into R(p, q) such that the bottom boundary of Cr contains the

vertices v0,0, v1,0, · · · , v2r,0 of level 0. In this way, Cr lies on levels 0, 1, · · · , 2r− 1, and the

sequence of vertices of Cr on level k is

(v−k,k, v−(k−1),k, · · · , v2r+k−1,k, v2r+k,k) if 0 � k � r − 1; (3)

(vk−2r+1,k, vk−2r+2,k, · · · , v4r−k−2,k, v4r−k−1,k) if r � k � 2r − 1. (4)

Besides the bottom boundary, the top boundary of Cr lies on level 2r− 1. Between levels

0 and 2r − 1, each level has four vertices lying on the boundary of Cr. They are the first

two and the last two vertices in the sequences in (3) and (4).
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Fig. 1. An RHS with p = 12 and q = 6, labeling of vertices; the embedding of the

circumcoronene C3 represented by the bold line and its interior.

From [14], we know that this is an isometric embedding into R(p, q), i.e.,

Lemma 2.1. In the above embedding of Cr into R(p, q) with p ≥ 3r, q ≥ 2r,

dCr(u, v) = dR(p,q)(u, v) for any pairs of vertices u and v in Cr.

In the sequel, we assume that p = 3r, q = 2r.

In the following we make some preparation for calculating the Hosoya polynomials

of the circumcoronene Cr.

In R(3r, 2r), we define a distance sequence between vi,0 and vertices in level k:

SR(3r,2r)(i, k) :=
(
d(v−3r,k, vi,0), d(v−(3r−1),k, vi,0), · · · , d(v3r,k, vi,0)

)
. (5)

To describe SR(3r,2r)(i, k) shortly, we define the following notations. Given nonnegative

integers m, r and s, we define

m,↗, n := m,m+ 1,m+ 2, · · · , n (m � n);

m,↘, n := m,m− 1,m− 2, · · · , n (m � n);

m,� 2s, n :=

2s terms︷ ︸︸ ︷
m,n,m, n, · · · ,m, n (m �= n).

Lemma 2.2. [29] Suppose that −r ≤ i ≤ r. Then for 0 ≤ k ≤ 2r − 1,

SR(3r,2r)(i, k) =

⎧⎨
⎩ (3r + k + i,↘, 2k,� 2k + 2, 2k + 1,↗, 3r + k − i), if i is odd;

(3r + k + i,↘, 2k, 2k − 1,� 2k, 2k,↗, 3r + k − i), if i is even.
(6)
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Combining Lemmas 2.1, 2.2 and the sequences in (3) and (4), we can give the distance

sequence SCr(i, k) between vi,0 and vertices of Cr on level k.

Lemma 2.3. Let 1 � i � r. If i is odd, then

SCr(i, k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2k + i,↘, 2k,� 2k + 2, , 2k + 1,↗, 2r + 2k − i), 0 � k � r − 1;

(2r + i− 1,↘, 2k,� 2k + 2, , 2k + 1,↗, 4r − i− 1), r � k < r + i−1
2
;

(2k,� 2r + i+ 1, , 2k + 1,↗, 4r − i− 1), r + i−1
2

� k < 2r − i+1
2
;

(2k,� 6r − 2k − 2, 2k + 1, 2k), 2r − i+1
2

� k � 2r − 1.

If i is even, then

SCr(i, k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2k + i,↘, 2k − 1,� 2k, , 2k,↗, 2r + 2k − i), 0 � k � r − 1;

(2r + i− 1,↘, 2k − 1,� 2k, , 2k,↗, 4r − i− 1), r � k < r + i
2
;

(2k − 1,� 2r + i, , 2k,↗, 4r − i− 1), r + i
2
� k < 2r − i

2
;

(2k − 1,� 6r − 2k − 2, 2k, 2k − 1), 2r − i
2
� k � 2r − 1.

Proof. By Lemma 2.1 and comparing Eq. (5), and also (3) and (4), SCr(i, k) is substan-

tially a part of SR(p,q)(i, k) by cutting off two useless ends. Concretely, in the case of odd

i, when k < r + i−1
2
, we can guarantee 2r + i − 1 > 2k and easily 4r − i − 1 > 2k + 1

(note i � r). When 2r− i+1
2

� k, we ensure 4r− i− 1 > 2k+1. We can similarly get the

observations in the another case. �

In fact, Lemma 2.3 can be deduced from the distance function on brick walls in [20].

3 Calculating Hosoya polynomial of circumcoronene

series

Denote by Hvi,0(Cr, x) the contribution of the vertex vi,0 to the Hosoya polynomial of

Cr. Denote by Hbvi,0(Cr, x) the contribution of the distances between the vertex vi,0

and the boundary vertices in Cr to the Hosoya polynomial of Cr. Using the software

MATHEMATICA 5.2, by Lemma 2.3 we obtain
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Lemma 3.1.

Hvi,0(Cr, x)

=
2x+ 1

(x− 1)2(x+ 1)
− (x+ x2r)(xi + x2r−i)

(x− 1)2(x+ 1)
+

	 i
2

x2r+i

x− 1
+

(r − � i
2
�)x4r−i

x− 1
+(

r

x− 1
+

x

(x− 1)2(x+ 1)

)
x4r−1 +

1− (−1)i

2

(
x

x− 1
+ (r +

x

x2 − 1
)

)
x4r−1;

Hbvi,0(Cr, x)

=− x+ 1

x− 1
+

⌊
i

2

⌋
(x+ 1)x2r+i−2 + (r −

⌈
i

2

⌉
)(x+ 1)x4r−i−2

+
(rx− r + 1)(x+ 1)

x− 1
x4r−3 +

1− (−1)i

2
(rx2 + x− r + 1)x4r−3.

Among all 12 automorphisms of Cr, each vertex in {v1,0, v2,0, · · · , vr−1,0} has 12

isomorphic images (including itself), vertex vr,0 has 6 isomorphic images. Denote by

Hb(Cr, x) the contribution of the boundary vertices to the Hosoya polynomial of Cr. By

Lemma 3.1, we have

Lemma 3.2.

Hb(Cr, x)

=12
r−1∑
i=1

Hvi,0(Cr, x) + 6Hvr,0(Cr, x)−
(
6

r−1∑
i=1

Hbvi,0(Cr, x) + 3Hbvr,0(Cr, x)− 6r + 3

)

(7)

=− 3 + 6r + 6Hvr,0(Cr, x)− 3Hbvr,0(Cr, x) + 6
r−1∑
i=1

(
2Hvi,0(Cr, x)−Hbvi,0(Cr, x)

)
.

Note that the last term of right-hand side of Eq. (7) is the contribution of the distances

between the vertices on the boundary of Cr to the Hosoya polynomial of Cr.

Substituting Lemma 3.1 into Lemma 3.2, we obtain

Lemma 3.3.

Hb(Cr, x)

=
6r(2x2 − x+ 2)

(x− 1)2
+

6(−x3 + 2x2 − x+ 1)

(x− 1)3
+

3r2(x5 − x4 − x+ 1)x4r−3

(x− 1)3
+

6r(x− 1)x4r−3

(x− 1)3

−3(x3 + x2 + x− 1)x4r−3

(x− 1)3
− 6(x2 + 1)(x4r − x2r+2)

(x− 1)3(x+ 1)
+

6(x2 + 1)(rx4r−2 − x2r)

(x− 1)2
. (8)
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Since Cr can be obtained from Cr−1 by adding the boundary vertices of Cr, and

Cr−1 can be considered as an isometric subgraph of Cr by the constitution, the Hosoya

polynomial H(Cr, q) of Cr is equal to

H(Cr, q) =
r∑

i=1

Hb(Ci, q). (9)

Substituting Eq. (8) into Eq. (9), we get the main theorem: the Hosoya polynomial

of circumcoronene Cr.

Theorem 3.4.

H(Cr, x)

=
3r(2rx3 − 3rx2 + x2 + 3rx+ x− 2r)

(x− 1)3
+

3x
(
r2x4r(x− 1)(x4 − 1)− x2(x+ 1)(x4r − 1)

)
(x− 1)4(x+ 1)(x2 + 1)

−6x2(−rx4r+4 + rx4r + x4r+4 + x4r+2 + x4r − x2r+4 − 2x2r+2 − x2r + x2)

(x− 1)4(x+ 1)2(x2 + 1)
.

From Theorem 3.4, we immediately obtain the Wiener index W (Cr) and the hyper-

Wiener index WW (Cr) of circumcoronene Cr.

Corollary 3.5. [8, 20, 26, 30]

W (Cr) =
1

5
(164r5 − 30r3 + r);

WW (Cr) =
1

30
r(1096r5 + 492r4 − 275r3 − 90r2 + 34r + 3).
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