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Abstract

A hexagonal system is a connected plane graph without cut vertices in which
each interior face is a regular hexagon. Let H be a hexagonal system. An anti-
Kekulé set of H is a set S of edges of H such that H − S is a connected graph that
has no Kekulé structures. The minimum of cardinalities of anti-Kekulé sets of H is
called the anti-Kekulé number of H, denoted as ak(H). An anti-Kekulé set S of H
is called a smallest anti-Kekulé set of H if the cardinality of S equals ak(H). It is
obvious that a single hexagon has no anti-Kekulé sets. In this paper, we show that
for a hexagonal system H with more than one hexagon, ak(H) = 0 if and only if H
has no Kekulé structures, ak(H) = 1 if and only if H has a fixed double edge, and
ak(H) is either 2 or 3 for the other cases. Further by applying perfect path systems
we give a characterization whether ak(H) = 2 or 3, and present an O(n2) algorithm
for finding a smallest anti-Kekulé set in a normal hexagonal system, where n is the
number of its vertices.

1 Introduction

The anti-Kekulé number was introduced by Vukičević and Trinajstić [17]. In [16], Vukiče-

vić proved that the anti-Kekulé number of buckminsterfullerene C60 is 4. Kutnar et

al obtained that the anti-Kekulé number of a leapfrog fullerene is either 3 or 4 [11].

Afterwards, Yang et al. [20] demonstrated that the anti-Kekulé number of any fullerene
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graph is 4. In [17, 18], Vukičević and Trinajstić showed that the anti-Kekulé number of

benzenoid parallelograms is 2 and the anti-Kekulé number of cata-condensed hexagonal

systems is either 2 or 3. Veljan and Vukičević [15] obtained that the anti-Kekulé numbers

of the infinite triangular, rectangular and hexagonal grids are 9, 6 and 4 respectively.

There is some other study of anti-Kekulé number in [1, 23]. Nevertheless, there are few

results about the anti-Kekulé number of any hexagonal system. In this paper, we intend

to settle the problem of determining the anti-Kekulé number of any hexagonal system.

For the terms and notations used, but not defined here, we refer the reader to [12, 19].

For a graph G, a perfect matching (or Kekulé structure) of G is a set of disjoint edges

which covers all of its vertices. An anti-Kekulé set of G is an edge set S such that G−S is

connected and has no Kekulé structures. A smallest anti-Kekulé set of G is an anti-Kekulé

set of G with the smallest cardinality, which is called the anti-Kekulé number of G and

denoted by ak(G).

Let G be a graph with a perfect matching. An edge of G is a fixed double (single)

edge if it belongs to all (none) of the perfect matchings of G. Both fixed double edges

and fixed single edges are called fixed edges. A bipartite graph with a perfect matching is

called normal (or elementary) if it is connected and has no fixed edges. A plane bipartite

graph with a perfect matching is called weakly elementary, if for any nice cycle C of G,

the edges that are incident with the vertices of C and lie in the interior of C are not fixed

single edges. The components of the subgraph of G formed by all non-fixed edges are

called the normal components of G.

Let G be a 2-connected graph. If every interior face of each normal component of G

is a face of G, then the normal component is called a normal block of G. For a path

P = v1v2 . . . vn of G, let d(vi) be the degree of vi in G (i = 1, . . . , n). Then we say G has

a (d(v1), d(v2), . . . , d(vn)) path P .

A hexagonal (benzenoid) system H is a connected plane graph without cut vertices in

which each interior face is a regular hexagon of side length one. The carbon-skeleton of

a benzenoid hydrocarbon is a Kekuléan hexagonal system, i.e. it has a Kekulé structure

[2, 4, 5]. So chemists and graph theorists are both interested in this kind of graphs. A

hexagonal system is said to be cata-condensed if no three of its hexagons share a common

vertex; otherwise, it is pericondensed.

It is obvious that ak(H) = 0 if and only if H is a non-Kekuléan hexagonal system.
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For a Kekuléan hexagonal system H, since a single hexagon has no anti-Kekulé sets, we

always assume that H has at least two hexagons in the following. If H has a fixed double

edge, then after deleting the fixed double edge from H, the remaining subgraph is still

connected and has no Kekulé structures, which implies that ak(H) = 1. Conversely, if

ak(H) = 1, then the edge which forms an anti-Kekulé set belongs to all of the perfect

matchings of H and is thus a fixed double edge of H. Hence ak(H) = 1 if and only if

H has a fixed double edge. For hexagonal systems with fixed single edges but no fixed

double edges, the situation is somewhat complicated. But since the fixed single edges

are not contained in any smallest anti-Kekulé set of H, we can simplify the problem by

deleting all the fixed single edges. For the components of the remaining subgraph, we

have the following theorem.

Theorem 1.1. [10] Let H be a hexagonal system. If H has fixed edges, then it has at

least two normal components.

The following theorem points out that the normal components cannot all consist of

only one hexagon.

Theorem 1.2. [14] Let G be a 2-connected and weakly elementary plane bipartite graph.

Assume that G has more than one cycle and all vertices of degree 2 lie on the boundary of

G. If G has m (m ≥ 1) distinct cycles as normal blocks, then G has m+2 normal blocks.

Every hexagonal system with a perfect matching is weakly elementary [22]. Hence by

Theorems 1.1 and 1.2, if H has fixed single edges but no fixed double edges, then H has at

least two normal components each of which containsmore than one hexagon. Hence ak(H)

is equal to the smallest number of the anti-Kekulé numbers of all normal components with

more than one hexagon. In [7], a linear algorithm for finding all fixed edges of hexagonal

systems was given. Consequently, for a Kekuléan hexagonal system H with fixed single

edges but no fixed double edges, we change the problem of determining ak(H) into the

problem of determining the anti-Kekulé numbers of all normal components with more

than one hexagon of H. Therefore, we just need to consider the normal hexagonal system

with more than one hexagon.

In Section 2, we prove that the anti-Kekulé number of any normal hexagonal system

with more than one hexagon is either 2 or 3. This result together with the above discus-

sions show that a Kekuléan hexagonal system without fixed double edges has anti-Kekulé
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number 2 or 3. In particular, we show that the anti-Kekulé number of any normal hexag-

onal system with a (2, 3, 2) path is 2. In Section 3, we will recall a perfect path system

which is the main tool for the proof of our main results. Some lemmas relevant to perfect

path systems are also presented. In Section 4, we obtain a characterization of a normal

hexagonal system whose anti-Kekulé number is 2. Based on the characterization, in Sec-

tion 5 an O(n2) algorithm for finding a smallest anti-Kekulé set in a normal hexagonal

system is given, where n is the number of its vertices.

2 The anti-Kekulé number of hexagonal systems

To determine whether or not a given hexagonal system H is normal, we have the following

theorem.

Theorem 2.1. [21] Let H be a hexagonal system. Then H is normal if and only if there

exists a perfect matching M of H such that the contour of H is an M-alternating cycle.

An edge ofH is peripheral if it is on the boundary of the exterior face ofH. Otherwise,

it is an inner edge.

Lemma 2.2. S = {e, f} is an edge-cut of H if and only if e, f are peripheral edges of H

and in the same hexagon.

Proof. If {e, f} is an edge-cut of H and one of e and f , say e, is not peripheral, then

there are two hexagons h1 and h2 such that h1 ∩ h2 = {e}. Since at least one of h1 and

h2, say h1, does not contain f . Hence h1 ⊂ H − f , which implies that deleting e from

H − f does not increase the number of components of H − f . Since H − {e, f} has

at least two components, H − f has at least two components. Hence f is a cut edge.

But H is 2-connected, a contradiction. Hence both of e and f are peripheral. Suppose

e ∈ h1, f ∈ h2. If h1 �= h2, then deleting e from H − f does not increase the number of

components of H − f . Hence f is a cut edge of H, a contradiction. Then e and f are

peripheral edges of H and in the same hexagon.

If e and f are peripheral edges of H and in the same hexagon, then H − {e, f} has

two components, each of which has at least one vertex. Hence {e, f} is an edge-cut of H.

For e ∈ E(G), let H − e be the graph obtained from H by deleting e but not its end

vertices. For X ⊂ V (H), let ∇(X) denote the set of edges with only one end vertex in X.
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Proposition 2.3. Let H be a normal hexagonal system with more than one hexagon.

Then ak(H) is either 2 or 3. Moreover, if H has a (2, 3, 2) path, then ak(H) = 2.

Proof. Since H is a normal hexagonal system, H has no fixed edges. Hence for any

e ∈ E(H), H − e has perfect matchings, which implies that ak(H) ≥ 2. On the other

hand, the degree of any vertex on the boundary of H is either 2 or 3. Consequently, there

is an edge, say uv, with d(u) = 2, d(v) = 3. Let w be another neighbor vertex of v such

that uvw is a path on the boundary of H, we have d(w) ≤ 3. If d(w) = 2, then by Lemma

2.2, H −∇({u, w}) + {uv, vw} is connected. Note that H −∇({u, w}) + {uv, vw} has no

perfect matchings. Hence ak(H) = 2. If d(w) = 3, then let the neighbor vertex of u be

u1, the neighbor vertices of w be w1 and w2. Denote the three hexagons containing uu1,

ww1 and ww2 by hi (i=1, 2, 3, see Fig. 1). Let H
′
= H −{uu1, ww1, ww2}. Note that H ′

has no perfect matchings. If we can show that H
′
is connected, then the proposition will

be established. For any two vertices x, y of V (H
′
), there is a path P connecting x and

y in H. If P contains uu1 (resp. ww1), then we replace uu1 (resp. ww1) by ∂(h1) − uu1

(resp. ∂(h2)−ww1). If P contains ww2, then we replace ww2 by ∂(h2∪h3)−ww2. Hence

there is a walk connecting x and y in H
′
. Since every x,y-walk contains an x, y-path,

there is an x, y-path in H
′
. Hence H

′
is connected.

1
u

1
h

2
h

3
h

1
w

2
w

u
v

w

Fig. 1. Illustration for the proof of Proposition 2.3.

For a normal hexagonal system without any (2, 3, 2) path, the two graphs in Fig. 2

indicate that its anti-Kekulé number may be 2 or 3: for the graph G1, by Theorem 2.1, we

can see that it is normal. Color the vertices of G1 with white and black as shown in Fig. 2.

Let Q be the set of the 21 white vertices in the left component of G1−{e1, e2, fe, f l
e}. Then

the neighborhood of Q in G1 − {fe, f l
e} consists of only 20 vertices. By Hall’s Theorem,

G1−{fe, f l
e} has no perfect matchings. Then {fe, f l

e} is an anti-Kekulé set of G1. For the

graph G2, in [18], it was proved that the anti-Kekulé number of such a cata-condensed

hexagonal system is 3.
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Fig. 2. Two normal hexagonal systems without any (2, 3, 2) path.

Combining the discussions in the introduction and Proposition 2.3, we have the the

following corollary.

Corollary 2.4. The anti-Kekulé number of a Kekuléan hexagonal system without fixed

double edges is 2 or 3.

3 Perfect path systems and some lemmas

Let H be a hexagonal system. A straight line segment C with end points P1, P2 is called

a cut segment of H if

(a) C is orthogonal to one of the three edge directions ,

(b) each of P1, P2 is the center of an edge lying on the contour of H,

(c) the graph obtained from H by deleting all edges intersected by C has exactly two

components.

From now on, we always let H be a normal hexagonal system embedded in the plane

with some of its edges vertical. For a hexagonal chain of H, the range of the chain is

defined by the set of all the horizontal cut segments intersecting the chain (see Fig. 3).

A peak (valley) of H is a vertex all of whose neighbors are below (above) it. Thus a peak
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or a valley has degree 2.

1
C

2
C

3
C

Fig. 3. The range of the hexagonal chain shown in bold is {C1, C2}.

A monotone path system of H is a set of disjoint monotonically down paths of H

in which each path issues at a peak and ends at a valley. A perfect path system of

H is a monotone path system which covers all peaks and valleys. In [3, 13], it was

formally proved that there is a one-to-one correspondence between perfect path systems

and perfect matchings of H. The correspondence is as follows: take all non-vertical edges

in and vertical edges not in the paths of a perfect path system and a perfect matching

is obtained; on the other hand, for a perfect matching deleting all vertical double edges

together with their end vertices from H, a perfect path system is found.

In [6, 13], it was proved that if H has a perfect path system, then the induced matching

between peaks and valleys is unique. In [8], a linear algorithm (Algorithm MHS) was

proposed for determining a perfect path system for a hexagonal system, which means

that we can determine the induced matching between peaks and valleys in a linear time.

Let μ(H) be this induced matching, i.e., (p, v) ∈ μ(H) if and only if p and v are the

ends of a monotone path in some perfect path system. Below, we always assume that

if (p, v) ∈ μ(H) then p is a peak and v is a valley. For a given (p, v) ∈ μ(H), let Rp,v

(resp. Lp,v) denote the rightmost (resp. leftmost) monotone path from p to v which is also

contained in a perfect path system. All Rp,v’s (resp. Lp,v’s) together form a perfect path

system of H [7] which is called the right (resp. left) path system (see Fig. 4), denoted

by R (resp. L). Linear algorithms (Routines RPS and LPS) based on Algorithms MHS

were given in [7] to find R and L. Let v be a vertex of H which is incident to three edges,

say x, y, z. We have three ways to embed H in the plane such that x, y, z are vertical

edges respectively (we do not distinguish between positions obtainable from each other

by a rotation of 1800). Different embeddings have different peaks and valleys. Thus the

corresponding μ(H), R, L are also different. Hence, in the following we use x, y, z to be

subscripts to distinguish them.
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The left path system The right path system

Fig. 4. Illustration for the left and right path systems.

Let P be a monotone path from a peak to a valley in H. Then the subgraph H−V (P )

may have several connected components. A left (right) bank of P consists of all the left

(right) components of H − V (P ), the edges between P and these components, and P

itself.

1
p

1
p

1
v 1

v

3
v

3
v

2
v

2
v

2
p

2
p

3
p

3
p

( )a ( )b

Fig. 5. (a) G(H) with one maximal cycle; (b) G(H) with two maximal cycles.

Let Rp,v ⊕ Lp,v be the set of edges which belong to Rp,v or Lp,v but not to both. Let

G(H) be the union of all Rp,v ⊕ Lp,v (see Fig. 5). A maximal cycle of G(H) is a cycle

which is not contained in the region bounded by another cycle of G(H). Any two maximal

cycles are disjoint. If C is a cycle of H, we denote the subgraph system of H with C as

its boundary by I[C].

The following lemma provides an efficient criterion to determine whether or not a

given edge e of H is a fixed edge in terms of G(H).

Lemma 3.1. [7] An edge e of H is not a fixed edge if and only if there is some maximal

cycle C of G(H) such that e ∈ E(I[C]).
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As an immediate consequence of the above lemma, we have the following interesting

property of normal hexagonal systems.

Corollary 3.2. Let H be a normal hexagonal system. Then for any (p, v) ∈ μ(H),

E(Rp,v ∩ Lp,v) = ∅. Moreover, G(H) has only one maximal cycle which is the boundary

of the exterior face.

Proof. Suppose, to the contrary, that there is an edge e ∈ E(Rp,v ∩ Lp,v). Since for any

monotone path P from p to v which is contained in some perfect path system, P is between

Rp,v and Lp,v, we have e ∈ P . If e is non-vertical, then e is in all perfect matchings of H,

otherwise it is in none of perfect matchings of H. In either case, e is a fixed edge. This

is a contradiction.

If G(H) has at least two maximal cycles, since any two maximal cycles of G(H) are

disjoint, the edges connecting any two maximal cycles are not in any maximal cycle. By

Lemma 3.1, such edges are fixed edges, which is a contradiction. Moreover, the only

maximal cycle of G(H) has to be the boundary of the exterior face, otherwise the edges

which are not contained in the interior region of the maximal cycle are fixed edges, a

contradiction.

Since Rp,v and Lp,v have the same end vertices, by Corollary 3.2, we can know that

Rp,v ⊕ Lp,v is a cycle.

Let H be a normal hexagonal system without any (2, 3, 2) path. Then the anti-Kekulé

number of H may be 2 or 3. In the following, we want to determine whether the anti-

Kekulé number of H is 2 or not. Note that if {e, f} is an anti-Kekulé set of H, then f is

a fixed double edge of H − e. Hence we need a criterion to determine if an edge is a fixed

edge of H − e.

e e
u
e �

)(a )(b

Fig. 6. Edge e of a hexagonal system H

For e ∈ E(H), embed H in the plane such that e is non-vertical. If both end vertices

of e are of degree 3 or e has only one end vertex of degree 2 which is a peak or a valley
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of H (see Fig. 6(a)), then H − e has the same peaks and valleys as H. If e has one

end vertex u of degree 2 which is neither a peak nor a valley, then the other edge of H

which is incident with u, say e
′
, is a vertical edge (see Fig. 6(b)). Clearly, e

′
is a fixed

double edge of H − e. Since H has no (2, 3 , 2) paths, deleting e
′
and its end vertices

from H − e does not generate new peaks and valleys. Thus the remaining subgraph has

the same peaks and valleys as H. Consequently, although all neighbors of u are below or

above it, we can overlook u and define the peaks and valleys of H − e as those of H. In

either case, there is a one-to-one correspondence between perfect matchings and perfect

path systems of H − e. Moreover, the induced matching between the peaks and valleys

of H − e is unique. Define the left, the right path systems and G(H − e) for H − e in

the same way as those of H. In the following, we always assume that L
′
p,v (resp. R

′
p,v)

is the new leftmost (resp. rightmost) monotone path from p to v which is contained in

a perfect path system of H − e. In [9], it was pointed out that all the results of [7] can

be extended from H to H − e. In particular, the following conclusion holds which will

provide an efficient criterion to determine whether or not a given edge is a fixed edge in

H − e.

Lemma 3.3. [9] An edge of H − e is not fixed if and only if there is a maximal cycle C

of G(H − e) such that the edge is contained in I[C].

For e ∈ G(H), if e ∈ L (resp. R) of L (resp. R), then some leftmost (resp. rightmost)

monotone paths of H in the right (resp. left) bank of L (resp. R) may need to shift

right (resp. left) to be the new leftmost (resp. rightmost) monotone paths in H − e.

This means that there may be some (p, v) ∈ μ(H − e), such that E(L
′
p,v ∩ Rp,v) �= ∅ or

E(Lp,v ∩R
′
p,v) �= ∅. For any edge of E(L

′
p,v ∩Rp,v) or E(Lp,v ∩R

′
p,v), it is not contained in

the interior region of any maximal cycle of G(H − e). Besides, if e has one end vertex u

of degree 2 which is neither a peak nor a valley, let e
′
be the vertical edge incident with

u. Then e
′
and all the edges adjacent to e

′
are also not contained in the interior region of

any maximal cycle of G(H − e). On the other hand, for any edge not as the edge of the

two cases mentioned above, it must be contained in E(L
′
p,v ∩ Rp,v) or E(Lp,v ∩ R

′
p,v) for

some (p, v) ∈ μ(H − e), which implies that it is contained in the interior region of some

maximal cycle of G(H − e). Hence an edge is not contained in the interior region of some

maximal cycle of G(H − e) if and only if it is e
′
, one of the edges adjacent to e

′
or one of

the edges in E(L
′
p,v ∩Rp,v) or E(Lp,v ∩R

′
p,v). By Lemma 3.3, we know that:
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Remark 3.4. An edge is a fixed double edge of H−e if and only if it is either the vertical

edge intersecting e at a vertex of degree 2 or one of the non-vertical edges in E(L
′
p,v∩Rp,v)

or E(Lp,v ∩R
′
p,v) for some (p, v) ∈ μ(H − e).

Lemma 3.5. Let H be a normal hexagonal system. If e and f are two non-vertical edges

which form an anti-Kekulé set of H, then e ∈ G(H) and f ∈ G(H).

Proof. Suppose, to the contrary, that e /∈ G(H). Then in H − e, the left and the right

path systems do not change. Thus, G(H − e) = G(H). Since H is normal, by Corollary

3.2, the maximal cycle of G(H) is the boundary of the exterior face of H, so does the

maximal cycle of G(H − e). By Corollary 3.3, H − e has no fixed edges. But f is a fixed

double edge of H − e. This is a contradiction. Therefore e ∈ G(H). The discussion for

the situation of f ∈ G(H) is similar. Thus the statement holds.

Let P = {p1, p2, . . . , pk}, V = {v1, v2, . . . , vk} be the sets of peaks and valleys of H

respectively, (pi, vi) ∈ μ(H) (i = 1, 2, . . . , k). In the following, we abbreviate Rpi,vi (resp.

Lpi,vi , R
′
pi,vi

, L
′
pi,vi

) by Ri (resp. Li, R
′
i, L

′
i) (i = 1, 2, . . . , k). Let P1, P2 be two monotone

paths from p to v which are contained in some perfect path system. If P1 ⊕ P2 is a cycle

and I[P1 ⊕ P2] is a linear hexagonal chain, then we say that P1 (P2) can shift to P2 (P1)

by one unit, denoted by P1
1→ P2 (see Fig. 7).

1
P

2
P

Fig. 7. I[P1 ⊕ P2] is a hexagonal chain with 2 hexagons.

Lemma 3.6. Let H be a normal hexagonal system, e a non-vertical edge of Ri. In H−e,

if R
′
j �= Rj, then Rj

1→ R
′
j for j = 1, 2, . . . , k.

Proof. We distinguish two cases according to j=i or not.

Case 1. j = i.

If e = wb ∈ Ri is as shown in Fig. 8(a), then let e
′
= w

′
b
′ ∈ Ri be the first non-vertical

edge which is above e and not parallel to e, PR be the sub-path of Ri with b
′
, w as its

end vertices. If e = wb ∈ Ri is as shown in Fig. 8(b), then let e
′
= w

′
b
′ ∈ Ri be the first
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Fig. 8. Illustration for the proof of Lemma 3.6.

non-vertical edge which is below e and not parallel to e, PR be the sub-path of Ri with

b, w
′
as the end vertices. In either case, there is a linear hexagonal chain in I[Ri ⊕ Li]

along PR. Denote the path on the left side of the chain by PL. Let Pi = Ri − PR + PL.

Then Pi is a monotone path from pi to vi. Let A be the subset of L which contains all the

monotone paths in the left bank of Li except Li and B be the subset of R which contains

all the monotone paths in the right bank of Ri except Ri. All the monotone paths in

A∪ {Pi} ∪ B are disjoint and cover all peaks and valleys. Then A∪ {Pi} ∪ B is a perfect

path system which contains Pi. Clearly Pi is the rightmost monotone path from pi to vi

in H − e. Hence R
′
i = Pi. Therefore I[Ri ⊕R

′
i] is a linear chain. Thus Ri

1→ R
′
i.

Case 2. j �= i.

Note that for any Rj ∈ B, Rj does not change in H − e, then Rj = R
′
j. If all paths of

R−B−{Ri} do not intersect R
′
i, then they do not change in H− e. Hence the statement

holds. If there is a path of R− B − {Ri}, say Rj, such that E(R
′
i ∩ Rj) �= ∅. Note that

R
′
i∩Rj is a path, say P (see Fig. 8(c)). To avoid P , Rj needs to shift left. Since P consists

of edges of at most two directions, there is a linear hexagonal chain along P and on the

left side of P . Shift Rj to pass the left side of the chain we can get R
′
j. Consequently,

Rj
1→ R

′
j. If R

′
j intersects some rightmost paths of H in the left bank of Rj, then we can

go on with the above procedure and eventually deduce the statement.

Remark 3.7. If the shift Rj
1→ R

′
j is triggered by the shift Ri

1→ R
′
i, then by the proof of

Lemma 3.6, we can get more facts:

(1)I[Rj ⊕ R
′
j] is parallel to I[Ri ⊕ R

′
i] (we say two linear hexagonal chains are parallel if

the two lines which join the centers of all hexagons of each chain are parallel),

(2)the range of I[Rj ⊕R
′
j] is contained in the range of I[Ri ⊕R

′
i],

(3)|E(Lj ∩R
′
j)| ≤ |E(Li ∩R

′
i)|.
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Remark 3.8. For the non-vertical edge in some leftmost path, we can also have the

similar results as Lemma 3.6 and Remark 3.7.

4 Normal hexagonal systems H with ak(H) = 2

Let d(u, v) be the distance between vertices u and v. The distance between two edges ei =

uivi and ej = ujvj ofH, denoted by d(ei, ej), is defined bymin{d(ui, uj), d(ui, vj), d(vi, uj),

d(vi, vj)}. In particular, we say ei is at distance one from ej if d(ei, ej) = 1. For any

non-vertical edge e, there are at most 8 edges which are at distance one from it. Among

these 8 edges, there is at most one non-vertical edge which is on the right side of e and

connected to e by a non-vertical edge (see Fig. 9). If such an edge exists, then we denote

it by fe. Note that fe is parallel to e.

e
f

e
fe

r
e

r
e

l

e
f

l

e
f

e

)(a )(b

Fig. 9. Illustration for e and fe.

In the next theorem, we will characterize the normal hexagonal system whose anti-

Kekulé number is two.

Theorem 4.1. Let H be a normal hexagonal system. Then ak(H) = 2 if and only if H

has a (2, 3, 2) path or an embedding satisfying the following two conditions:

(a) There is a non-vertical edge e of Lp,v for some (p, v) ∈ μ(H) such that fe ∈ Rp,v,

(b) Let the opposite edges of e and fe which are contained in I[Lp,v ⊕ Rp,v] be er and f l
e

respectively (see Fig. 9 ). Then er ∈ Rp,v, f
l
e ∈ Lp,v or er ∈ Rp,v and one of e, er is an

inner edge or f l
e ∈ Lp,v and one of fe, f

l
e is an inner edge.

Proof. Sufficiency. If H has a (2, 3, 2) path, then by Proposition 2.3, ak(H) = 2.

If H has an embedding satisfying conditions (a) and (b). Without loss of generality,

let e, fe be as shown in Fig. 9(a). Since e ∈ Lp,v (resp. fe ∈ Rp,v), we know that Lp,v

(resp. Rp,v) passes the two vertical edges adjacent to e (resp. fe).
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If er ∈ Rp,v, f
l
e ∈ Lp,v, then in H − er, Rp,v needs to shift left to be R

′
p,v. By Lemma

3.6, R
′
p,v will pass f

l
e and e. Thus f l

e ∈ E(Lp,v ∩R
′
p,v). Since f

l
e is non-vertical, by Remark

3.4, f l
e is a fixed double edge of H − er. By Lemma 2.2, H −{er, f l

e} is connected. Hence,

{er, f l
e} is an anti-Kekulé set of H. Then ak(H) ≤ 2. By Proposition 2.3, we have

ak(H) = 2.

If er ∈ Rp,v, then in H − er, Rp,v needs to shift left to be R
′
p,v. Hence R

′
p,v will pass e.

Then e is a fixed double edge of H − er. If one of e and er is an inner edge, by Lemma

2.2, H − {e, er} is connected. Hence ak(H) = 2.

If f l
e ∈ Lp,v and one of fe, f

l
e is an inner edge, then by a similar argument, we can also

know that f l
e is a fixed double edge of H−fe and H−{fe, f l

e} is connected. Consequently,

{fe, f l
e} is an anti-Kekulé set of H. Hence ak(H) = 2.

Necessity. Suppose {e1, e2} is an anti-Kekulé set of H. Embed H in the plane with

e1, e2 non-vertical. By Lemma 3.5, we know that e1 ∈ G(H), e2 ∈ G(H). Without loss

of generality, let e1 ∈ Ri. Then by Lemma 3.6, Ri
1→ R

′
i. Since e2 is a non-vertical fixed

double edge of H − e1, there is a (p, v) ∈ μ(H) such that e2 ∈ E(L
′
p,v ∩ R

′
p,v). If e1 is

not in any leftmost monotone path in the right bank of Ri, then all the leftmost and the

rightmost monotone paths in the right bank of Ri (except Ri) do not change. This implies

that e2 can only be in the left bank of Ri. If e1 is in some leftmost monotone path in the

right bank of Ri, then e2 may be in the left bank or the right bank of Ri. By Remark

3.8, we can only discuss the former situation here. The discussion for the latter situation

is similar. Hence in the following, we assume that e2 is in the left bank of Ri. Since all

the leftmost monotone paths in the left bank of Ri do not change, e2 ∈ E(R
′
p,v ∩Lp,v) for

some (p, v) ∈ μ(H). Since e2 is non-vertical, it follows that t = |E(R
′
p,v ∩ Lp,v)| ≥ 2.
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e
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)( c )( d

'

i
R

f

Fig. 10. Illustration for Case 1 in the proof of Theorem 4.1.

Case 1. (p, v) = (pi, vi). Without loss of generality, let e1 be as shown in Fig. 10(a).
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Subcase 1.1. t = 2. Then e2 is adjacent to e1. Since e2 ∈ Li, e1 ∈ Ri, both e1 and

e2 are incident with vi. Thus H − {e1, e2} is disconnected, a contradiction.

Subcase 1.2. t = 3. Then e2 is the only one non-vertical edge which is the opposite

edge of e1 in a hexagon of I[Ri⊕Li] (see Fig. 10(a)). Since H−{e1, e2} is still connected,

by Lemma 2.2, it follows that one of e1 and e2 is an inner edge. Let e = e2, e
r = e1 and fe

be the first non-vertical edge of Ri above e1 (see Fig. 10(a)). Then d(e, fe) = 1, fe ∈ Ri

and one of e and er is an inner edge. Hence conditions (a) and (b) hold.

Subcase 1.3. t = 4. Then E(R
′
i ∩Li) has two non-vertical edges, one is the opposite

edge of e1 in a hexagon of I[Ri ⊕ Li], the other one, say f , is incident with pi or vi. If

f is incident with vi (see Fig. 10(b)), then e2 cannot be f , otherwise H − {e1, e2} is

disconnected. Hence e2 is the opposite edge of e1 in a hexagon of I[Ri ⊕ Li]. Then by a

similar argument as the proof of Subcase 1.2, we know that conditions (a) and (b) hold.

If f is incident with pi (see Fig. 10(c)), then let er = e1, f
l
e = f and e be the opposite

edge of e1 in a hexagon of I[Ri ⊕ Li] (see Fig 10(c)). Hence conditions (a) and (b) hold.

Subcase 1.4. t ≥ 5. Then there are at least two non-vertical edges in R
′
i ∩ Li. Let

er = e1, fe be the first non-vertical edge of Ri above e1, e be the opposite edge of e1 in

I[Ri ⊕ Li]. Then d(e, fe) = 1, f l
e ∈ Li and er ∈ Ri. Hence conditions (a) and (b) hold.

Case 2. (p, v) = (pj, vj) (j �= i).

Subcase 2.1. t = 2. Then R
′
j ∩ Lj contains only one fixed double edge which is

incident with pj or vj. Hence e2 is incident with pj or vj. Without loss of generality,

suppose that e2 is incident with vj. Note that the shift Rj
1→ R

′
j is triggered by some

shift, say Rj+1
1→ R

′
j+1. Then by Remark 3.7, the range of I[Rj ⊕R

′
j] is contained in the

range of I[Rj+1 ⊕ R
′
j+1] and the two hexagonal chains are parallel. Since d(vj) = 2, the

lowest hexagons of I[Rj ⊕R
′
j] and I[Rj+1 ⊕R

′
j+1] are adjacent and intersect at a vertical

edge (see Fig. 11(a)). Let the lowest vertex of I[Rj+1 ⊕ R
′
j+1] be v. Since vj ∈ Lj, it

follows that v ∈ Lj+1. Consequently, v ∈ Lj+1 ∩ Rj+1, which implies that v is a valley.

Then we can obtain a (2, 3, 2) path.

Subcase 2.2. t ≥ 3. Since Ri
1→ R

′
i is the first shift, we have that |E(Li ∩ R

′
i)| ≥

|E(Lj ∩R
′
j)| ≥ 3. Without loss of generality, let e1 be as shown in Fig. 11(b). Let er = e1

, fe be the first non-vertical edge of Ri above er, and e be the opposite edge of er in

I[Li⊕Ri]. Then d(e, fe) = 1 and e ∈ E(Li∩R
′
i). Since I[Rj ⊕R

′
j] is parallel to I[Ri⊕R

′
i]

and the range of former is contained in the range of the latter, it follows that e is an inner
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edge (see Fig. 11(b)). Hence, conditions (a) and (b) hold.
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Fig. 11. Illustration for Case 2 in the proof of Theorem 4.1.

Benzenoid parallelogram Bp,q is a hexagonal system which consists of p× q hexagons,

arranged in q rows, each row consisting of p hexagons. Note that if Bp,q has at least two

hexagons, then Bp,q has a (2, 3, 2) path. By Theorem 4.1, we can obtain the following

result.

Corollary 4.2. [17] ak(Bp,q) = 2, where pq �= 1.

A hexagon of a cata-condensed hexagonal system is said to be a branched hexagon if

there are three hexagons adjacent to it. A cata-condensed hexagonal system is a less-

branched hexagonal system if it has two adjacent non-branched hexagons. Otherwise, it

is a more-branched hexagonal system. For instance, the graph G2 shown in Fig. 2 is a

more-branched hexagonal system.

Corollary 4.3. If H has no (2, 3, 2) paths and ak(H) = 2. Then H is not a more-

branched hexagonal system.

Proof. By Theorem 4.1, H has an embedding satisfying conditions (a) and (b). Let e, fe,

er and f l
e be as Theorem 4.1 defined and as shown in Fig. 12(a). Let h1, h2 be the two

hexagons of H containing these four edges (see Fig. 12(a)).

Claim 1. If f l
e ∈ Li and there is a hexagon h3 such that h3 ∩ h1 = f l

e, then H is a

pericondensed hexagonal system.

Since e ∈ Li, f
l
e ∈ Li, there is (pj, vj) ∈ μ(H) such that j �= i and h3 ⊂ I[Lj ⊕ Rj].

Then e is contained in another hexagon different from h2, otherwise Lj ∩ Li �= ∅. Hence

H is pericondensed.

Claim 2. If er ∈ Ri and there is a hexagon h4 such that h4 ∩ h2 = er, then H is a

pericondensed hexagonal system.
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Fig. 12. Illustration for the proof of Corollary 4.3.

By a similar argument as Claim 1, we can deduce that fe is contained in another

hexagon different from h1. Hence H is pericondensed.

There are three cases in condition (b) of Theorem 4.1.

Case 1. f l
e ∈ Li and er ∈ Ri.

If H is pericondensed, then H cannot be a more-branched hexagonal system. If H is

cata-condensed, then both of e and fe are peripheral. By Claims 1 and 2, both of er and

f l
e are peripheral. Label some vertices of h1 and h2 as shown in Fig. 12(b). Since H has

no (2, 3, 2) paths, u1v1 (u2v2) is not peripheral and thus contained in another hexagon

different from h1 (h2). Since H is cata-condensed, both of w1v1 and w2v2 are peripheral.

Then h1 and h2 are two adjacent non-branched hexagons of H, which implies that H

cannot be a more-branched hexagon system.

Case 2. er ∈ Ri and one of e, er is an inner edge.

If er is inner, by Claim 2, H is pericondensed. If e is inner, then H is also pericon-

densed.

Case 3. f l
e ∈ Li and one of fe, f

l
e is an inner edge.

If f l
e is inner, by Claim 1, H is pericondensed. If fe is inner, then H is also pericon-

densed.

Corollary 4.4. [18] Let H be a cata-condensed hexagonal system. If H is a more-branched

hexagonal system, then ak(H) = 3. Otherwise ak(H) = 2.

Proof. IfH is amore-branched hexagonal system, then H has no (2, 3, 2) paths, otherwise

H has two adjacent non-branched hexagons. Hence, by Corollary 4.3, ak(H) = 3. If H is

a less-branched hexagonal system, then H has two adjacent non-branched hexagons, say

h1 and h2. Without loss of generality, suppose that h1 intersects h2 at a vertical edge.

If H has a (2, 3, 2) path in h1 ∪ h2, then ak(H) = 2. If h1 ∪ h2 has no (2, 3, 2) paths,
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then h1, h2 can only be as shown in Fig. 13(a) or (b). Without loss of generality, let they

be as shown in Fig. 13(b). Let u1v1 (resp. u2v2) be the edge of h1 (resp. h2) whose two

end vertices are of degree two. Rotate H 1200 in a clockwise direction such that H is as

shown in Fig. 13(c). Then u1 is a peak and v2 is a valley. Let (u1, v) ∈ μ(H). Since

h1 ⊂ I[Lu1,v ⊕Ru1,v], h2 belongs to I[Lu1,v ⊕Ru1,v]. Then v = v2. Hence u1v1 ∈ Lu1,v and

u2v2 ∈ Ru1,v. By Theorem 4.1, ak(H) = 2.
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Fig. 13. Illustration for the proof of Corollary 4.4.

5 An algorithm

Based on Theorem 4.1, we can now give an algorithm for finding a smallest anti-Kekulé

set in a normal hexagonal system.

Algorithm AKS.

Input: A normal hexagonal system H.

Output: A smallest anti-Kekulé set K of H.

Step 1: Mark all the edges in ∂(H) which is the boundary of H. If ∂(H) has a path uvw

such that d(u) = d(w) = 2 and d(v) = 3 in H respectively, then return that K =

∇({u, w})− {uv, vw}. Otherwise, choose a path uvw such that d(u) = 2 and

d(v) = d(w) = 3 in H respectively. Let K = ∇({u, w})−{uv, vw}, go to Step 2.

Step 2: Determine μx(H), μy(H), μz(H) by Algorithm MHS. Let S={μx(H), μy(H),

μz(H)}.
Step 3: while S �= ∅, do

choose μ(H) ∈ S. Determine L, R by Routines LPS and RPS.

for (p, v) ∈ μ(H), do

mark the edges which belong to Lp,v ⊕Rp,v. Let E be the set of non-
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vertical edges in Lp,v.

for e ∈ E, do

if fe /∈ Rp,v, then delete e from E.

else mark fe.

(a) if er ∈ Rp,v, f
l
e ∈ Lp,v, then return that K = {er, f l

e}.
(b) if er ∈ Rp,v and one of e and er does not belong to ∂(H),

then return that K = {e, er}.
(c) if f l

e ∈ Lp,v and one of fe and f l
e does not belong to ∂(H),

then return that K = {fe, f l
e}.

end for

end for

end while

Return K.

Finding the anti-Kekulé sets of the two graphs G1 (see Fig. 2) and G3 (see Fig. 14)

are two applications of this algorithm. It can be seen that both of the two graphs have no

(2, 3, 2) paths. For the embedding of G1 shown in Fig. 2, mark its peaks and valleys as

pi and vi (i = 1, 2, . . . , 8). We can determine Li ⊕Ri and find that the non-vertical edges

of L1 and L2 do not satisfy cases (a-c) in Algorithm AKS. For (p3, v3), we can verify that

e, f l
e ∈ L3, fe, e

r ∈ R3, and d(e, fe) = 1. Hence all of {er, f l
e}, {e, er}, {fe, f l

e} are anti-

Kekulé sets of G1. For the three embeddings of the graph G3 shown in Fig. 14, mark their

peaks and valleys, determine their left and right path systems. We can find that for any

non-vertical edge e of any leftmost monotone path, its corresponding edges er, fe and f l
e

do not satisfy cases (a-c) in Algorithm AKS. Hence ak(G3) = 3 and ∇({u, w})−{uv, vw}
is an anti-Kekulé set of size three in G3.

Theorem 5.1. Algorithm AKS finds a smallest anti-Kekulé set in a normal hexagonal

system H correctly in an O(n2) time, where n is the number of verices of H.

Proof. The correctness of the Algorithm AKS is guaranteed by Theorem 4.1. Hence we

just need to do the complexity analysis. Since ∂(H) contains at most 2n edges, and since

Algorithm MHS can be done in O(n) time, Steps 1 and 2 take O(n) time. In Step 3, since

Routines LPS, RPS can be done in O(n) time, we can determine L, R in O(n) time. For

(p, v) ∈ μ(H), we search along Lp,v and Rp,v once and mark all the edges in Lp,v ⊕ Rp,v.
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Fig. 14. Three embeddings of G3 in the plane.

Since L and R are perfect path systems of H, they contain at most 2n edges. Thus this

task will take O(n) time. Since H is normal, by Corollary 3.2, Lp,v ⊕ Rp,v = Lp,v ∪ Rp,v.

Hence the edges of Rp,v∪Lp,v had been marked. Note that the edges of ∂(H) had also been

marked. Then for each non-vertical edge of Lp,v, it takes constant time to test whether

or not e, er, fe and f l
e satisfy cases(a-c) in Algorithm AKS. Since L contains at most n

2

non-vertical edges, we do the testing work at most n
2
times. Hence for each (p, v) ∈ μ(H),

the algorithm takes us O(n) time. For each μ(H) ∈ S, μ(H) contains at most n
2
pairs of

(p, v), which means that we do the task of marking and testing edges at most n
2
times.

Hence for each μ(H) ∈ S, the algorithm takes us at most O(n2) time. Since |S| = 3, the

overall time complexity of Step 3 is O(3n2)=O(n2). By the above results, the complexity

of Algorithm AKS is O(n2).
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