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Abstract

Fibonacenes are well known benzenoid graphs and their resonance graphs are iso-
morphic to Fibonacci cubes. In this paper we introduce so called cyclic fibonacenes
and it turns out that their resonance graphs are isomorphic to Lucas cubes (together
with two isolated vertices in even case). Further we establish a bijective correspon-
dence between the maximal resonant sets of a cyclic fibonacene and the maximal
hypercubes of its resonance graph t.i. Lucas cube, what gives us the insight into
the structure of the latter.

1 Introduction

Lucas cubes and before them Fibonacci cubes were introduced in 1993 [11, 12] as models

for interconnection networks, see for instance a survey paper [14] on Fibonacci cubes and

papers [21, 15] on some properties of Lucas cubes.

Fibonacenes form a subclass of benzenoid graphs, t.i. 2-connected bipartite plane

graphs where every inner face is a hexagon (for details see the survey [10]). By joining

the terminal hexagons of a fibonacene via edges with ends of degree two we obtain a

cyclic structure called the cyclic fibonacene. One class of cyclic fibonacenes are cyclic

polyphenantrenes which belong to very interesting structures chemically known as carbon

nanotubes. We are interested in the resonance graphs of cyclic fibonacenes. The resonance
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graphs of a bipartite graph G reflects the structure of perfect matchings of G or we can say

that it models the interaction between Kekulé structures of the corresponding chemical

molecule.

The main result from [30] is that the nontrivial connected component of the resonance

graph of a cyclic polyphenantrene with 2n hexagons is isomorphic to the Lucas cube Λ2n.

In this paper we extend this result to any cyclic fibonacene, what brings us to the main

result about the one-to-one correspondence between maximal resonant sets of a cyclic

fibonacene and the maximal hypercubes of its resonance graph t.i. Lucas cube. Similar

result was proved in [26] for (non-cyclic) benzenoid graphs with no coronene as a nice

subgraph. Our main result together with one of the results from [20] enables an insight

into the structure of Lucas cubes.

In the next section we give some basic definitions followed by known results about

resonant sets in connection to the hypercubes of their resonance graphs and the extension

of those results to cyclic fibonacenes. The fourth section covers new results and in the

last section we give two interesting corollaries; one referring to the number of maximal

resonant sets and the other to the Clar number of cyclic fibonacenes.

2 Preliminaries

Benzenoid graphs are 2-connected plane graphs such that every inner face is encircled by a

6-cycle (hexagon). Benzenoid graphs are a generalization of benzenoid systems, also called

hexagonal systems, which can be defined as benzenoid graphs that are also subgraphs of

a hexagonal lattice. If all vertices of a benzenoid graph G lie on its perimeter, then G

is said to be catacondensed; otherwise it is pericondensed. We refer to [8, 9] for more

information about these graphs, especially for their chemical meaning as representation

of benzenoid hydrocarbons.

If two hexagons of a benzenoid graph share an edge, then they are adjacent. If every

hexagon of a catacondensed benzenoid graph G has at most two adjacent hexagons, then

G is a chain. Note that a hexagon h of a chain that is adjacent to two other hexagons

contains two vertices of degree two. We say that h is angularly annelated if its two

vertices of degree two are adjacent otherwise h is linearly annelated. Now, a chain is

called a fibonacene∗ if all of its hexagons, apart from the two terminal ones, are angularly

∗We will use the term fibonacene as introduced by Balaban in [3].
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annelated. Note that fibonacenes are not necessarily embeddable in the hexagonal lattice,

but if so, they are called simple and otherwise they are jammed ([16]). An important class

of fibonacenes are polyphenantrenes; if embedded in the hexagonal lattice, their inner dual

is a zig-zag path.

If we embed polyphenantrenes on a surface of a cylindrical hexagonal lattice and join

the terminal hexagons via an edge, we obtain cyclic polyphenantrenes (note that this can

be done only with phenantrenes with even number of hexagons). They belong to very

interesting structures chemically known as carbon nanotubes, discovered in 1991 [13].

Since then, carbon nanotubes have attracted great deal of attention due to their almost

alien property of electrical conductivity and super-steel strength, for the details see [5, 6].

Carbon nanotubes are formally defined via hexagonal lattice and two chiral vectors. Since

they are not of the main interest of our research, we will omit the formal definition and

thereby refer the reader to [29] or [30].

The idea of getting the cyclic polyphenantrene from a polyphenantrene can be gener-

alized to any fibonacene. Let Fn be a fibonacene with n hexagons where h1 and hn are

terminal hexagons, n ≥ 2. Further, let e = uv be an edge of h1 with end vertices of degree

2. Then e′ = u′v′ is an edge of hn with end vertices of degree 2, where u′ and v′ satisfy

the condition dp(u, u
′) < dp(u, v

′) (or dp(v, v′) < dp(v, u
′)), where dp(x, y) is the shortest

distance between vertices x and y on the perimeter. Note that for the edge e of h1 there

are two possible choices for the edge e′ of hn (see Figure 1 (a) where the other possible

edge is denoted e′′ = u′′v′′). Edges e and e′ are tessellation edges of Fn. By identifying

edges e and e′ via vertices u with u′ and v with v′, we obtain a cyclic structure called

cyclic fibonacene F c
n. Note that every hexagon of the cyclic fibonacene F c

n is angularly

annelated. In [28] authors introduced the concept of a cyclic chain of a nanotube which

consists of some cyclically concatenated hexagons with each hexagons adjacent to exactly

two other hexagons. If a cyclic fibonacene is the cyclic polyphenantrene with even number

of hexagons, then it is also a cyclic chain of a nanotube.

A cyclic fibonacene F c
n can be drawn on a plane with all the perimeter edges of Fn,

except the tessellation edges, divided into two disjoint cycles C1 an C2, see Figure 1 (a),

called the inner and the outer cycle of F c
n. If an edge of F c

n is neither in C1 nor in C2, then

it is a transversal edge of F c
n . Note that the tessellation edge of a fibonacene is always a

transversal edge of a cyclic fibonacene. It is not difficult to see that in the case of even n
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cycles C1 and C2 are of even length; and if n is odd, so is the length of both cycles.

Figure 1: a) Two drawings of F c
5 with the tessellation edges e and e′ (or e′′), b) the

resonance graph R(F c
5 ) � Λ5.

A 1-factor or a perfect matching of a benzenoid graph G is a spanning subgraph with

every vertex having degree one (in the chemical literature these are known as Kekulé

structures); ([9]). Let M be a perfect matching of a benzenoid graph G. A cycle C of G

is M-alternating if the edges of C appear alternately in and off the perfect matching M .

Let P be a set of hexagons of a benzenoid graph G. The subgraph of G obtained by

deleting from G the vertices of the hexagons in P is denoted by G − P . It is clear that

G− P can be the empty graph.

Let P be a set of hexagons of a benzenoid graph G with a perfect matching. Then the

set P is called a resonant set of G if the hexagons in P are pair-wise disjoint and there

exists such a perfect matching of G that contains a perfect matching of each hexagon in

P ( [1, 2]). It is easy to see that if P is a resonant set of a benzenoid graph G, then

G − P is empty or has a perfect matching [22, 25]. A resonant set is maximal if it is

not contained in another resonant set. A resonant set P such that G − P is empty or

has a unique perfect matching is called a canonical resonant set. The maximum of the

cardinalities of all resonant sets is called the Clar number and is denoted by Cl(G). A

maximum cardinality resonant set or a Clar formula is a resonant set whose cardinality is

the Clar number.

The resonance graph R(G) of a benzenoid graph G is the graph whose vertices are the

perfect matchings of G, and two perfect matchings are adjacent whenever their symmetric

difference is the edge set of a hexagon ofG. The concept is quite natural and has a chemical
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meaning, therefore it is not surprising that it has been independently introduced in the

chemical literature [4, 7] as well as in the mathematical literature [28] under the name

Z-transformation graph.

The vertex set of the n-dimensional hypercube Q, n ≥ 1, consists of all binary strings

of length n, two vertices being adjacent if the corresponding strings differ in precisely one

place.

The Fibonacci cubes are for n ≥ 1 defined as follows. The vertex set of Γn is the

set of all binary strings b1b2 . . . bn containing no two consecutive 1’s. Two vertices are

adjacent in Γn if they differ in precisely one bit. A Lucas cube Λn is very similar to the

Fibonacci cube Γn. The vertex set of Λn is the set of all binary strings of length n without

consecutive 1’s and also without 1 in the first and the last bit. The edges are defined

analogously as for the Fibonacci cube. On Figure 2 we see first four Lucas cubes. Both,

Fibonacci and Lucas cubes are subgraphs of hypercubes.

Figure 2: First four Lucas cubes.

3 Known results and cyclic fibonacenes

Recently quite a few results concerning resonant sets of benzenoid graphs in connection

to the hypercubes of their resonance graphs were established ([23, 24, 17]). In order to

list some of them we need the following notations first.

For a benzenoid graph G let H(R(G)) be the set of all hypercubes of its resonance

graph R(G) and let RS(G) be the set of all resonant sets of G. The main result from

[23] states that there exists a surjective mapping f : H(R(G)) −→ RS(G) such that

a k-dimensional hypercube is mapped onto a resonant set of cardinality k. Therefore

we say that RQ ∈ RS(G) is a resonant set (of cardinality k) associated to a hypercube

Q ∈ H(R(G)) (of dimension k).

This line of research was then continued in [24] with the following result:
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Theorem 3.1 [24] Let G be a benzenoid graph possessing at least one perfect matching

and let f : H(R(G)) −→ RS(G) be a mapping defined with f(Q) = RQ for Q ∈ H(R(G)).

Then the inverse image of a nonempty resonant set P under the mapping f is HP .

Here HP ⊆ H(R(G)) is a set of hypercubes associated to a resonant set P from RS(G).

More precisely, given a resonant set P of G of cardinality k for some positive integer k,

we can associate a unique subgraph of R(G) isomorphic to the k-dimensional hypercube

if P is a canonical set, otherwise we can associate as many (vertex-disjoint) subgraphs of

R(G) isomorphic to the k-dimensional hypercube as the number of perfect matchings of

G− P .

Just mentioned results can be easily extended to cyclic fibonacenes, since cyclicality

does not affect the proofs, which are thereby identical and we will omit them. The reader

is referred to the origin papers for more details (see Theorem 2 in [23] and Theorem 3.1

in [24]).

4 New results

The resonance graphs or Z-transformation graphs of bipartite planar graphs are well

investigated, see for example [28, 27]. Recently the concept of a resonance graph was

extended to cyclic benzenoid systems, more precisely to cyclic polyphenantrenes. It was

shown in [30] that the resonance graph of a cyclic polyphenantrene with 2n hexagons,

n ≥ 1, is isomorphic to the Lucas cube Λ2n together with two isolated vertices. ”Cyclic

polyphenantrenes” with odd number of hexagons were not considered then since they are

not nanotubes. Although, they are interesting from the mathematical point of view, since

a bit altered main result from [30] can be easily applied to them as well. Even more, the

result can be extended to the family of cyclic fibonacenes.

Because of the clarity we will give the detailed proof of Theorem 4.2 despite its simi-

larity to the proof of the main result from [30]. The proof is based on the following result

from [19] regarding the non-cyclic case t.i. fibonacenes.

Theorem 4.1 [19] Let G be an arbitrary fibonacene with n hexagons. Then R(G) is

isomorphic to the Fibonacci cube Γn.

Let us first define the labeling function � on fibonacenes (introduced first in [18] for

any catacondensed benzenoid graph), since it is essential in the proof of Theorem 4.1 and
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also for the proof of our new result.

Let h and h′ be adjacent hexagons of a fibonacene Fn and M a perfect matching of F .

Then the two edges of M in h that have exactly one vertex in h′ are called the link from

h to h′. Let h1, h2, . . . , hn be the hexagons of Fn, where h1 and hn are terminal hexagons.

Let M(Fn) be the set of all perfect matchings of Fn and let us define a labeling function

� : M(Fn) → {0, 1}n

as follows. Let M be an arbitrary perfect matching of Fn and let e be the edge of h1 with

ends of degree two such that e is not the opposite edge of the common edge of h1 and h2.

Then for i = 1 we set

(�(M))1 =

{
0; e ∈ M,

1; e /∈ M ,

while for i = 2, 3, . . . , n we define

(�(M))i =

{
1; M contains the link from hi to hi−1,

0; otherwise .

Note that the labeling � produces the vertices of Γn (for more details see [19]).

Now we can proceed with the new result regarding the resonance graph of cyclic

fibonacenes.

Theorem 4.2 Let F c
n be a cyclic fibonacene, n ≥ 2. Then the resonance graph of F c

n is

isomorphic to the union of Λn and two isolated vertices if n is even, and is isomorphic to

Λn if n is odd.

Proof. Let Fn be a fibonacene with n hexagons, n ≥ 2, where hexagons are numbered

consecutively with h1, h2, . . . , hn and let e ∈ h1, e
′ ∈ hn be its tessellation edges. Further,

let F c
n be the corresponding cyclic fibonacene.

By Theorem 4.1 the perfect matchings of Fn can be labeled with the binary strings of

length n without consecutive 1’s, obtained by the labeling function �, as described above.

Then the corresponding resonance graph R(Fn) is isomorphic to the Fibonacci cube Γn.

Let M(Fn) be the set of perfect matchings of the fibonacene Fn and M(F c
n) be the

set of perfect matchings of the cyclic fibonacene F c
n. Further, let M1(Fn) be the set of

perfect matchings of Fn that contain at least one of the edges e or e′ and let M1 be a

perfect matching from M1(Fn). It is straightforward to see, that with removal of either
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an edge e or e′, the perfect matching M1 can be contracted onto the perfect matching M ′
1

of F c
n. Let M1(F

c
n) be the set of all such perfect matchings of the cyclic fibonacene F c

n.

Now, let M2 be a perfect matching from M(Fn)−M1(Fn). Then M2 does not contain

neither edge e nor e′ and it can not be contracted to a perfect matching of F c
n. Note that

(�(M2))1 = (�(M2))n = 1.

Therefore the subgraph of the resonance graph of Fn (t.i. of a Fibonacci cube Γn),

induced with the vertex set M1(Fn) is isomorphic to the Lucas cube Λn. Since any

M ∈ M1(Fn) can be contracted to the perfect matching M ′ ∈ M1(F
c
n), the subgraph of

the resonance graph of the cyclic fibonacene F c
n, induced with the vertex set M1(F

c
n), is

also isomorphic to Λn (see Figure 3 (a)).

Next, let us consider perfect matchings of F c
n that are not in M1(F

c
n), so let M ′′ be a

perfect matching from M(F c
n) −M1(F

c
n). Tessellation edges e = uv and e′ = u′v′ of F c

n

coincide where the identified vertices are u = u′ and v = v′. Suppose u lies on the inner

cycle and v on the outer cycle of F c
n. Further, let u1, un be neighbors of u on the inner

cycle and let v1, vn be neighbors of v on the outer cycle such that ui, vi ∈ hi, i = 1, n

(see Figure 3 (b)). Since perfect matching M ′′ is not induced by perfect matchings of a

fibonacene Fn, either edges uun and vv1 must be in M ′′ or vice versa, t.i. edges uu1 and

vvn. Then non of the transversal edges of F c
n is in M ′′. Therefore both inner and outer

cycle of F c
n must be M ′′-alternating cycles. If n is odd number, there is no such perfect

matching M ′′ and if n is even there are two such perfect matchings, one with edges uun

and vv1 and the other with edges uu1 and vvn.

To conclude the proof we observe, the both new perfect matchings are not adjacent

to any other perfect matching of F c
n. �

Let us mention that results from Section 3 applied to cyclic fibonacenes assert the

following observation. Let MM ′ be an edge of a resonance graph F c
n such that binary

labels of M and M ′ differ at the j-th place for some j = 1, 2, . . . , n. Then the symmetric

difference of perfect matchings M and M ′ is the hexagon hj and the label j is assigned

to the edge MM ′, see Figures 1, 4 or 5.

On Figure 1 (b) we see the resonance graphs of F c
5 t.i. Lucas cube Λ5 and on Figure

4 (b) the nontrivial connected component of the resonance graph of F c
6 , t.i. Λ6. For

example, the inverse image of the resonant set P = {h3, h5} of a cyclic fibonacene F c
5

(see Figure 1) under the mapping f is a 2-dimensional hypercube Q induced with edges
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Figure 3: a) Perfect matchings from M1(F
c
4 ) and the induced resonance graph, b) perfect

matchings from M(F c
4 )−M1(F

c
4 ) t.i. isolated vertices of R(F c

4 ).

labeled with 3 and 5. On the other side for the resonant set P ′ = {h2, h4} of F c
6 (see

Figure 4) the inverse image under f is the set HP ′ = {Q′
1, Q

′
2}, where both hypercubes

are 2-dimensional and induced with edges labeled 2 and 4. Note, that P is a canonical

resonant set and P ′ not, what brings us to Lemma 4.3.

Figure 4: a) A perfect matching M of F c
6 with �(M) = 000000, b) the nontrivial connected

component of R(F c
6 ) t.i. Λ6.

Lemma 4.3 For n ≥ 2 let F c
n be a cyclic fibonacene. Then P is a maximal resonant set

of F c
n if and only if P is a canonical resonant set.

Proof. The only if part is proved as in [17](Proposition 7.1) where instead of resonant

sets of a benzenoid graph we are interested in the resonant sets of a cyclic fibonacene and

the proof is therefore omitted.
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For the if part let P be a maximal resonant set of F c
n and suppose P is not canonical.

Then F c
n−P allows at least two different perfect matchings. Therefore F c

n−P contains a

cycle C which is an alternating cycle in both perfect matchings. Since C is an alternating

cycle of a cyclic fibonacene, in which every hexagon is angularly annelated, C must be

either of length six or contains an alternating cycle of length six, what is a contradiction

with the maximality of P . �

The main result of this paper is:

Theorem 4.4 For n ≥ 2 let F c
n be a cyclic fibonacene. Then there exists a bijective

mapping from the set of subgraphs of R(F c
n) that are maximal hypercubes into the family

of maximal resonant sets of F c
n.

Proof. The proof is similar to the proof of Theorem 4.3 from [26]. Let Q be a maximal

hypercube of dimension k of the resonance graph R(F c
n). Then the image of Q under the

mapping f from Theorem 3.1 is a resonant set P of cardinality k. P must be a maximal

resonant set, otherwise the inverse image of P under the mapping f is HP , where the

hypercubes inHP are of dimension greater than k, which is a contradiction, since Q ∈ HP .

By Lemma 4.3 a maximal resonant set P of F c
n is also a canonical resonant set. Hence,

by Theorem 3.1 the inverse image of a maximum cardinality set under the mapping f

defined therein, is a singleton set containing a subgraph of R(F c
n) isomorphic to the k-

dimensional hypercube. �

Corollary 4.5 The vertex of a Lucas cube Λn with a binary label 0n is contained in any

maximal hypercube of Λn.

Proof. Let F c
n be a cyclic fibonacene, n ≥ 2. By Theorem 4.2 (the nontrivial connected

component of) the resonance graph of F c
n is isomorphic to the Lucas cube Λn. Let � be a

binary labeling of the vertices of R(F c
n) as described in Section 4 and let M be a vertex of

R(F c
n) such that �(M) = 0n (see Figure 4 (a)). Since neighbors of M are vertices whose

labels have exactly one bit equal to 1 and another n− 1 bits are 0, all n hexagons of F c
n

are M -alternating hexagons.

Further, let P be a maximal resonant set of F c
n. By Theorem 4.4 there exists a unique

subgraph of R(F c
n), isomorphic to a hypercube, associated to P and let it be denoted
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with QP (note that QP is a maximal hypercube). Since every hexagon from F c
n is M -

alternating, so are hexagons from P M -alternating and therefore M belongs to the vertex

set of QP . �

Suppose we can list all maximal resonant sets of a cyclic fibonacene F c
n. Next propo-

sition gives the relation between the corresponding maximal hypercubes of the resonance

graph of F c
n t.i. Lucas cube.

Proposition 4.6 Let P ′ and P ′′ be maximal resonant sets of a cyclic fibonacene F c
n (n ≥

2) and let QP ′ and QP ′′ be the associated hypercubes in the resonance graph R(F c
n). If

P ′ ∩ P ′′ = P , where |P | = k ≥ 1, then QP ′ ∩ QP ′ is a subgraph of R(F c
n) isomorphic to

a k-dimensional hypercube and belongs to the inverse image of the resonant set P under

the mapping f .

Proof. Let P ′ and P ′′ be maximal resonant sets of a cyclic fibonacene F c
n and let their

intersection be a nonempty resonant set P = {hi1 , hi2 , . . . , hik} (otherwise the assertion is

trivial). By Theorem 3.1 the inverse image under the mapping f is HP . The elements of

HP are isomorphic to a hypercube of dimension k and are induced by edges of R(F c
n) with

labels i1, i2, . . . , ik. Since QP ′ and QP ′′ are hypercubes associated to maximal resonant

sets P ′ and P ′′ respectively, both of them are induced with edges with common labels

i1, i2, . . . , ik and some other distinctively labeled edges, what completes the proof. �

Figure 5: a) A perfect matching M of F c
7 with �(M) = 0000000, b) the resonance graph

R(F c
7 ) � Λ7.

For example, in the case of the resonance graph of a cyclic fibonacenes F c
7 we have

7 (follows from [20]) 3-dimensional maximal hypercubes. They are induced by edge
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triples with labels 1, 3, 5; 1, 3, 6; 1, 4, 6; 2, 4, 6; 2, 4, 7; 2, 5, 7 and 3, 5, 7, since the correspond-

ing hexagons are maximal resonant sets of F c
7 , see Figure 5 (a). On Figure 5 (b) we have

then the resonance graph of F c
7 t.i. a Lucas cube Λ7. The binary codes of vertices of Λ7

are easily constructed. For example the binary code for a vertex M ′ on Figure 5 (b) is

�(M ′) = 1001010, since the shortest path between vertex M (with �(M) = 0000000) and

M ′ consists of edges with labels 1, 4 and 6.

5 Corollaries

Just recently Mollard ([20]) found some interesting properties of Fibonacci and Lucas

cubes. One of them is the following:

Theorem 5.1 [20] Let 1 ≤ k ≤ n and gn,k be the number of maximal hypercubes of

dimension k in Λn. Then:

gn,k =
n

k

(
k

n− 2k

)
.

From Theorems 4.4 and 5.1 directly follows the next corollary.

Corollary 5.2 For n ≥ 2 let F c
n be a cyclic fibonacene and 1 ≤ k ≤ n. Then the number

of maximal resonant sets of size k in F c
n equals

n

k

(
k

n− 2k

)
.

And we will conclude with one more corollary about the Clar number and the number of

Clar formulas of a cyclic fibonacene.

Corollary 5.3 For n ≥ 2 let F c
n be a cyclic fibonacene. Then

Cl(F c
n) =

⌊n
2

⌋
.

Further, the number of Clar formulas of F c
n is{

2 ; n = 2k,
n ; n = 2k + 1 .

Proof. The first claim follows from [20] as we know that the maximum dimension of

a maximal induced hypercube in Λn is less or equal to 	n
2

 and the second claim is a

straightforward calculation from Corollary 5.2. �
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