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Abstract

Graph theoretic fullerenes are designed to model large carbon molecules: each
vertex represents a carbon atom and the edges represent chemical bonds. A totally
symmetric Kekulé structure in a fullerene is a set of independent edges which is
fixed by all symmetries of the fullerene.

It was suggested in a paper by S. J. Austin, J. Baker, P. W. Fowler, D. E.
Manolopoulos and in a paper by K. M. Rogers and P. W. Fowler that molecules
with totally symmetric Kekulé structures could have special physical and chemical
properties. Starting from a catalog given by J.E.Graver, we study all graph theoretic
fullerenes with at least ten symmetries and we establish exactly which of them have
at least one totally symmetric Kekulé structure.

1 Introduction

By a fullerene we mean a trivalent plane graph Γ = (V,E, F ) with only hexagonal and

pentagonal faces. Such graphs on v vertices exist for all even v ≥ 24 and for v = 20, [10].

It follows easily from Euler’s formula that each fullerene has exactly 12 pentagonal faces.
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The simplest fullerene is the graph of the dodecahedron with 12 pentagonal faces and no

hexagonal ones. See the monograph of Fowler and Manolopoulos [5] for more information.

The graph theoretic fullerenes are designed to model large carbon molecules: each

vertex represents a carbon atom and the edges represent chemical bonds. Since a carbon

atom has chemical valence 4, one edge at each vertex of the graph must represent a double

chemical bond.

Graph theoretic fullerenes have achieved considerable interest since Kroto, Smalley

and co-workers discovered the icoshaedral molecule C60, [12] and through the analysis of

the products obtained from the laser vaporizations of graphite, the mass spectroscopic

evidence indicated that there would be numerous fullerenes with icosahedral symmetry,

such as C60, C80, C140, C180, C240, C260, C420, C540, etc., [11], [4].

A perfect matching of Γ is a set of independent edges (i.e., edges not shearing vertices)

covering all vertices of Γ. In the chemical literature a perfect matching is often called a

Kekulé structure and in the model of carbon molecules the edges of a perfect matching

correspond to double bonds. A Kekulé structure is said to be totally symmetric if it is

fixed by the full automorphism group of Γ.

Fullerenes generally have many Kekulé structures, but molecules with totally symmet-

ric ones seem to have special physical and chemical properties, as suggested in [13] and [1].

For instance, C60 has 12500 Kekulé structures, however it has been argued that C60 is not

aromatic in any traditional sense and that its special physical and chemical properties are

compatible with the dominance of just one Kekulé structure: the only one of the 12500

to be totally symmetric (see [1] for more details). More precisely, the main idea in [13]

is that any totally symmetric Kekulé structure could correspond to a minimum on the

potential surface: for that reason, in the cited paper, a complete catalog of all fullerenes

with at most 40 vertices which admit a totally symmetric Kekulé structure is obtained.

There is one class of fullerenes for which a totally symmetric Kekulé structure can

always be found: the leapfrog fullerenes. A leapfrog fullerene Γl is obtained by truncating

the dual of a fullerene Γ. More precisely: draw a small hexagonal (pentagonal) face

inside each hexagonal (pentagonal) face of Γ, rotate by 30 (36) degrees. Next connect the

vertices of these new faces with edges which are perpendicular bisectors of the edges of

Γ. Now delete all vertices and edges of Γ. The remaining graph is Γl. It is easy to check

that the number of vertices of Γl is three times the number of vertices of Γ. Moreover, the
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full automorphism group of Γl coincides with that of Γ and a totally symmetric Kekulé

structure for Γl is obtained by taking the drawn perpendicular bisectors.

It is straightforward that in a fullerene with trivial automorphism group each Kekulé

structure is totally symmetric. On the other hand, it seems reasonable to have a few or no

totally symmetric Kekulé structure in a fullerene with a significant automorphism group.

Fullerenes with at least ten symmetries were studied, classified and listed in a complete

catalog by J.E. Graver in [7], [8]. The aim of this paper is to discover which of these

fullerenes admit at least one totally symmetric Kekulé structure. For brevity, we denote

a totally symmetric Kekulé structure by TSKS.

As observed in [1], a trivial necessary condition for the existence of a TSKS in a

fullerene is that each automorphism of order 3 has no fixed vertex. It is well known, see

[13], that this condition is also sufficient for leapfrog fullerenes. Our aim is to prove that,

except for a small number of instances, the condition is sufficient for each fullerene with at

least ten symmetries. We can summarize our results in the following theorem (parameters

and notations are referred to the catalog of [8]):

Theorem 1.1. Except for all graphs in P4 ∪ P5 with r = 3, s = 1 and p even, for which

a TSKS does not exist, a fullerene Γ with at least ten symmetries has a totally symmetric

Kekulé structure if and only if no order 3 symmetry of Γ has a fixed vertex.

The proof of the theorem above will be easily deduced by Propositions 3.3, 3.4, 3.5,

3.6, 3.7 in the following section 3.

2 Fullerenes and signatures

It is frequently easier to work with the duals to the fullerenes: geodesic domes, i.e. trian-

gulations of the sphere with vertices of degree 5 and 6. By dualization a planar embedding

of the graph Γ on the sphere is obtained. It is in this context that Goldberg [9], Caspar

and Klug [2] and Coxeter [3] parameterized the geodesic domes/fullerenes that include

the full rotational group of the icosahedron among their symmetries.

In [6], J. E. Graver extended the work of Coxeter presenting a classification scheme

for all geodesic domes and fullerenes. To perform his contruction, Graver assigns to each

fullerene/geodesic dome a 12−vertex planar graph with edge and angle labels called the

signature of Γ. The fullerene and its planar representation on the sphere can then be

reconstituted from its signature in a manner which is proved in [6] to be unique.
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To describe Graver’s construction we must recall what Coxeter coordinates of segments

and angles between segments are. Namely, let Λ be a plane together with a regular

hexagonal tesselation. Fix the center of each hexagon. By a segment in Λ we mean a

straight line segment that joins two centers. We assign Coxeter coordinates to a segment

as follows: if it lies on a line perpendicular to hexagon edges, the single Coxeter coordinate

(p) is assigned, where p+ 1 is the number of centers of hexagons on the segment.

If not, take the first line to the right of the segment which is perpendicular to an

hexagon edge to identify the first coordinate direction, then turn left with an angle of

60o to find the second coordinate direction. The number p+ 1 (resp. q + 1) of centers of

hexagons we pass through in the first (resp. second) direction when connecting the two

endpoints of the segment, give the Coxeter coordinates (p, q) of the segment itself.

The type of an angle between two segments is the number of centers of the edges of

the central hexagons between the segments. Segments which runs to successive centers

contribute 1/2 to each of the angle types on either side.

(2)

(2,2) (3,3)

(4,1)(2,1)

4
1,5

1,5

2

0

Figure 2.1: Coxeter coordinates

Essentially Graver’s construction works as follows: denote by Λ the plane with the

hexagonal tessellation, take the signature of Γ, draw each face of the signature on Λ

putting each vertex of the face in the center of an hexagon of Λ in such a way that the

polygonal region of Λ corresponding to that face is completely determined by the Coxeter

coordinates which label edges of the face and by the types of angles between them. By

gluing together the regions of Λ corresponding to the faces of the signature, we reconstitute

the geodesic dome and the graph model of Γ together with its planar embedding on the

sphere. The planar embedding of the signature on the sphere will be denoted by S(Γ).

Furthermore, in what follows we will denote by Λ both the plane with the hexagonal

tessellation, and the sphere with the tessellation into hexagons and pentagons inherited

in the reconstruction of the geodesic dome from its signature.

To distinguish between edges of the graph Γ and edges of S(Γ), the latter are referred to
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as segments. Moreover, each vertex of the signature represents a pentagon in the fullerene

being modeled and segments of S(Γ) all represent shortest distances between pentagons.

For each fullerene, the number of its vertices, faces and edges, and its symmetry structure

are computed directly from its signature. By a symmetry of the signature we mean a

symmetry of the underlying plane graph S(Γ) that maps angles onto angles of the same

type and segments onto congruent segments; specifically if the underlying plane graph

symmetry is orientation preserving, all segments must be mapped onto segments with the

same Coxeter coordinates, while, if the underlying plane graph symmetry is orientation

reversing, all Coxeter coordinates must be reversed. Since edge and angle labels around

a face of S(Γ) determine a unique region of Λ, each symmetry of the signature naturally

induces a symmetry of the fullerene graph Γ when looking at its model on the sphere.

It is proved in [6] that with one minor exception, a fullerene and its signature have

the same symmetry group. The unique exception in which the two groups do not coincide

is when the signature is either a path or a circuit with edge labels of the form (p) or

(p, p) and the angle types are equal at each vertex. In this case both the identity and a

reflexion of the sphere through the line or the circuit given on the sphere by S(Γ) induce

the identity on the signature graph.

In [7] J.E. Graver obtained results on the structure of fullerene signatures and con-

structed a complete catalog of fullerenes with ten or more symmetries. In [8] the complete

catalog of their signatures is reported.

3 Totally symmetric Kekulé structures

In this section we examine all the infinite families of fullerenes with ten ormore symmetries

encoded in [8] in order to discover which of them have at least one TSKS.

We will denote by S(G) the symmetry group of S(Γ) and by G the symmetry group

of Γ.

The image of a single point of the planar embedding S(Γ) on Λ under the action of

S(G) form an orbit of the action. We call a fundamental domain of S(Γ) a subset of the

points of Λ which contain exactly one point from each of these orbits.

When speaking of an edge (respectively a vertex or a center) of Λ we will mean an

edge (respectively a vertex or a center) of an hexagon in the hexagonal tessellation.

When considering a closed region T of Λ, we will say that a vertex v of Λ belongs to T
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if v is either in the interior or on the boundary of T . We also will say that a set of edges

saturates a set of vertices if each vertex of the set is the end vertex of at least one edge.

A segment with Coxeter coordinates (p), for some p, will be called a central direction

segment, while a segment with Coxeter coordinates (p, p) will be called an edge direction

segment. In the same manner, a straight line on Λ containing a central direction segment

(resp. an edge direction segment) will be called a central direction (resp. an edge direction)

line.

3.1 Fullerenes with symmetry group I,Ih, T , Td or Th

We consider fullerenes which have either icosahedral or tetrahedral symmetries. In [1],

the authors make the following remark: in order to have the existence of a TSKS, the

number of atoms of the fullerene must be divisible by 12. Using the catalog of [8], which

reveals the number of atoms for each fullerene together with the leapfrog condition on the

parameters forming this number, we can check case by case all fullerenes with symmetry

group I,Ih, T , Td or Th. Easy counting, we verify that the number of atoms is divisible

by 12 if and only if the leapfrog conditions on the parameters are verified. Therefore, the

following Lemma 3.1 follows trivially:

Lemma 3.1. A fullerene Γ with a icosahedral or a tetrahedral symmetry group has a

TSKS if and only if it is leapfrog.

Furthermore, the following lemma holds:

Lemma 3.2. Let Γ be a leapfrog fullerene. No order 3 symmetry of Γ has a fixed vertex.

Proof. The order (i.e. the number of vertices) of a leapfrog fullerene Γ is a multiple of 3

by the very definition of leapfrog fullerene. An automorphism of Γ of order 3 with a fixed

vertex is a rotation by an axis, so it has either 1 or 2 fixed vertices: in both cases the

order of Γ is not divisible by 3, a contradiction.

Combining the previous considerations, we can claim that our main theorem holds at

least for the subclasses of icosahedral and tetrahedral fullerenes.

Proposition 3.3. A fullerene Γ with a icosahedral or a tetrahedral symmetry group has

a TSKS if and only if no order 3 symmetry of Γ has a fixed vertex.

-682-



3.2 Fullerenes with symmetry group D5, D5h, D5d, D6, D6h or D6d

We consider fullerenes with at least ten symmetries and whose automorphism group ad-

mits either a rotation of order 6 or a rotation of order 5. For all these fullerene graphs

the following holds:

Proposition 3.4. No automorphism of order 3 fixes a vertex of the fullerene.

Proof. This is obvious if the group is D5, D5h or D5d since these groups do not contain

an element of order 3. In all the other cases, one can easily check that the number of

vertices of Γ is a multiple of 3. Since a rotation of order 3 fixes at most two vertices and

all the other vertices are divided into orbits of length 3, then the number of fixed vertices

is necessarily zero.

Proposition 3.5. Each fullerene having full automorphism group D6, D6h or D6d has a

totally symmetric Kekulé structure.

Proof. We consider the three cases D6, D6h or D6d separately.

Suppose the symmetry group of Γ to be the dihedral group D6.

Take an hexagon Σ on Λ whose vertices are vertices of S(Γ) and which is fixed by an

order 6 rotation of G(S). More precisely, looking at the catalog, if Γ is one of the fullerenes

in a family Di, i = 5, . . . 13, take the hexagon Σ whose vertices are alternated vertices on

the circuit representing the signature, otherwise, if Γ is not a fullerene in such a family,

take as Σ the internal hexagonal face of the signature (or equivalently the external one).

Except for the fullerenes in D12, a fundamental domain W of S(Γ) is individuated by a

quadrilateral face with the following vertices: the center C of the chosen hexagon (i.e. the

unique point of the hexagon fixed by the rotation), two consecutive vertices of Σ, say A

and B, a vertex D of S(Γ) connected by a segment of S(Γ) to both A and B, if it exists,

or connected to A by a segment of S(Γ) and not on Σ.

When Γ ∈ D12, a fundamental domain W for S(Γ) is individuated by a triangle of Λ

with vertices A, B, C, where C is the center of Σ and A and B are consecutive vertices

of Σ (see Figure 3.1).

In this particular case, take the set F of all edges of Λ whose direction is orthogonal

to AB and having at least one vertex inside the triangle W . When we look at the planar

embedding of Γ on the sphere, F is a set of independent edges of Γ and the orbit of F

induced by the action of D6 on W gives a TSKS for Γ (see Figure 3.1).
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C

BDA

Figure 3.1

Now go back to Γ /∈ D12.

The triangle ABC is equilateral and its edges have either Coxeter coordinates (p),

p > 0, or (p, q), p, q > 0. If either p is odd in the first case, or both p and q are odd in

the latter, the middle point of at least one of the segments AD or BD is the middle point

of an edge of Λ. In fact, in both cases, the middle point M of AB lies on an edge of Λ,

now let P and Q be the middle points of AD and BD respectively, obviously QM and

PA are parallel in the plane Λ and with the same length, as A is a center of Λ and M is

not, necessarily P and Q cannot both be center of Λ.

Suppose AB to have Coxeter coordinates (p, q). From each vertex of Σ, draw the

central direction lines of Λ thus forming two regular hexagons inside Σ. The edges of

these hexagons are segments of Coxeter coordinates (p), respectively (q). Without loss of

generality. we suppose (p) even in the case in which at least one of p and q is even. We

denote by Σ1 the hexagon with side of length p .

If AB has Coxeter coordinates (p), set Σ1 = Σ.

We thus have the following possibilities: the edges of Σ1 are segments with even

coordinates (p) or the edges of Σ1 are segments of odd coordinates (p). The latter occurs

when either AB has coordinates (p, q) with both p and q odd, or AB has coordinate (p)

with p odd.

Suppose Σ �= Σ1 (see Figure 3.2 when p is even and Figure 3.3 when p is odd).

Let T be the triangle A′B′C, where A′ and B′ are consecutive vertices of Σ1 such that

B′ is inside the triangle ABC while A′ is outside. Without loss of generality, suppose AC

to cross T . A fundamental domainW ′ for S(Γ) is individuated by taking the quadrilateral

BCAD and substituting the triangle CB′B with the triangle CA′A.
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Suppose p is even.

Let F1 be a set of independent edges of Λ constructed as follows: let M1, M2, M3

be the middle points of A′B′, B′C, A′C respectively, draw the lines connecting M1 with

M2 and M1 with M3 and set in F1 all the edges of Λ which are orthogonal to A′B′ and

saturating the vertices of the quadrilateral CM2M1M3, together with all the edges of Λ

orthogonal to B′C (resp. A′C) and saturating the vertices of M1M2B
′ (resp. M1M3A

′).

Now let F2 be a set of independent edges of Λ which are neither orthogonal to AA′ nor

to A′B and saturating the vertices of BA′AD. Set F = F1 ∪ F2. The orbit of F induced

by the action of D6 on W ′ gives a TSKS for Γ (see Figure 3.2).

Suppose p is odd.

If p > 1, take the vertices of Λ, say A′′ and B′′ on CA′ and CB′ respectively, in such a

way that A′′B′′ has Coxeter coordinates (p−1). Proceed with the triangle CA′′B′′ as done

above for the triangle A′B′C when p was supposed to be even, and construct a set F1 of

independent edges saturating the vertices of CA′′B′′. These edges do not cross A′′B′′ and

an odd number of vertices of Λ is inside the quadrilateral B′B′′A′′A′. For what observed

at the beginning of our proof, at least one of the segments BD or AD (say BD) has its

middle point on the middle point of an edge f of Λ. Choose an alternating path Z on

the edges of Λ inside W ′ and which connects f with an edge e crossing A′B′. Pair the

vertices inside B′B′′A′′A′ which are not on e, to obtain an independent set F4 of edges of

Λ. Set F3 = F1 ∪ F4 ∪ {e}.
If p = 1 simply set F3 = {e}.
Let F2 be a set of independent edges of Λ which are neither orthogonal to A′B nor to

A′A and saturating the vertices of BA′AD. If no edge in F2 shares a vertex with e set

F = F2 ∪ F3. Otherwise let F̄2 = (F2 −Z) ∪ (Z − F2) and set F = F̄2 ∪ F3. The orbit of

F induced by the action of D6 on W ′ gives a TSKS for Γ (see Figure 3.3).

Finally, if Σ = Σ1, repeat the previous constructions simply taking A′ = A, B′ = B

and W = W ′.

Suppose the symmetry group of Γ to be the dihedral group D6d.

Take an hexagon Σ on the plane Λ whose vertices are vertices of S(Γ) and which is

fixed by a rotation of G(S) of order 6. More precisely, looking at the catalog, if Γ is one of

the fullerenes in Fi, i ∈ 1, 2, 4, 5, take as Σ the internal hexagonal face of the signature (or

equivalently the external one) and observe that each edge of Σ is either a central direction
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Σ1

ΣM3

M2

A’

D

A

B’

C

B

M1

Figure 3.2

Σ
Σ1

3

2
A

A’A’’MC

M

B’’
B’

B
D

1
M

Figure 3.3

segment or an edge direction segment according to whether i = 1, 4 or i = 2, 5. If Γ is

one of the fullerenes in Di, i ∈ 2, 3, 4 take the hexagon Σ whose vertices are alternated

vertices on the circuit representing the signature. Also in these cases the edges of Σ are

either central direction segments or edge direction segments.

A fundamental domain W for S(Γ) is individuated by a triangle BCD obtained as

follows: C is the center of the chosen hexagon (i.e. the unique point of the hexagon fixed

by the rotation), A and B are consecutive vertices of Σ and D is a vertex of S(Γ) which is

adjacent in S(Γ) to both A and B. If the segment AB is a central direction segment, let

F be the set of independent edges of Λ which are orthogonal to AB and which saturates

the vertices of the triangle BCD. If the segment AB is an edge direction segment, let F

be the set of independent edges of Λ which are parallel to BC and saturating the vertices

of the triangle BCD.

The orbit of F induced by the action of D6d on W gives a TSKS for Γ (see Figure

3.4).

Suppose the symmetry group of Γ to be the dihedral group D6h.

This group contains a reflection by a plane which exchanges the northern and the

southern hemisphere of the geodesic dome. In order to be preserved by this involution, the

edges of a TSKS lies on the equator or are perpendicular to it in the planar representation

Λ.

Suppose Γ to be in Ei, i = 1, 2. Denote by Σ the internal hexagonal face of S(Γ).

A fundamental domain W for S(Γ) is individuated by a quadrilateral ABCD obtained
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B

C

A

D

A

C

B

D

Figure 3.4

as follows: C is the center of the chosen hexagon (i.e. the unique point of the hexagon

which fixed by the rotation), B and B′ are consecutive vertices of Σ, A is the middle point

of the segment of S(Γ) containing B and not lying on the hexagon, D is a point on the

equator such that the line CD is perpendicular to BB′ on the plane Λ.

If Γ is a fullerene of E2, let F be the set of all the independent edges of Γ perpendicular

to the equator and which saturates the vertices of W .

If Γ is a fullerene of E1, let E be a point on CD which is the center of an hexagon

of Λ adjacent to the hexagon of the tessellation containing D. Let F1, respectively F2,

be the set of all the independent edges of Γ parallel to the equator, respectively to BC,

and which saturates the vertices of the triangle DEA, respectively of the quadrilateral

CBAE. Set F = F1 ∪ F2.

In all the above cases, the orbit of F induced by the action of D6h on W gives a TSKS

for Γ (see Figure 3.5).

Now suppose Γ to be in D1. Let C be the center of the circuit representing S(Γ).

Let M1 and M2 be the middle points of two consecutive segments of S(Γ) with common

vertex A. Without loss in generality, we can choose M1 and M2 in such a way that the

edges of Γ with a point on AM1 lie on the circuit, while those with a point on AM2 are

perpendicular to it. Therefore all the edges of Γ with a point on CM2 are parallel to CM2,

while those with a point on CM1 are perpendicular to CM1. A fundamental domain W
for S(Γ) is individuated by the quadrilateral CM1AM2.

Let E be a point on CM1 and the center of an hexagon of Λ adjacent to the hexagon

of the tessellation containing M1.
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D
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D A

B’

Figure 3.5

Let F1, respectively F2, be the set of all the independent edges of Γ parallel to AM1,

respectively to CM2, and saturating the vertices of the triangle EM1A, respectively of

the quadrilateral CEAM2. Set F = F1 ∪ F2.

In all the above cases, the orbit of F induced by the action of D6h on W gives a TSKS

for Γ (see Figure 3.6).

A

E

M
M

2

1

C

Figure 3.6

Proposition 3.6. Each fullerene having full automorphism group D5, D5h, D5d has a

totally symmetric Kekulé structure.

Proof. First of all, we prove that the signature of a fullerene Γ′ with an order 5 rotation in

its automorphism group can be reconstructed from the signature of a fullerene Γ admitting
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a rotation of order 6. Further we observe that a TSKS for Γ′ can be obtained from a TSKS

for Γ.

Let S(Γ) be a signature admitting a rotation of order 6. Follow the proof of Proposition

3.5 together with its notations. Let C and C ′ be the antipodal points on the sphere which

are fixed by the rotation. Add the two points C and C ′ to S(Γ).

When S(Γ) is a 12−gon, draw all segments joining alternatively C with the vertices

of the 12−gon of the signature, together with all segments joining C ′ with the remaining

vertices on the 12−gon.

If S(Γ) is not a 12−gon, follow the notation of Proposition 3.5 and take the hexagon

Σ (with center C) together with the external face of S(Γ), i.e. an hexagon Σ′ with center

C ′, and draw all segments joining C with a vertex of Σ, together with all segments joining

C ′ with a vertex of Σ′.

Starting from the fundamental domain W exhibited in the proof of Proposition 3.5,

we construct on the sphere a connected region W̄ which is a fundamental domain for the

group generated by the rotation.

More precisely, when D6 is the full automorphism group of Γ, we set W̄ = W ∪ W1

where W1 is obtained by applying to W a reflection of D6 in such a way that W and W1

share the edge AD (AB if the family is D12).

When D6d is the full automorphism group of Γ, we set W̄ = W ∪ W1 ∪ W2. Where

W1 is obtained from W by the reflection fixing CD, and W2 is obtained by applying an

element of D6d to W ∪W1 in such a way that W2 and W ∪W1 share the edge BD.

When D6h is the full automorphism group of Γ, we set W̄ = W ∪W1 ∪ W2. Where

W1 is obtained from W by the reflection fixing CM1, and W2 is obtained by the reflection

fixing the equator, i.e. the 12−gon of S(Γ).

Now delete all the points of the sphere which are internal to W̄ and identify the points

on the boundary using the order 6 rotation. We thus obtain the signature graph S(Γ′)

of a fullerene admitting a rotation of order 5. More precisely, there is a correspondence

between fullerenes with a rotation of order 6 and fullerenes with a rotation of order 5.

This correspondence is provided in the following table:
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Ei Hi i = 1, 2, 3, 4, 5, 6, 7
Di Ii−1 i = 2, 3, 4, 5, 6, 7
D8 I7/I8

Di Ii i = 9, 10, 11, 12, 13
D1 G1

Ai Fi i = 4, 5, 6, 7
Ai Fi i = 1, 2, 3 ∗

∗: Note that the full automorphism groups for

families Ai (i = 1, 2, 3) are not D6, D6d nor D6h.

It is also obvious that the fundamental domain W of S(Γ) is a fundamental domain for

S(Γ′) itself. Therefore, the existence of a TSKS in the first case, see Proposition 3.5,

naturally extends to the existence of a TSKS in the second one.

3.3 Fullerenes with symmetry group D3h or D3d

In this section, we will prove the following Proposition:

Proposition 3.7. Except for all graphs in P4 ∪ P5, with r = 3, s = 1 and p even, each

fullerene preserved by either a D3h or D3d symmetry group has a totally symmetric Kekulé

structure if and only if each automorphism of order 3 does not fix any vertex.

First of all observe that all fullerene graphs of the family K4 are leapfrog, and so a

TSKS always exists in this case. Moreover, the requested condition of Proposition 3.7 is

assured.

For the other families to be considered, one of the main tool used in the construction

of a TSKS is the decomposition of a fundamental domain into internal disjoint regions:

a set of representatives for the edges of a TSKS is obtained by fixing a suitable direction

for each region, and then taking the union of all the edges saturating the vertices of the

region and parallel to the associated direction.

The families covered by a construction of this type are presented in the first table

below. In some cases this approach must be slightly modified. Namely, for the remaining

families presented in the second table below, a direction for each region is chosen, together

with all edges in that direction saturating the maximum number of vertices of the region.

Some edges are then deleted or added in a suitable manner, in order to obtain, by the

union of the selected edges in each region, a set of representatives for the edges of a TSKS.
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In all these cases, the automorphism group contains an order 3 rotation, say α. This

rotation fixes either two vertices of Γ or the centers of two hexagons of Λ, it depends

upon the values assigned to the Coxeter coordinates. Obviously the points fixed (vertices

or centers) correspond in the reflection exchanging the northern with the southern hemi-

sphere. Since we are looking for the existence of a TSKS, in all these families, we will

focus our attention on those Coxeter coordinates for which α fixes the centers, C and C ′,

of two hexagons.

In the following two tables, we refer to the parameters contained in the catalog of [8]

and report the necessary conditions to be satisfied to be sure that α fixes the centers of two

hexagons. Our constructions below will respect the conditions on the parameters. If no

condition is reported in the tables, then each value for the parameters of [8] is permitted.

Without loss in generality, we will denote by C be the center of the signature graph S(Γ)

represented on the plane.

The constructions that we will provide, do not work in the sporadic cases P4, with

r = 3, s = 1 and p even, and P5 with r = 3, s = 1, even if the Coxeter coordinates respect

the necessary condition for C to be the center of an hexagon. These cases will be treated

in the last paragraph. Here the non-existence of a TSKS will be proved.

D3h K2,L1

D3d P1, P2,P3,R3,R4,R5, R7

D3d E11
D3h J1, M1, M3, N2, O1

D3h K1, K3 , E8 r ≡ 0 (mod 3)
D3h M2 s ≡ 0 (mod 3)
D3h N1, O2 , O3 r + s ≡ 0 (mod 3)
D3h E9
D3d R1, R2 r ≡ 0 (mod 3)
D3d R6 p ≡ 0 (mod 3)

D3d D14 r ≡ 0 (mod 3)
D3h J2 r ≡ 0 (mod 3)
D3h E10 s ≡ 0 (mod 3)
D3d E12, P4,P5,P6 r ≡ 0 (mod 3)
D3d P7 p+ s ≡ 0 (mod 3)
D3d Q1 r ≡ p+ s (mod3)

-691-



Construction of a TSKS for families K2 and L1

Let us denote by P1 and P2 two vertices of S(Γ) such that the angle between CP1 and

CP2 has value 1. In S(Γ), P1 (resp. P2) is connected by an edge direction segment to its

image P ′
1 (resp. P ′

2) obtained by the planar reflection exchanging the two hexagons with

centers C and C ′ respectively. Let us denote by A1 (resp A2) the middle point of P1P
′
1

(resp. P2P
′
2). The region CP1A1A2P2 is a fundamental domain for S(Γ). Let S be the

set of all the edges orthogonal to A1A2 and which saturates the vertices of this domain.

A TSKS for Γ is obtained by the orbit of S induced by the action of D3h on the domain.

See Figure 3.7 for K2, a quite similar Figure could be drawn for L1.

1A

2P’

1P’

C

P

A2

2

1P

Figure 3.7

Construction of a TSKS for families P1, P2,P3,R3,R4,R5, R7

Let P1 be a vertex of the central triangular face of S(Γ) containing C. Let P2 be a

vertex of S(Γ) such that CP2 is a central direction segment and the angle P1CP2 has

value 1.

Observe that one of the two vertices Pi has the property that there exists another

vertex P3 of S(Γ) such that the segment PiP3 is an edge direction segment. It turns out

that the region CP1P2P3 is a fundamental domain for S(Γ). Consider the set S of all the

edges parallel to the segment P1P3 and saturating the vertices of the domain. A TSKS is

obtained by the orbit of S induced by the action of D3d on the domain. See Figure 3.8

which refers to P1, for the other families the situation is similar.
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P2

P1

P3

C

Figure 3.8

Construction of a TSKS for family E11

Let P1, P2, P3 be three consecutive vertices of the central hexagonal face of S(Γ) con-

taining C. Let Q1, Q2 denote the vertices of S(Γ) such that P1P2Q2Q1 is a face of S(Γ).

Let A (resp. B) be the middle point of P2P3 (resp. Q1Q2). The region CAP2Q2B is

a fundamental domain for S(Γ). Note that P2A is in the same orbit as BQ2 under the

action of the group. Now consider two central direction lines L1, L2 through P2 such that

their respective intersections D and E with CA and CB are contained in the hexagonal

face centered in C. Let S1 be the set of edges not perpendicular to CA nor to CE and

which saturate all vertices of the region CDP2E, let S2 be the set of edges parallel to P2A

which saturate all vertices of the region DAP2, finally let S3 be the set of edges parallel

to BQ2 and which saturate all vertices of EP2Q2B. The orbit of S1 ∪ S2 ∪ S3 induced by

the action of D3d on the domain gives a TSKS (see Figure 3.9).

P2

P3

P1

C

D
A

Q2

Q1

E B

Figure 3.9

Construction of a TSKS for families J1, M1, M3, N2, O1

In all these families, if we consider the embedding S(Γ) of the signature on the sphere

and we draw the geodetic line connecting C and C ′, then this line gives rise to a central
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direction segment of Λ. Denote by A the middle point of this segment. Let P1 be a vertex

of S(Γ) such that CP1 is a central direction segment and makes an angle of type 1 with

AC.

Let Γ ∈ J1. Let P2 a vertex of S(Γ) which is linked to P1 and which is not a vertex of

the central triangular face of S(Γ). The image P ′
2 of P2 by the planar reflexion exchanging

the northern with the southern emisphere, defines a segment P2P
′
2 parallel to CA. Denote

by B the middle point of P2P
′
2. It turns out that the region CP1P2BA is a fundamental

domain for S(Γ). From P2 draw the line parallel to CP1 and let D be its intersection

with the segment CA. Let S1 be the set of all the edges parallel to AB and saturating all

the vertices of DABP2. Let S2 be the set of all the edges parallel to P1P2 and saturating

all the vertices of CP1P2D. A TSKS is obtained by the orbit of S1 ∪ S2 induced by the

action of D3h on the domain (see Figure 3.10).

1P

2P
1P’

2P’B

C AD

Figure 3.10

In the casesM1, M3, N2 andO1, let P
′
1 be the image of P1 by the reflection exchanging

the northern and the southern hemisphere and let B be the middle point of P1P
′
1. From

B, in the direction perpendicular to BP1, is located a vertex P2 of S(Γ), such that AP2

is perpendicular to CA. It turns out that the region ACP1BP2 is a fundamental domain

for S(Γ). From P2 draw the line parallel to CP1 and let D be its intersection with the

segment CA. Let S1 be the set of all the edges parallel to AP2 and saturating the vertices

of the region ADP2. Let S2 be the set of all the edges parallel to P1B and saturating the

vertices of the region CP1BP2D. A TSKS is obtained by the orbit of S1 ∪ S2 induced by

the action of D3h on the domain (see Figure 3.11).

Construction of a TSKS for families K1, K3, E8, M2, N1 O2, O3, E9

Let Γ ∈ K1 ∪ K3 ∪ E8. Let P1 and P2 be two vertices of S(Γ) such that CP1 and CP2

are edge direction segments and P1CP2 is an angle of value 1. Without loss in generality,

let P1 be the furthest from C. Let P ′
1 and P ′

2 be respectively the image of P1 and P2
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P
P

B

1
2

Figure 3.11

by the reflection exchanging the northern and the southern hemisphere, and let A (resp.

B) be the middle point of P1P
′
1 (resp. P2P

′
2). The region defined by CP1ABP2 is a

fundamental domain for S(Γ). This fundamental domain can be divided into 3 internal

disjoint regions. Namely: draw a central direction line, say s, through C, thus dividing

the angle P1CP2 into two equal parts. Now, consider the central direction line through

P1 forming an angle of type 0.5 with the segment CP1 and intersecting the fundamental

domain. Let D denote its intersection with the line s. Let E be a point on the segment

P2B such that DE is a central direction segment and forms an angle of type 2 with CD.

Let S1 be the set of all edges parallel to CP2 and saturating all the vertices of the region

CDEP2. Let S2 be the set of all edges parallel to AB and saturating all vertices of the

region DEBAP1. Let S3 be the set of all edges parallel to CP1 and saturating all vertices

of the region CDP1. A TSKS is obtained by the orbit of S1 ∪ S2 ∪ S3 induced by the

action of D3h on the domain. See Figure 3.12 for the family K1, for the other families it

is quite similar.

2P 2P’

1P 1P’

C D

B

A

E

Figure 3.12

Let Γ ∈ M2 ∪ N1 ∪ O2 ∪ O3. Draw the three edge direction lines from C. These

lines join C with three points of S(Γ) which form a triangle. Let P1 be one of these

points. Let P2 be a vertex of S(Γ), consecutive to P1, not lying on the triangle, and on
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the same hemisphere of C and P1. Draw a line connecting C and C ′, forming an edge

direction segment on Λ and forming an angle of type 1 with CP1. Let A be the middle

point of this segment. Let P ′
1 be the image of P1 by the reflection which exchanges the

northern and the southern hemisphere. Let B be the middle point of the segment P1P
′
1.

The region CP1BP2A is a fundamental domain for S(Γ). This fundamental domain can

be divided into 3 regions. Namely: draw a central direction line, say s, passing through

C, and dividing the angle P1CA into two equal parts. Now, let A′ be the center of the

hexagon on AP2 that is the nearest to A (with A = A′ if A is the center of an hexagon).

Take the central direction lines through A′ and P1 respectively, which intersect s insight

the fundamental domain. Let D denote the intersection that is the furthest from C. As

in the previous case, CD and the two lines through centers and that form with CD an

angle of type 2, define the division into three regions. We call E the intersection between

P1B and a line through D. Let S1 be the set of all edges parallel to BP2 and saturating

all vertices of the region DEBP2A. Let S2 be the set of all edges parallel to CA and

saturating all vertices of the region DA′AC. Let S3 be the set of all edges parallel to

CP1 and saturating all vertices of the region CDEP1. A TSKS is obtained by the orbit

of S1 ∪ S2 ∪ S3 induced by the action of D3h on the domain.

See Figure 3.13 for the family M2, for the other families it is quite similar.

P1

P2C D

E B

A’
A

Figure 3.13

The case E9 is treated as follows. Let P be a vertex of the hexagonal face of S(Γ) that

contains the point C, let P1 and P2 be the two vertices adjacent to P in the face, and

let P3 be the vertex adjacent to P not in the face. Now, define Ai as the middle point

of PPi for i = 1, 2, 3, Bj as the orthogonal projection of A3 on the line CAj for j = 1, 2.

The central direction lines through P meet CAi at Ei (i = 1, 2) with an angle PEiAi of

value 1. The fundamental domain is defined as the union of the three regions CE1PE2,
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PE1B1A3 and PE2B2A3.

Let S be the set of all edges orthogonal neither to CE1 nor to CE2 and saturating all

vertices of the region CE1PE2. For j ∈ {1, 2}, let Sj be the set of all edges parallel to

A3Bj and saturating all the vertices of the region PEjBjA3. A TSKS is obtained by the

orbit of S ∪ S1 ∪ S2 induced by the action of D3h on the domain.

See Figure 3.14 for the family E9, for the other families it is quite similar.

P1

P2

P

P3

C E1

E2
3

B2

2

1 B1

A
A

A

Figure 3.14

Construction of a TSKS for families R1, R2, R6

The center C is the center of a triangle in S(Γ). Let P1 and P2 be two vertices of

this triangle, and let A be the middle point of P1P2. Let P3 be the vertex of the triangle

P1P2P3 of S(Γ) which does not contain C. From P1, draw the central direction linemaking

a 2.5 angle with P1C and let P4 be the vertex of S(Γ) on this line such that P3P4 is a

segment of S(Γ). A fundamental domain for S(Γ) is given by the region CP1P4P3.

Draw from C the central direction line l which is the bisector of the angle P1CP3. The

line l intersects a central direction line through P3 in the center D of an hexagon of Λ in

such a way that CDP3 is a 2 angle. Let E be the center of an hexagon on P1P4 (eventually

equal to P4) such that DE is a central direction segment and makes an angle of type 2

with CD. Now the fundamental domain is divided into three regions: CP1ED, CDP3,

EP4P3D. Let S1 be the set of all edges parallel to CP1 and saturating all vertices of the

region CP1ED, let S2 be the set of all edges parallel to CP3 and saturating all vertices of

the region CDP3, let S3 be the set of all edges perpendicular to EP4 and saturating all

vertices of the region DEP4P3. A TSKS is obtained by the orbit of S1 ∪ S2 ∪ S3 induced

by the action of D3d on the domain. See Figure 3.15 for family R1, for the other families

it is quite similar.
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Figure 3.15

Construction of a TSKS for family D14

Consider three consecutive segments of S(Γ), say B′B, BA, AA′ in such a way that

B′BA is an angle of type 2 and BAA′ is an angle of type 3. Let L1, respectively L2,

be the middle point of the segment AA′, respectively of BB′. The region CL2BL1 is a

fundamental domain for Γ. Let t be the bisector line of the angle L2CL1 intersecting the

segment L1B in a point E. Draw from A the central direction line parallel to BB′ and

intersecting CE in a point D. Let F be the intersection of the axis of AB with the line

through D parallel to AB. The line from F parallel to CE intersects the segment AB in

a point E ′. Let S1 be the set of edges parallel to CL1 and saturating all vertices of the

region CL1AD. Let S2 be the set of edges parallel to CL2 and saturating all vertices of

the region CDFE ′BL2. Let S3 be the set of edges saturating all vertices of the region

AEFD and not parallel neither to AE nor to AD. Finally, let S4 be the set of edges

orthogonal to EE ′ and saturating all vertices of the triangle FEE ′. A TSKS is obtained

by the orbit of S1 ∪ S2 ∪ S3 ∪ S4 induced by the action of D3d on the domain (see Figure

3.16).

C

B

B’

E’ AE A’L1

L2

DF

t

Figure 3.16
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Construction of a TSKS for families J2 and E10
Let Γ ∈ J2. Consider the triangle of Λ whose vertices are vertices of the central

triangular face of S(Γ) (obviously its center is C). Let P1 be one of the vertices of this

triangle, and P2 be the vertex adjacent to P1 in S(Γ) not included in the triangular face.

The vertex P2 is adjacent in S(Γ) to its image P ′
2 by the reflection which exchanges the

northern with the southern hemisphere. Let denote by A the middle point of P2P
′
2, and

B the intersection of the line containing A and orthogonal to P2A and that containing C,

parallel to P2A and making a 1 angle with CP1. The region CP1P2AB is a fundamental

domain for Γ.

The set of edges selected to generate a TSKS is constructed as follows: let S1 be the

set of all edges lying on the segment CP1. Let S2 be the set of all edges parallel to CB,

with at least one vertex in the domain, except for those which have a vertex on CP1. The

edges of S1 ∪ S2 do not saturate all vertices of the domain and to each vertex vi which is

not covered, we associate an edge ei, orthogonal to AB, in this manner: if the orthogonal

projection v′i of vi on AB is the middle of an edge, we associate this edge to vi. Else, if

not, v′i is exactly at the middle point between two edges crossing AB, and we associate

vi to the one of these that is closest from B. For each i, take a path starting from ei

and ending with an edge disjoint from CP1 and with vertex vi. It is always possible to

choose these paths mutually disjoint. Delete from S2 all the edges on these paths and

substitute them with the remaining edges of the paths, thus obtaining a new set S ′
2. The

set S = S1 ∪ S ′
2 saturates all vertices of the domain and the orbit of S under the action

of D3h gives rise to a TSKS for Γ (see Figure 3.17).

P1 P2

P’1

P’2

1v

1v’
1e

C A

B

Figure 3.17

Let Γ ∈ E10. Consider the hexagon on Λ whose vertices are the vertices of the central

hexagonal face of S(Γ) (obviously its center is C). Let P2P1P3 be three consecutive
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vertices of this hexagon, with P2P1 longer than P1P3. Let denote by D the middle point

of P1P2 and by E the middle point of P1P3. Let D
′, P ′

1 and E ′ be the respective images of

D,P1 and E by the reflection exchanging the northern and the southern hemisphere. The

middle point B of DD′ and the middle point F of EE ′ defines a line BF that contains

the middle point A of P1P
′
1. The region CFB is a fundamental domain for Γ. Take the

center Q internal to the segment CE and such that the line containing P1Q is a central

direction line. Consider the set S1 of all edges parallel to QE and saturating all vertices

of the region P1AFQ. Since the region CQP1AB is equal to the fundamental domain of

J2 considered in the previous construction above, we select a set S of edges saturating all

vertices of CQP1AB exactly as we did for J2. Let S
′ = S1 ∪ S. The orbit of S ′ under the

action of D3h gives rise to a TSKS for Γ (see Figure 3.18).

P1

P2

P3

P’1
C A

B

E
Q

D

F

D’

E’

Figure 3.18

Construction of a TSKS for family E12

Let Γ ∈ E12. Consider the hexagon on Λ whose vertices are the vertices of the central

hexagonal face of S(Γ) (obviously its center is C). Let P2P1P3 be three consecutive

vertices of this hexagon, with P3P1 longer than P1P2. Let P ′
1, P

′
2, P

′
3 be vertices of S(Γ)

such that P ′
1 is adjacent to P1 but is not on the central hexagonal face, and such that

P1P
′
1P

′
2P2 and P1P

′
1P

′
3P3 are two faces of S(Γ).

Let Q, R , Q′, R′ be the middle points of the segments P1P3, P1P2,P
′
1P

′
3 and P ′

1P
′
2

respectively. Consider the embedding of S(Γ) on the sphere and let A (respectively B)

be the middle point of the segment QQ′ (resp. RR′). Let F be the middle point of AB.

The region defined by ABC (or, more precisely, by ABRP1RC) is a fundamental domain

for Γ.

Let E be a center internal to the segment CR and such that the line containing EP1
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is a central direction line. Let S1 be the set of all edges parallel to ER and saturating all

vertices of the region EP1FB. Let S2 be the set of all edges parallel to CA, saturating

all vertices of the region CEP1FA, but with no vertices on CE.

If r
3
is even, F is at the center of an hexagon or in the middle of an edge parallel

to AC. Choose r
6
edges crossing AF and their respective images by a central symmetry

through F . For each non-selected vertex, choose an alternating path from the vertex to an

edge and reverse the selection of the edges along this path. The resulting selection gives

a saturating set with edges parallel of perpendicular to the border of the fundamental

domain, agreing with the group action.

If r
3
is odd, F is in the middle of an edge. The set of not-covered vertices is divided

into three parts, with r
6
− 1

2
vertices at each side of one vertex. Define an alternated path

from the central uncovered vertex to F , and choose r
6
− 1

2
non-adjacent edges crossing AF ,

and their respective images by the central symmetry through F . Then choose alternating

paths linking each not covered vertex to one of the edges, and reverse the selection along

the alternating paths (see Figure 3.19).

2P 1P
1P’

3P

2P

2P’

3P’
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Q
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R
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Figure 3.19

Construction of a TSKS for families P4, P5,P6,P7, Q1

Let C be the center of an hexagon fixed by the rotation of order 3. Except for Q1, the

point C is included in a triangle in S(Γ) whose segments are central direction segments.

Let denote by P1 a vertex of this triangle. For Q1, consider the triangle formed by the

vertex of degree one which are insight the hexagonal face of the signature with center C.

Also in this case, let denote by P1 a vertex of this triangle. On the central direction line

through P1, making a 2, 5 angle with P1C lies a vertex P2 of S(Γ). Note that P1P2 is a
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segment of S(Γ). An edge direction line through C, making a 1 angle with P1C meets a

vertex P3 of S(Γ). Let A denote the orthogonal projection of P2 on the line CP3, B the

middle point of AP3 and D the orthogonal projection of B on the line parallel to CP3

containing P2. The fundamental domain is defined as CBDP2P1.

For all cases except P4, r = 3, s = 1, p even and P5, r = 3, s = 1, we proceed as

follows.

The automorphism group of S(Γ) contains an involution exchanging the points B and

D and fixing the middle point E of BD. Let define S as the union of the set of edges of

Γ that lies along the CP1 line and all edges contained in the fundamental domain that

are parallel to CP3, but not adjacent to any vertex of CP1. Some vertices of Γ inside

CP1P2P3 are not incident with any edge of S. If the number v of such vertices is even, we

choose v
2
independent edges crossing ED and their respective images under the central

symmetry through E. For each uncovered vertex, path in Γ joining the vertex to one of

the v edges in such a way that all paths are disjoint and are alternating on edges of S and

edges not in S. Along each path, reverse the selection of edges in S with edges not in S.

After this operation, we obtain a new set S̄ of disjoint edges which saturates all vertices

of the domain.

If v is odd, consider the edge e1 of Γ that crosses P1P2 and that is the nearest from

P2. Then proceed as in the previous case: choose v + 1 independent edges crossing BD,

symmetric through the point E. The edge e1 has the same role of a not covered vertex in

the previous case: except for the cases P4, r = 3, s = 1, p even and P5, r = 3, s = 1, it

is possible to define v + 1 disjoint alternating paths joining the v vertices plus the edge

e1 to the v + 1 chosen edges crossing BD. Then the selection of edges in S is reversed

along each path, thus obtaining a new set S̄ of disjoint edges saturating all vertices of the

domain.

In both cases, a TSKS for Γ is obtained by the orbit of S̄ induced by the action of

D3d on the domain. See Figure 3.20 for family P5, for the other families figures are quite

similar.

As already remarked, this approch doesn’t work in some cases. We prove in the next

paragraph the non-existence of a TSKS for all these cases, thus completing the proof of

Proposition 3.7.
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Figure 3.20

3.3.1 A non-existence case

In this last paragraph we prove the non-existence of a TSKS for the cases P4, r = 3, s = 1,

p even and P5, r = 3, s = 1. We preserve exactly the same notation used previously for

the fundamental domain, that is CBDP2P1, and we denote by e1 the unique edge of Γ

that crosses P1P2, as shown in Figure 3.21 for family P5.

Suppose that a TSKS does exist in these cases. The set of edges of Γ which lie along

the CP1 line, the CB line and the DP2 line must be selected in the TSKS since they lie

on an axis of symmetry of the graph. For the values of the parameters considered here,

there remains an odd number of uncovered vertices inside the fundamental domain, in

particular: 9 vertices in the case P5 and 9 + 3p in the case P4. In order to saturate all

vertices of the domain one must select an odd number of edges crossing the border of the

fundamental domain. If one select the unique edge crossing EB then it must be selected

also the unique edge crossing ED, since it is its image under the central symmetry through

E. So the unique remained possibility is that e1 is an edge of the TSKS. Now, consider

the hexagon containing the two edges e2 and e3 of Γ inside the fundamental domain and

both incident e1. The other two edges of this hexagon incident e2 and e3 must be in the

TSKS. This leads to a contradiction since it remains a unique vertex of the hexagon still

uncovered with all its neighbourhoods already covered by an edge of the TSKS.

Note that this argument does not work for P4 and P5 with different values of the

Coxeter coordinates. In fact the length of DB is larger in all that cases.

To resume our results, the table below gives the list of all fullerenes admitting a TSKS.

This list is exhaustive: for each family we point out the Coxeter coordinate values for
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which a TSKS exists. For all fullerenes corresponding to the other admissible values a

TSKS doesn’t exist. Fullerenes in the list are exactly those satisfying the request of our

main Theorem 1.1.

Values for Coxeter Coordinates Families
All A2, C2,D1, E1, E2,F4,F5,F1,F2,

D2,D3,D4,F6,F7,F3, E3, E4, E5, E6
E7,D5,D6,D7,D8,D9,D10,D11,D12

D13,G1,H1,H2,A4,A5, I1, I2, I3

A6,A7,H3,H4,H5,H6,H7, I4, I5

I6, I7, I8, I9, I10, I11, I12, I13,J1

K2,K4,L1,M1,M3,N2,O1, E9, E11
P1,P2,P3,R3,R4,R5,R7

r ≡ 0 (mod 3) A1,A3,A8,A9,B1,B2,A10,A11,J2

K1,K3, E8,D14,P∗
4 ,P∗∗

5 ,P6,R1,R2, E12
p+ s ≡ 0 (mod 3) P7

r ≡ s ≡ 0 (mod 3) C1, C6, C8, C10, C11,B5,B6

r ≡ s (mod 3) & q ≡ 0(mod 3) C3
s ≡ 0 (mod 3) C4,M2, E10
p ≡ 0 (mod 3) R6

r + s ≡ 0 (mod 3) N1,O2,O3

r ≡ p+ s (mod 3) Q1

p ≡ q ≡ −r (mod 3) C5, C7,
p− q ≡ −r ≡ s (mod 3) C9
p+ q ≡ 0 & r ≡ s (mod 3) B3

r ≡ s (mod 3) B4

∗: except r = 3 , s = 1, p even. ∗∗: except r = 3 , s = 1.
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[10] B. Grünbaum, T. S. Motzkin, The number of hexagons and the simplicity of geodesics

on certain polyhedra, Canad. J. Math. 15 (1963) 744–751.

[11] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Solid C60: a new

form of carbon, Nature 347 (1991) 354–358.

[12] H. W. Kroto, J. R. Health, S. C. O’Brien, R. F. Curl, R. E. Smalley, C60: Buckmin-

sterfullerene, Nature 318 (1985) 162–162.

[13] K. M. Rogers, P. W. Fowler, Leapfrog fullerenes, Hückel bond order and Kekulé
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