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Abstract 

Staggered benzenoids are a novel class of benzenoid systems with a potential to manifest 
intermolecular spin coupling, as in the prototypical case of the phenalenyl radicals. To define 
this new class, benzenoids are represented by pi-network graphs, with vertices coloured or 
uncoloured such that each edge is between a coloured and an uncoloured vertex. Two 
benzenoids, B & B', not necessarily different, are said to be staggered if they satisfy three 
conditions. By the first condition, their geometries, represented as fragments of the hexagonal 
lattice, should be superimposable so that the coloured vertices of B each perfectly overlaps an 
uncoloured vertex of B'.  By the second condition the uncoloured vertices of B must be at 
staggered positions, avoiding overlap to vertices of B'. By the third condition, two 
overlapping vertices have a common neighbour either in both graphs or in none. 
 
We present an overview of this class of staggered benzenoids in terms of their trigonal graph 
representation, regarding specific structural features and nullities of the Hückel π-molecular 
spectra. Possible applications are briefly discussed and phenalenyl tilings are pointed out as 
the particularly interesting subclass. 
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1. Introduction 

It has been found [1] that the phenalenyl radical (precisely, its t-butyl derivative) in the 

crystal structure forms dimers with an antiferromagnetically signed coupling (Figure 1). The 

dimerization occurs also in solution at room temperature [2], thus pointing to a relatively 

strong interaction between monomers. Quantum-chemical calculations indicate [3] that the 

antiferromagnetic interaction arises from an overlap of the semioccupied π-molecular orbitals 

(SOMOs) of the two dimerized radicals. This feature has been recognized as the decisive 

factor for packing of planar radicals in the solid state and possibly for the very existence of 

spin coupling, and formulated as the maximin principle [4]. According to this principle, the 

packing geometry is determined by the maximum overlap of atoms participating in the 

radical SOMO and simultaneous maximum avoidance of all other atoms. The geometry of the 

phenalenyl dimer provides an illustrative example of this principle – the two radical 

monomers are superimposed so that the central atom and its next-nearest neighbours in one 

monomer perfectly overlap with the same kind of atoms in the second monomer (Fig. 1), 

while all other atoms avoid each other as much as the molecular structures allow. From (a 

slightly extended) Hückel molecular orbital (HMO) theory it can be easily derived that only 

the overlapping atoms have nonzero contributions in the SOMO, and this is to a large extent 

confirmed by the ab initio calculations of electronic structure. 

a) 

 

b) 

Figure 1. Phenalenyl dimer: a) orthogonal view at the overlapping molecules of the t-Bu derivative; 
the bottom molecule is in grey, b) perspective view of the plain phenalenyl dimer; the 
overlapping atoms are connected by thin lines. 

 
Naturally, one is prompted to look for other molecules that could exhibit a similar manner of 

spin couplings. Open shell graphene fragments related to phenalenyl radicals are recognized 

as a rich source of potential quantum electronic devices [5]. Note that in the phenalenyl 

example, the molecular features required for the spin coupling are: (i) a molecular structure 

which conforms to the maximin principle; and (ii) planar molecular geometry, needed for 

-650-



close approach of one molecule to another. Here we outline a novel class of molecules, 

termed staggered benzenoids, in which these two conditions are ideally fulfilled for many of 

its members. We examine their distinct characteristics to provide a basis for the systematic 

generation and classification. Finally, interesting possibilities for their utilization are pointed 

out and the smallest members of the class are listed in the Appendix. 
 

2. Definition and representation of staggered benzenoids 

We use graph-theoretical terms [6] as the most appropriate for describing the relevant 

structural relations, with electronic structure aspects referenced to the HMO model [7]. A 

benzenoid molecule is represented by subgraph G from the honeycomb lattice with 

(conjugated) C atoms corresponding to vertices such that G consists of whole hexagons. The 

vertices are connected by edges whenever they represent σ-bonded atoms. The graph is to be 

embedded in Euclidean space, with the geometric arrangement taken to correspond to the 

arrangement in a perfect honeycomb lattice (as a first good approximation). Graph relations 

to be considered are easily visualized and understood in this way. We limit our consideration 

to pure benzenoid graphs – those without any terminal vertices, bridges, or holes other than 

hexagonal rings. 

 
Evidently, each member of a simple neutral spin-coupled pair should ideally have an odd 

number of electrons. In neutral hydrocarbons, the parity of the number of electrons is equal to 

the parity of the number H of hydrogens since each carbon atom contributes an even number 

of electrons. That is, one sees that the number of σ-bonds between C conjugated carbon 

centers is (3C-H)/2, whence since the quotient must be equal to an integer, the number of 

hydrogens and the number of π-centers have equal parities. Then such a neutral benzenoid 

has an odd number of π-electrons and should be a radical (even somewhat beyond the context 

of the HMO model). In odd-sized benzenoid graphs a single semioccupied π-orbital has zero 

coefficients on the „minority“ centers, which are simply determined by the structure [8], thus 

providing a direct relation with the maximin principle. (The last statement has some 

exceptions pointed out in Section 5). Yet, our consideration is not immediately limited to the 

odd-sized benzenoids because, e.g., diradicals could be also considered as potential spin-

coupled systems or radicals produced by charging the even electronic system. 
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In working toward our notion of staggered benzenoid graphs, recall that benzenoids are 

bipartite graphs (also called alternant), which means that the vertices can be divided in two 

subsets so that no two adjacent vertices are in the same subset. The vertices in one such 

subset are here designated as coloured while the others are chosen as uncoloured. A pair of 

such benzenoid graphs, B & B', is termed a staggered benzenoid if they satisfy three 

structural conditions. First, they allow a superposition such that there is a 1-to-1 overlap 

between the coloured vertices of B and the uncoloured vertices of B'.  Second, the 

uncoloured vertices of B avoid overlap with any vertex of B', and the coloured vertices of B' 

avoid overlap with vertices of B. In slightly different words (for these first two conditions), 

each coloured vertex of B associates with an uncoloured vertex of B', while every uncoloured 

vertex of B avoids association with any vertices of B'. An example is provided by both B and 

B' being phenalenyl radicals, with the central vertex of the first (B) being coloured (& the 

other vertices labeled consistently), and the opposite for the second phenalenyl (B'). More 

examples are given in Figure 2. Note that two staggered benzenoid graphs can be equal. 

 

+

+

 
 
Figure 2. Two examples of staggered benzenoid pairs. The benzenoids in the pair are drawn 

separately on the left side, with the coloured vertices outlined in bold, and the overlapped 
arrangement is on the right side. The pair in the top row has equal members. 

 
The first condition is related to the maximin principle by the fact that in bipartite graphs the 

SOMO has zero coefficients either on the coloured or the uncoloured vertices [8]. The 

maximin principle is fulfilled when the zero coefficients are on the non-overlapping vertices 

of the both members in the staggered pair. However, it remains to examine whether this 

happens with staggered benzenoids and when. As will be shown shortly, staggered 
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benzenoids include also polyradicals or those which are not radicals at all in the neutral state. 

They still deserve consideration since in a charged state they could act as radicals. 

 
Our third condition relates to planarity of the two benzenoid molecules. Whenever two 

coloured vertices of B (overlapping with vertices of B') have a common neighbour, we 

require that the two associated vertices of B' also have a common neighbour. Namely, in a 

benzenoid B with bond lengths a, two vertices connected to the same vertex are at a distance 

3a . If atoms at this distance (of 3a ) in an embedded benzenoid graph do not have a 

common neighbour, they must be on the perimeter, carrying H atoms which strongly 

sterically hinder and induce deviation from planarity, as illustrated in Figure 3. It should be 

noted that the third condition is only necessary but not sufficient for planarity as shown later 

in Section 4.  

 

 
Figure 3. Optimized geometry (UB3LYP/6-31G(d,p)) of the benzenoid molecule with the cove on the 

perimeter. On the right is sideview showing the extent of an out of plane deformation. 
 
The overlapping of two molecules of a dimer is dependent on their real geometries. As a first 

approximation we assume that the carbon skeleton geometries perfectly fit into the graphene 

lattice so that the atoms corresponding to the coloured vertices of B perfectly overlap the 

uncoloured ones of B'. Although the real molecules may deviate from this assumption, it is 

not significant for our present analysis. 

 
Our three conditions define the staggered benzenoids, being introduced primarily as a 

reference class that can be specified in simple terms. Many but not all of its members are 

suitable for intermolecular spin coupling. Among the benzenoid molecules which are not 

included because they do not satisfy the three conditions completely – for example, with 

defective vertices that miss the overlapping partner – might be capable for spin coupling, and 

be interesting research subjects. Yet, based on the discussion in Section 6, it is reasonably 

expected that the staggered benzenoids include the most prominent candidates. To get a little 
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ahead of our discussion: the first condition guarantees the overall alternancy of the pair B & 

B' including the intermolecular interactions from coloured vertices of B to uncoloured ones 

of B', and the second condition, having to do with the nonalignment of the uncoloured 

vertices of B with coloured ones of B', avoids 4-membered rings induced between the two 

molecules.  The third condition helps provide a simple assurance of the matching of the 

numbers of starred & unstarred sites for the overall pair, with the consequent indication of a 

singlet ground state for the pair.     

 
One may wonder if the staggering superposition of two given benzenoids B & B' can be 

realized in more than one way – by overlapping different subsets of vertices. It is shown later 

(in Section 5) that this is not possible, so long as we use a maximal overlapping 

encompassing all the coloured vertices of B & all the uncoloured ones of B', whence the 

staggering relation between two benzenoids is unique. Then, the overlapping vertices can be 

used for the single graph representation of both members in the staggered pair, as we next 

explain.  

 

 

Figure 4. Trigonal representation (on the right) obtained from the overlapping vertices of the two 
staggered hexagonal lattices (in bold black and grey).  

 

3. Concise „trigonal“ representation of staggered benzenoids 

Our condensed trigonal representation is produced in three steps.  First the two constituent 

benzenoids B & B' are superposed so that the overlapping vertices become single new 

vertices.  Second, whenever such condensed new vertices have a common neighbour in either 

B or B' they are connected by a new edge.  Third, all the avoiding vertices and their incident 

edges are deleted. The resulting graph is a trigonal representation as it consists of fused 

triangles and is embeddable in the trigonal lattice.  See, e.g., Figure 4. 
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In order to recover a staggered benzenoid pair from its trigonal representation, the triangles 

are divided in two disjoint groups, such that no edge is shared by the triangles in the same 

group (similar to the labelling of vertices in bipartite graphs). A simple way to do this is to 

divide the triangles according to whether they point upwards or downwards (assuming that 

the triangle graph is oriented with one set of parallel edges lying horizontally). In the example 

on the left side of Figure 5, 

 

+
+

+
+++

+ +

-
-

- -
-- +- -

+ +
++

+ +

-
-

--
+  

Figure 5. On the left side: a trigonal graph with upward and downward pointing triangles denoted by 
(+) and (–) signs, respectively. On the right side: the edges of the perimeter are signed by the 
signs of the nearby triangles. 

 

 one group is denoted by (+) and the other by (–) signs. The subsequent construction of the 

staggered benzenoid pair proceeds: first, by capping all the triangles in the (+) group while 

adding a bridge to the outer side of every perimeter edge belonging to a (–) triangle, thereby 

identifying B; and second, by doing the same for the (–) triangles, to identify B'. (Capping is 

the graph transformation in which a new vertex is inserted into a ring and connected to the 

ring vertices [9]). Two examples of the procedure are shown in Figure 6. The staggered 

benzenoid pair {B,B'} is uniquely determined after removing all the edges of the trigonal 

representation. 

Since the staggered benzenoid pair yields only one trigonal graph, it follows that the trigonal 

representation is faithful. The properties of staggered benzenoids as well as their 

comprehensive generation can be conveniently discussed in terms of their trigonal 

representations. It may be noted that a single benzenoid graph by itself, does not fully 

determine the staggered benzenoid pair, as demonstrated by the example in Figure 7 in which 

the same benzenoid graph participates in two different pairs. The overlapping vertices within 

the common member of these two pairs are complementary. 
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a)

b)

24 vertices

22 vertices

 
Figure 6. Construction of the staggered benzenoid pair from the trigonal graph. These are the smallest 

cases which produce a) equal benzenoids (phenalenyl dimer), b) different benzenoids (even 
with different numbers of vertices: 22 and 24). Their staggered superpositions are in the 
rightmost column. 

 
 

+

+

 
 
Figure 7. Two pairs of staggered benzenoids with a common member. On the left are trigonal graphs 

representing staggered benzenoid pairs in the middle. On the right are their superpositions. 
Note that the first benzenoid graph is present in both rows; in the top row it is paired with 
itself, and in the bottom row with a different benzenoid. 

 
The question arises as to just which connected subgraphs of the triangular lattice may be 

inverted to give a staggered benzenoid.  First, it is clear that the triangular-net subgraph must 
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have every face a triangle (which is to say no holes are to be cut in the net).  Next it is noted 

that only vertices of degrees 3, 4 or 5 might occur on the perimeter. For the case of a degree 2 

vertex, Figure 8a shows that this would lead to a terminal vertex in one of the two 

benzenoids, whence vertices of degree 2 are not allowed (if a staggered benzenoid is to be 

obtained). A perimeter degree 6 is not allowed as such a vertex results either with a 

nonbenzenoid graph or with a pair of benzenoid graphs that violate the third condition a 

staggered pair has to fulfill. Note that according to the recipe for construction of the 

benzenoids from trigonal representation, the bridge vertices should be added beside both 

incident perimeter edges at the degree 6. One way to do this is by adding a separate vertex 

beside each edge (as everywhere else). However, the result would not be a benzenoid graph, 

as it would have the degree 4 on the vertex which had degree 6 in the trigonal representation 

(Fig 8b - upper branch).  For this reason one could try to add these two vertices by merging 

them into a single one (Fig. 8b - lower branch). But in this case the new vertex would connect 

a pair of overlapping vertices (marked in Fig. 8b) which do not have a common neighbour in 

the staggered partner, and thus in opposition to the third condition. The perimeter should be a 

closed path without a crossing point, as one such case implies a bridge in the benzenoid 

graph, while the other cases, all shown in Fig. 8c, include sharp angle on the outer side of the 

perimeter - a feature shared with the degree 6 on the perimeter and for the same reason 

dismissed. All the above conditions are equivalent to a demand that the perimeter be a closed 

(noncrossing) path on the trigonal lattice such that the incoming and outgoing edges at every 

vertex never belong to the same triangle of the triangular lattice. Systematic generation of 

staggered pairs reduces to producing all such cycles. 

 
4. Perimeter of the trigonal representation 

In this section we analyze a relation between the perimeter of the trigonal representation and 

the characteristics of the corresponding staggered benzenoid graphs. This is important 

because the generation procedure is completely reduced to consideration of a perimeter. Then 

it is useful to know which properties of the represented benzenoid graphs can be deduced 

directly from the perimeter so that unwanted results can be avoided or removed. For example, 

if we are interested in neutral radicals, we may want only staggered benzenoid graphs with an 

odd number of vertices, and avoid those even-sized like the example in Fig. 6b. 
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a)

c)

degree 2 terminal vertex in the 
benzenoid graph

perimeter 
crossing bridge

b)
degree 6

+

+

+
the starred vertices have a 
common neighbour in one 
graph, but not in the other

+
not a benzenoid graph

*
*

*

*

sharp angle at the outer
side of the perimeter

or

 
Figure 8. Forbidden details on the perimeter of the trigonal representation: a) a vertex of the degree 2 

leads to a hexagonal graph with terminal vertex; b) a vertex of the degree 6 results in a 
nonbenzenoid graph or violates the third condition for staggering benzenoids; c) crossing of 
the perimeter leads to a bridge in the hexagonal graph, or involves a sharp angle with the 
same consequences as with the degree 6. 

 

Let n, m and t, respectively denote the numbers of vertices, edges and triangles in the trigonal 

graph. The triangles are divided in two disjoint groups labelled by (+) and (–) signs (as in Fig. 

5, left) with t+ and t– denoting the numbers of triangles in these two groups, respectively. 

Further, let p be the number of perimeter vertices, and let p+ and p– be the number of 

perimeter edges belonging to (+) and (–) triangles, respectively. Also, let N+ and N– denote 

the numbers of vertices in the two hexagonal graphs B & B' produced after capping the (+) 

and (–) triangles, respectively. By the construction of the staggered benzenoid pair from the 

trigonal representation, it follows: 

 
  N+ = n + t+ + p–        (1a) 

  N– = n + t– + p+        (1b) 
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Basic relations in a trigonal representation give: 

 
  m = 3t+ + p– = 3t– + p+       (2) 

 
By expressing p+ and p– from (2) and by substitution into (1a,b), one obtains: 

  N+ = n + m – 2t+        (3a) 

  N– = n + m – 2t–        (3b) 

 
and then by the subtraction (3a)-(3b): 
 
  N+ – N– = 2(t– – t+)        (4) 
 
From (3a,b) it follows that N+ and N– have equal parities, determined by (n+m). By using t = 

t+ + t– and p = p+ + p–, it follows from (2): 

 
2m = 3t + p         (5) 

 
The Euler relation between the numbers of vertices, edges and faces in a planar graph gives: 
 
  t + n – m = 1         (6) 
 
and by summing (5) and (6) one gets: 
 
  n + m = 2t + p + 1        (7) 
 
The above relation shows that (n+m) and p have the opposite parities, and that the parity of 

N+ (and N–) is opposite to the parity of p. To obtain the staggered benzenoids with an odd 

number of vertices, one should generate trigonal graphs with an even perimeter length, and 

vice versa. The result could be expected since the construction transforms each perimeter 

edge of the trigonal graph into a pair of incident edges on the perimeter of the benzenoid 

graph, resulting with the perimeter length of the benzenoid equal to 2p. The relation to parity 

of N+/– follows by recalling that the number of vertices enclosed by cycles of length 4k (4k+2) 

in the hexagonal lattice is odd (even) [10]. 

 
According to (6), t and (n+m) have opposite parities. Hence, whenever N+ and N– are even, 

implying that (n+m) is even too, t is odd, and t+ and t– are unequal. From (3a,b) it follows that 

the staggered benzenoid graphs with even numbers of vertices may not be equally sized. This 
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further implies that only the staggered benzenoid graphs with an odd number of vertices can 

be equal (isomorphic). 

 
From the perimeter one may easily determine |t+ – t–|, which is by (4) simply related to the 

difference between sizes of the staggered benzenoids . From (2) it follows: 

 
  3(t+ – t–) = p+ – p–        (8) 
 
The sign of the triangles containing the perimeter edges switches whenever the perimeter 

changes direction, and only then (Fig. 5, right). Note that this holds only for the trigonal 

graphs without degrees 2 and 6 on the perimeter since the perimeter would change direction 

at such vertices, but the sign of the perimeter triangle would remain the same. To obtain |t+ – 

t–|, one may trace the perimeter and sum the perimeter edges with switching the summation 

sign whenever the direction of the perimeter changes. The summation may start at any 

perimeter edge, beginning either with (+) or (–) sign, proceeding until the perimeter cycle is 

closed. By (8), the absolute value of the sum divided by 3 equals to |t+ – t-|. 

 
The perimeter of the trigonal graph provides information about possible sterical obstruction 

from closely spaced hydrogen atoms. Apart from the sterical hindrance which is prevented by 

the very definition of the staggered benzenoids, a similar detail on the benzenoid perimeter 

occurs whenever the trigonal perimeter contains vertices of degree 5 in succession. The atoms 

with close hydrogens now correspond to the avoiding vertices of the staggered benzenoid 

pair, in contrast to the overlapping vertices referred in the definition. An example is given in 

Figure 12a, with the later discussed phenalenyl tilings. Staggered benzenoids without this 

feature can still have too close hydrogens as shown by the example in Figure 9. Such 

situations are not related to some local perimeter details, but they can still be easily 

recognized in systematic generation and filtered out. 

 
By writing down the vertex degrees along the perimeter. one obtains a compact linear code of 

the trigonal representation. The code is straightforwardly turned to the trigonal graph because 

the degrees 3, 4 and 5, correspond respectively to turning right, going straight or turning left 

in the clockwise tracing of the perimeter. In general many different codes of the same trigonal 

graph can be obtained since the perimeter tracing can start at any of its vertices, in two 

possible directions. Then some distinct one, for example the smallest lexicographically, can 
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be chosen to uniquely identify the trigonal graph. It makes a basis for recognition of 

duplicates that comprehensive generation normally produces. 

 

+

 

Figure 9. An example of staggered benzenoid pair with closely spaced hydrogens due to nonlocal 
features. The top benzenoid have 73 vertices and the bottom one 77 vertices. 

 
From the perimeter code one can conclude about the symmetry of the trigonal graph. This is 

important, for example, when one needs to recognize the isomorphic pairs of staggered 

benzenoids. It is clear from the construction that the staggered benzenoids are isomorphic if 

and only if there is a symmetry operation of the trigonal representation that exchanges (+) 

and (–) triangles. It can be the reflection in the plane passing through two perimeter vertices 

of degrees 3 or 5, or the twofold rotation around the axis perpendicular to the graph plane 

(because of planarity, this rotation is equivalent to the inversion through the center). Relation 

to the perimeter code becomes clear by considering effect of the symmetry operation on the 

perimeter. The reflection switches between two perimeter codes going in the opposite 

directions from the vertex lying in the mirror plane. The existence of a vertex with degree 3 

or 5, from which equal perimeter codes are produced in the opposite directions, implies 

automorphic mapping which exchanges (+) and (–) triangles and consequently the 
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isomorphism of staggered benzenoids. The twofold rotation symmetry implies equal 

perimeter codes started in the same direction at any two vertices at the distance p/2. In 

reverse, the perimeter symmetric upon the p/2 shift of the starting vertex implies twofold 

rotation symmetry around the axis perpendicular to the molecular plane. Clearly, the twofold 

rotation exchanges (+) and (–) triangles because it maps the upside pointing triangles into 

those pointing downside. By looking for these perimeter symmetries it is easy to recognize 

those corresponding to isomorphic pairs of staggered benzenoids. 
 

5. Nullity of staggered benzenoids 

Semioccupied molecular orbital, as the populated orbital with the highest energy and 

unpaired spin, influences molecular properties to a great extent. In the alternant conjugated 

system, within HMO, these molecular orbitals have eigenvalue zero and their number is 

called the nullity of graph [11]. The lower limit to this number is equal to the absolute 

difference between the numbers of coloured and uncoloured vertices [11]. The difference is 

called the colour excess [8]. For the (+) and (–) staggered benzenoid graphs, the respective 

colour excesses D+ and D– are related to |t+ – t–|: 

 
  D+ = |N+ – 2n| = |n + m – 2t– – 2n| = |m – n – 2t–| = |t – 1 – 2t–|=  
        = |t+ + t– – 1 – 2t–| = |t+ – t– – 1|        (9) 
 
The preceding result was derived by using the expressions (3) and (6). In an analogous way 

one gets: D– = |t– – t+ – 1|. The expressions for D+ and D– show that one of them is always 

greater than zero. Therefore, at least one of the staggered benzenoids has zero(s) in the 

spectrum. Both of them may have exactly one zero only if t– = t+, which also implies equal 

and odd N+ and N–. 

 
It is interesting to examine cases with |t+ – t–|>1. Then D+ and D– are different and both 

greater than zero. Further, (N+ – 2n) and (N– – 2n) have opposite signs, which means that in 

one benzenoid, the number of overlapping vertices exceeds the number of avoiding vertices, 

while in the other there are less overlapping than avoiding vertices. This further implies that 

their zero eigenvectors do not overlap constructively: in one graph, the nonzero coefficients 

are associated with the overlapping vertices, while in the other, they are on the avoiding 

vertices (the example can be found in Fig. 9). In regard to their spin coupling possibilities, 
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such systems would not be interesting. It is worth to notice that in systems with t– = t+, the 

number of overlapping vertices (n) exceeds the number of avoiding vertices exactly by one, 

as follows from (3) and (6): 

 
 N+/– –  n = n + m – t – n = m – t = n – 1     (10) 

 
Hence it is sure that the nonzero coefficients of the zero eigenvectors are on the overlapping, 

and not on the avoiding vertices. 

 
By the results for D+ and D–, one can also show that two given staggered benzenoid graphs 

may overlap in a single way only –  by the unique set of vertices in each graph, and no other 

overlapping combination is possible. When N– = N+, it follows from (10) that the number of 

overlapping vertices (n) must be greater by one than the number of avoiding vertices, which 

fixes the overlapping vertices in both graphs. When N– ≠ N+ and both D+ and D– are greater 

than zero, the overlapping combination is again unique because in one graph the number of 

avoiding vertices must be greater, and in the other graph it must be smaller than the number 

of overlapping vertices. Only when either D+ or D– is equal to zero (both can not be), two 

overlapping combinations might be possible – with coloured or with uncoloured vertices in 

the graph where these two subsets are equal in size. However, since the overlapping set in the 

other graph is fixed (because N– ≠ N+), the trigonal representation is also fixed, and the 

staggered pair must be the same for both overlapping combinations. This means that if two 

overlapping combinations are possible, they must be equal due to the automorphism of the 

benzenoid graph that switches coloured and uncoloured vertices. The staggered pair in Fig. 

6b may serve as an example. 

 
One should keep in mind that the colour excess determines only the lower limit of the number 

of zero-eigenvalues. The nullity of a benzenoid graph, Z, is fully determined by the maximum 

number of nonadjacent edges in the graph, also known as the size of the maximum matching, 

K [11] : 

 
  Z = N – 2K         (11) 
 
By simple structural relations, it is clear that 2K ≤ N–D. When inequality holds, the 

benzenoid system has additional zeros, beyond those which are present due to D > 0. Their 

coefficients are not localized to the vertices of any particular color. Then, by the properties of 

-663-



degenerate eigenvectors, neither zero nor nonzero coefficients are localized on the vertices of 

a given colour. For this reason it could be difficult to predict and control spin coupling 

properties of the staggered benzenoid pairs with additional zeros in the HMO spectrum, 

although it remains to be seen to what extent is this character reproduced in more exact 

models of electronic structures. An example shown in Figure 10 has colour excess 1, yet 

there are 3 zeros in the graph spectrum since the maximum matching includes only 32 edges. 

 
The concept of staggered benzenoids was initiated with radicals in mind, and the concept 

evolved by itself to include the benzenoid graphs with an even number of vertices which are 

not radicals necessarily. The result (9) for D+/– implies that in the staggered pairs with even 

numbers of vertices, at least one partner has colour excess greater than zero and, 

consequently, one or more zero HMO eigenvalues. It turns out that the staggering relation 

implies presence of zeros in the HMO spectra of benzenoids irrespectively of the size parity, 

which is a bit surprising. 
 

+

 
Figure 10. Example of staggered (equal) benzenoids with an odd number of vertices (N=67) and 

nullity (Z=3) greater than implied by the colour excess D=1. The maximum number K of 
nonadjacent edges is 32. The upper limit to K (32) can be deduced from the numbers of 
coloured vertices above and below the narrowest part of the graph. 

 
The above results provide general clues which are practically important for systematic 

generation of staggered benzenoids by using the trigonal representation. A simple algorithm 

and the corresponding Fortran program will be published elsewhere [12]. The smallest 

staggered benzenoids are shown in the Appendix for the perimeter lengths 6–12. 

 

-664-



6. Possible applications 

The staggered benzenoids are interesting by their potential for spin coupling and remarkable 

magnetic properties. Among the neutral systems, those odd-sized are obvious candidates for 

spin coupling, but only if their colour excess equals to 1. Otherwise nonzero components of 

their SOMOs do not match, as shown in the previous section for |t+ – t–|>1. If there is only 

one zero-eigenvalue, HMO can give a qualitative insight about the matching extent of the two 

SOMOs.  With additional zero-eigenvalues due to K<(N-D)/2, more reliable electronic 

structure models are needed to assess the spin-coupling potential. Among the charged 

systems, only those with single positive or negative charge appear reasonably. The greater 

charges imply too strong electrostatic repulsion as the coupling radicals should be close to 

each other in order to couple their spins. Singly charged staggered benzenoids would be 

radicals for even sizes. Again, when |t+ – t–|>1, the nonzero components of their SOMOs do 

not match, and on the basis of the HMO model, they are not expected to form spin-coupled 

pairs. For t+ – t– = 1, one of the partners does not necessarily have a zero-eigenvector (N+ – 

2n = 0), and the nonzero components of the SOMO in the charged radical would not be 

limited to the overlapping vertices (even if there is the zero-eigenvector due to K<N/2). The 

other member has at least two zero-eigenvectors (due to colour excess equal to 2) with 

nonzero components on the overlapping vertices since N– – 2n = –2. The SOMO of the 

charged radical would be the zero-eigenvector and HMO could serve for quick estimate of 

the spin-coupling quality, but in this case too, more reliable models should be considered. 
 

+

+

 
Figure 11. Examples of phenalenyl tilings. Staggered benzenoid pairs (in the middle) have two equal 

members. Their superposition is on the right. Note that perimeters of the trigonal 
representatives (on the left) change direction at every vertex (have only degrees 3 and 5). 
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Particularly promising seems to be a subclass of staggered benzenoids called phenalenyl 

tilings. The phenalenyl tilings are produced by fusing phenalenyl graphs so that adjacent 

phenalenyl fragments (called tiles) share exactly 2 edges and 3 vertices. It can be realized in 

only one way – by joining an apex of one phenalenyl tile to a fissure of the other. If the 

vertices of phenalenyl tiles are labeled in the alternant way, with the central vertex and the 

next nearest neighbours being coloured, the tiling will also be consistently labeled since the 

coloured vertices of one tile merge with the coloured vertices of another. It turns out that 

phenalenyl tilings always make staggered pairs: the partner of a given tiling is produced by 

inverting each tile through its central vertex – the inverted tiles tightly join as before 

inversion. Consequently, the phenalenyl motifs in the staggered tilings are superimposed in 

exactly the same way as in the phenalenyl dimer itself. The smallest phenalenyl tilings are 

shown in Figure 11 and some others are in Figure 12. Note that one member of the smallest 

isospectral benzenoids (Fig. 12a) is not expected to be planar due to the proximal hydrogen 

atoms in the perimeter cove, which emerged from two contiguous degrees 5 on the perimeter 

of the trigonal representation. The optimized geometry of this benzenoid system has been 

already shown in Fig. 3. The smallest pair of nonisomorphic phenalenyl tilings, expected to 

be planar, is shown in Fig. 12b. 

The trigonal representation of the phenalenyl tiling may have only vertices of degrees 3 and 5 

on the perimeter, with no vertices of degree 4. It means that the perimeter has no straight 

segments, changing direction at every vertex. To verify this, note that the trigonal 

representation of a phenalenyl tiling is a tiling composed of capped hexagons (Figs. 11 and 

12, on the left). Therefore the trigonal representation can be viewed as the (capped) 

hexagonal graph. Clearly, its perimeter changes direction at every vertex. To see the reverse, 

that such a perimeter always corresponds to representation of a phenalenyl tiling, one should 

recognize that the trigonal lattice can be realized as a superposition of three hexagonal lattices 

shown in Figure 13. After initiating the perimeter at an edge of any of three hexagonal 

lattices in Fig. 13, by changing direction at every vertex, the perimeter always stays 

embedded in the initial hexagonal lattice. In other words, the perimeter does not turn from 

one hexagonal lattice to another because it would require either the straight segment (with the 

vertex of degree 4) or the sharp turn (with the vertex of degree 2 or 6, which are not allowed 

in trigonal representation of staggered benzenoids). After closing the perimeter, the resulting 
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trigonal graph is a tiling of capped hexagons, and by construction, each capped hexagon turns 

into a phenalenyl tile in the staggered benzenoid graphs. 

 
a)

b)

+

+

 
Figure 12. Isospectral phenalenyl tilings. a) The smallest pair, which is however not planar due to a 

cove on the perimeter of the right member. b) The smallest pair of isospectral, 
nonisomorphic and planar phenalenyl tilings (with formula C91H27). 

 

 

Figure 13. Trigonal lattice depicted as superposition of three hexagonal lattices (the three lattices are 
drawn by full and dashed black lines, and by full grey line). 
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It is intriguing that these systems were already recognized as special benzenoid systems – 

namely, the staggered phenalenyl tiles are known to be isospectral within the HMO model 

[13]. These are the only isospectral benzenoid graphs known so far [14]. Thus whenever two 

staggered phenalenyl tilings are different - nonisomorphic, they must be isospectral. This can 

be an important factor that favours their electronic interaction. Colour excess of phenalenyl 

tilings is exactly 1, as follows from the perimeter of the trigonal representation that switches 

direction at every vertex, resulting with t– = t+. Consequently, the lower limit to their nullity 

is 1, and it can be proven to be exactly 1 [15]. The HMO eigenvector with the unique zero 

eigenvalue has a very simple form. The coefficients are zero at the avoiding vertices, where 

normally expected, and also at the central vertices of the phenalenyl tiles. All other vertices 

participate with nonzero coefficients, which are by absolute value all equal and their signs 

strictly alternating along any path in the graph. It is easy to verify that the described 

eigenvector pattern satisfies the eigenvalue equation in the HMO model, as each avoiding 

vertex is adjacent to two overlapping vertices with nonzero coefficients whose sum is zero 

due to the opposite signs. Such SOMO implies evenly distributed charge and electronic 

interaction between overlapping monomers throughout the molecule. In other benzenoid 

radicals it is much more common to find SOMO with rather unevenly distributed charge 

which is concentrated in one part of the molecule. Even distribution of charge certainly 

favours spin coupling interaction between monomers and for this reason phenalenyl tilings 

could be the best possible candidates. It could also make possible association between, say, 

the phenalenyl radical and a larger phenalenyl tiling that could accomodate the radical at 

different parts of the tiling. Perhaps a controlled movement of the phenalenyl radical over the 

larger tiling could also be realized. 

Apart from an obvious potential of spin coupled benzenoid radicals to act as molecular 

magnets, another possible application may arise in the field of chiroptical switches. Note that 

the dimers produced by spin coupling of two isomorphic staggered benzenoids can be chiral 

even when the monomers are not; an example is given in Figure 14. Since benzenoid 

molecules tend to pack in columns [16], chiral dimers could be arranged in a vertical column 

as if the single dimer was translationally replicated along the column axis. Each monomer 

would be situated between two others – one at the smaller distance, and the other on the 

opposite side, at the larger distance. Presumably, the pairs with the smaller distances would 

be spin coupled, forming a specific enantiomer. A collective shift by which the smaller 
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monomer distances were increased and the larger decreased, would result in complementary 

pairing of monomers: those that were initially coupled would be now uncoupled and vice 

versa. The new dimers would have the opposite chirality than at the beginning (Fig. 14). Such 

a system would have two states, equal in energy. Transition from one spacing (and pairing) to 

the complementary one should not be energy demanding, as it requires a relatively small 

translation of the molecules along the vertical axis (eventually with a rotation around the 

axis). Beside these two enantiomeric arrangements, another geometry is possible, with the 

radicals at uniform distances forming the Heisenberg spin chain. Besides magnetically 

different from the dimeric state, this structure would be achiral. Thus the system could have 

two phases: one paramagnetic and achiral and the other diamagnetic and chiral (though the 

precise magnetic manifestation also depends on the singlet-triplet gap). Similar systems with 

reversible dimeric and equidistant structures present at different temperatures are already 

known as e.g. spin-Peierls systems [17]. If realized, the system exemplified in Fig. 14 could 

have remarkable novel and interesting applications as a molecular optoelectronic device. 

 

 

Figure 14. Two enantiomeric stacks of phenalenyl tilings from the bottom row of Fig. 11. The 
interconversion of the two columnar arrangements requires small shift of the molecules 
and possibly their rotation in the molecular plane. 
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7. Conclusions 

On the basis of structural similarity with the phenalenyl dimers, we have defined a new class 

of paired benzenoid graphs, named staggered benzenoids. For the purpose of definition, 

staggered benzenoids are assumed to fit into the hexagonal lattice taken as geometrical object 

composed of the regular hexagons. Their vertices are considered as coloured or uncoloured, 

such that no two adjacent vertices are with the same label. By definition, a pair of staggered 

benzenoid graphs fulfills two conditions. By the first, they must be superimposable so that the 

coloured vertices of one graph overlap with the uncoloured vertices of another, while all the 

remaining vertices are at the staggered positions avoid any overlapping. By the second 

condition, each pair of overlapping vertices with a common  neighbour in one graph should 

have a common neighbour in the second graph, too. The first condition matches the maximin 

principle [4] which was recognized as the decisive factor for stabilizing intermolecular 

interaction between planar π-radicals.  The second condition is necessary (but not sufficient) 

for planar geometries of the two benzenoids. 

 
Convenient and faithful representation of staggered benzenoid pairs is realized by trigonal 

graphs – subgraphs of the trigonal lattice. A trigonal graph represents staggered benzenoid 

pair if and only if it is enclosed by the noncrossing perimeter involving only vertices of the 

degrees 3, 4 or 5, and no vertices of degrees 2 and 6. Sequence of the vertex degrees along 

the perimeter encodes all the information about the staggered benzenoids structures and some 

important details can be easily derived directly from the perimeter sequence. The parity of the 

perimeter length is opposite to the parity of the number of vertices in the benzenoids. 

Positions of the degrees 3 and 5 on the perimeter determine the colour excess, which 

represents the lower limit to the number of zero-eigenvalues (nullity of a graph). Even-sized 

staggered benzenoids have different numbers of vertices and at least one member has zero 

eigenvalues due to the nonzero colour excess. If the staggered benzenoids have different 

sizes, their zero-eigenvectors do not match either because one of them has no zero eigenvalue 

at all, or, if they both have it, the vertices with nonzero contributions in the zero-eigenvectors 

do not match. The most obvious candidates for spin coupling remain to be those with odd 

numbers of vertices which are equal in size. Their colour excess equals to 1, as needed. 
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Particularly important and interesting are the phenalenyl tilings - staggered benzenoids 

assembled from phenalenyl fragments joined pairwise by fusion of their perimeters at two 

incident edges (the apex of one matches the fissure on the other). All trigonal representations 

with no vertices of the degree 4 correspond to phenalenyl tilings. Staggered phenalenyl tilings 

are known to involve either isomorphic or isospectral benzenoids [13]. Within the HMO 

model, they have exactly one zero eigenvalue and the corresponding  eigenvectors have 

particularly simple form with the nonzero coefficients being equal and evenly distributed 

throughout the molecule. For this reason, as well as for their isospectrality, they are 

particularly promising in regard to spin interaction ability. 

 
Spin coupling staggered benzenoids could find an application as molecular magnets with two 

possible phases: with stacked dimers – presumably diamagnetic, and uniformly stacked 

monomers – presumably paramagnetic. Chiral pairs could additionally exhibit chiroptical 

properties as the dimers could eventually switch between two enantiomeric pairings in an 

easy and controlled manner. Possibly even the phase with achiral stacks of uniformly spaced 

radicals would also exist, finally resulting with a multifunctional system that may change 

both the magnetic and chiroptical properties. 
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Appendix 

The list of staggered benzenoids and their trigonal representations for perimeter lengths 6-12 

p=6

p=8

p=9

p=10

+

C22H12 C24H12

+

+

+

+

+

+

C13H9

C19H11

C23H13

C25H13

C27H13

C25H13
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p=11

+

C30H14

+

C28H14

C30H14 C32H14

p=12

+

+

+

+

+

C31H15

C29H15

C31H15

C27H15

C37H15
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p=12, continued

+

+

C33H15

C35H15

+

+

+

+

C33H15

C31H15

C33H15

C35H15

+ C37H15
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p=12, completed

+ C31H15
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