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Abstract

The connective eccentricity index of a graph G is defined as ξce(G) =
∑

v∈V (G)
d(v)
ε(v) , where

ε(v) and d(v) denote the eccentricity and the degree of the vertex v, respectively. In this paper

we derive upper or lower bounds for the connective eccentricity index in terms of some graph

invariants such as the radius, independence number, vertex connectivity, minimum degree, max-

imum degree etc. Moreover, we investigate the maximal and the minimal values of connective

eccentricity index among all n-vertex graphs with fixed number of pendent vertices and charac-

terize the extremal graphs. In addition, we study the cactus on n vertices with k cycles having

the maximal connective eccentricity index.

1 Introduction

Throughout this paper, all graphs we considered are simple and connected. Let G =

(V (G), E(G)) be a simple connected graph with n vertices and m edges. For a vertex

v ∈ V (G), dG(v) (or just d(v) briefly) denotes the degree of v. δ(G), Δ(G) represent the

minimum and maximum degree of G, respectively. For vertices u, v ∈ V (G), the distance

d(u, v) is defined as the length of the shortest path between u and v in G. The eccentricity

ε(v) of a vertex v is the maximum distance from v to any other vertex. The radius r(G)
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of a graph is the minimum eccentricity of any vertex, while the diameter D(G) of a graph

is the maximum eccentricity of any vertex in the graph. Let Kn , Sn and Pn be a complete

graph, a star and a path on n vertices, respectively.

In organic chemistry, topological indices have been found to be useful in chemical

documentation, isomer discrimination, structure-property relationships, structure-activity

(SAR) relationships and pharmaceutical drug design. These indices include Wiener index

[32–34], Balaban’s index [2–5], Hosoya index [17,18], Randić index [25] and so on. In recent

years, some indices have been derived related to eccentricity such as eccentric connectivity

index [14, 23, 26], eccentric distance sum [15], augmented and super augmented eccentric

connectivity indices [1, 12, 29], adjacent eccentric distance sum index [27,28].

The Wiener index is one of the most used topological indices with high correlation

with many physical and chemical indices of molecular compounds (for a recent survey on

Wiener index see [8]). The Wiener index of a graph G, denoted by W (G), is defined as

the sum of the distances between all pairs of vertices in graph G, that is

W (G) =
∑

{u,v}⊆V (G)

d(u, v) =
1

2

∑
v∈V (G)

D(v) .

The parameter DD(G) is called the degree distance of G and it was introduced by

Dobrynin and Kochetova [9] and Gutman [16] as a graph-theoretical descriptor for char-

acterizing alkanes; it can be considered as a weighted version of the Wiener index

DD(G) =
∑

{u,v}⊆V (G)

(d(u) + d(v))d(u, v) =
∑

v∈V (G)

d(v) ·D(v) .

When G is a tree on n vertices, it has been demonstrated that Wiener index and degree

distance are closely related by (see [19,21]) DD(G) = 4W (G)− n(n− 1).

The total eccentricity of the graph G [6, 31], denoted by ζ(G), is defined as the sum

of eccentricities of all vertices of graph G, i. e.,

ζ(G) =
∑

v∈V (G)

ε(v).

The eccentric connectivity index of G, denoted by ξc(G), is defined as [26]

ξc(G) =
∑

v∈V (G)

ε(v)d(v) .
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The eccentric distance sum (EDS) of G is defined as [15]

ξd(G) =
∑

v∈V (G)

ε(v)D(v) .

More recently, the mathematical properties of eccentric distance sum have been investi-

gated. In [22,35], the authors studied the eccentric distance sum of trees, unicyclic graph

with given girth and established some lower and upper bounds for the eccentric distance

sum in terms of some graph invariants.

In [27], Sardana and Madan introduced a novel topological descriptor–adjacent eccen-

tric distance sum index, which is defined to be

ξsv(G) =
∑

v∈V (G)

ε(v)D(v)

d(v)
.

In 2000, Gupta, Singh and Madan [13] introduced a novel, adjacency-cum-path length

based, topological descriptor termed the connective eccentricity index. In order to explore

the potential of connective eccentricity index in predicting biological activity, authors

used nonpeptide N-benzylimidazole derivatives to investigate the predictability of the

connective eccentricity index with respect to antihypertensive activity. They showed that

results obtained using connective eccentricity index were better than the corresponding

values obtained using Balaban’s mean square distance index and the accuracy of prediction

was found to be about 80% in the active range [13].

The connective eccentricity index (CEI) of a graph G was defined as

ξce(G) =
∑

v∈V (G)

d(v)

ε(v)
.

As a newly introduced distance-based molecular descriptor, there are three groups of

closed related problems which have attracted the attention of researchers naturally:

1. How ξce(G) depends on the structure of the graph G?

2. Given a set of molecular graphs G, find upper and lower bounds for ξce(G) of graphs

in G and characterize the extremal graphs which attain the maximal and minimal

connective eccentricity index.

3. Compare the values of ξce(G) with other molecular topological indices such as

Wiener index and its generalizations.
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In view of these natural problems, in this paper, we present some mathematical results

for this new molecular descriptor. This paper is organized as follows. In Section 2, we

give some bounds for the CEI in terms of some graph invariants such as the radius,

independence number, vertex connectivity, minimum degree, and the number of vertices

with eccentricity 1. In Section 3, we investigate the CEI among all connected graphs on

n vertices with fixed number of pendent vertices and characterize the graphs with the

maximal, minimal CEI, respectively. In Section 4, we determine the maximal CEI among

all n-vertex graphs with fixed number of cut edges. In Section 5, we consider the maximal

CEI among the cacti on n vertices with k cycles and obtain the extremal graph.

2 Bounds for connective eccentricity index

Recall that the first and second Zagreb indices are defined as [11]

M1(G) =
∑

u∈V (G)

[d(u)]2 , M2(G) =
∑

uv∈E(G)

d(u) d(v)

whereas the first and second Zagreb coindices are [7, 10,20]

M1(G) =
∑

uv/∈E(G)

[d(u) + d(v)] , M2(G) =
∑

uv/∈E(G)

d(u) d(v) .

For more details on vertex–degree–based topological indices see [11] and the references

cited therein.

Theorem 2.1. Let G be a connected simple graph. Then we have

1. ξce(G) ≤ 2m ≤ n(n− 1), with equality if and only if G ∼= Kn.

2. ξce(G) ≥ n2δ
ζ(G)

, with equality if and only if G ∼= Kn, or G ∼= Kn − n
2
e for even n.

3. ξce(G) ≤ ξc(G), with equality if and only if G ∼= Kn.

4. ξce(G) ≥ DD(G)+2M2+2M2

ξd(G)
, with equality if and only if G ∼= Kn.

5. ξce(G) ≥ 2W (G)+n(n−1)2

ξsv(G)
, with equality if and only if G ∼= Kn.

6. ξce(G) ≥ 4m2

ξc(G)
, with equality if and only if ε(v) is a constant for all v.

7. ξce(G) ≥ M1

ζ(G)
.
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Proof. (1). Since ε(v) ≥ 1 for any v ∈ V (G), then

ξce(G) =
∑

v∈V (G)

d(v)

ε(v)
≤

∑
v∈V (G)

d(v) = 2m

the equality holds in the above inequality if and only if ε(v) = 1 for any v ∈ V (G), i. e,

G is a complete graph.

(2). From the harmonic-arithmetic inequality, we have

ξce(G) =
∑

v∈V (G)

d(v)

ε(v)
≥ δ

∑
v∈V (G)

1

ε(v)
≥ n2δ∑

v∈V (G) ε(v)
=

n2δ

ζ(G)
.

The first equality holds if and only if d(v) = δ for all v and the second equality holds

if and only if ε(v) is a constant.

Let ni(v) be the number of vertices at distance i from the vertex v. It is evident that

d(v) ≤ n− ε(v) with equality if and only if ε(v) = 1 and deg(v) = n− 1, or ε(v) ≥ 2 and

n2(v) = n3(v) = · · · = nε(v)(v) = 1.

If ε(v) = 1 and deg(v) = n− 1 for any v ∈ V (G), then G ∼= Kn.

If ε(v) = 2 and deg(v) = n− 2 for any v ∈ V (G), then G ∼= Kn − n
2
e for even n.

If ε(v) = 2 and deg(v) ≤ n−3 for some vertex v ∈ V (G), then there is no such regular

graphs.

If there exists some vertex u ∈ V (G) such that ε(u) ≥ 3. Then the diameter of G is 3.

In fact, assume to the contrary that there exists an induced path P with length D(G) > 3

in G. Then there exists some vertex ui ∈ V (P ) such that ε(ui) ≥ 2 and n2(ui) ≥ 2. This

contradicts that n2(ui) = 1. Since n2(u) = n3(u) = · · · = nε(u)(u) = 1, then G ∼= P4. This

contradicts that G is regular.

The converse is easy to check.

(3). Evidently, 1
ε(v)

≤ ε(v), with equality if and only if ε(v) = 1. Therefore

ξce(G) =
∑

v∈V (G)

d(v)

ε(v)
≤

∑
v∈V (G)

d(v) ε(v) = ξc(G) .

(4). Since D(v) ≥ n− 1 ≥ d(v), with equality if and only if G ∼= Kn, we have∑
v∈V (G)

d(v)

ε(v)

∑
v∈V (G)

D(v) ε(v) ≥
( ∑

v∈V (G)

√
d(v)D(v)

)2

by Cauchy inequality

=
∑

v∈V (G)

d(v)D(v) + 2
∑

u,v∈V (G)

√
d(v)D(v) d(u)D(u)

≥ DD(G) + 2
∑

u,v∈V (G)

d(u) d(v)

= DD(G) + 2M2 + 2M2 .
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The first equality holds if and only if d(v)
ε(v)

= cD(v) ε(v) for some constant c and any

v ∈ V (G). The second equality holds if and only if G ∼= Kn. Therefore

ξce(G) ≥ DD(G) + 2M2 + 2M2

ξd(G)

with equality if and only if G ∼= Kn.

(5). Similar as above,

∑
v∈V (G)

d(v)

ε(v)

∑
v∈V (G)

ε(v)D(v)

d(v)
≥

( ∑
v∈V (G)

√
D(v)

)2

=
∑

v∈V (G)

D(v) + 2
∑

u,v∈V (G)

√
D(v)D(u)

≥ 2W (G) + 2(n− 1)

(
n

2

)
.

Therefore

ξce(G) ≥ 2W (G) + n(n− 1)2

ξsv(G)

with equality if and only if G ∼= Kn.

(6). From the Cauchy inequality, one has

∑
v∈V (G)

d(v)

ε(v)

∑
v∈V (G)

d(v) ε(v) ≥
( ∑

v∈V (G)

d(v)
)2

.

Therefore

ξce(G) ≥ 4m2

ξc(G)

with equality if and only if ε(v) is a constant for all v.

(7). It is proved in [30] that
(∑

v∈V (G)[d(v)]
1/p

)p

≥ ∑
v∈V (G)[d(v)]

p. Therefore

∑
v∈V (G)

d(v)

ε(v)

∑
v∈V (G)

ε(v) ≥
( ∑

v∈V (G)

√
d(v)

)2

≥ M1

Therefore

ξce(G) ≥ M1

ζ(G)
.

Let Kn − ke be the graph obtained from Kn by deleting k independent edges for

0 ≤ k ≤ 	n
2

.
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Theorem 2.2. Let G be a connected graph on n vertices. Let n0 be the number of vertices

with eccentricity 1 in graph G. Then

ξce(G) ≤ n(n− 2)

2
+

n

2
n0

with equality if and only if G ∼= Kn0 ∨ (Kn−n0 − n−n0

2
e), where n− n0 is even.

Proof. Let S = {v1, v2, · · · , vn0} be the set of vertices with eccentricity 1. It follows that

ε(u) ≥ 2, deg(u) ≤ n− 2 for any u ∈ V (G) \ S. By the definition of CEI, we have

ξce(G) =

n0∑
i=1

d(vi)

ε(vi)
+

∑
u∈V (G)\S

d(u)

ε(u)

≤ n0(n− 1) +
∑

u∈V (G)\S

n− 2

2

=
n(n− 2)

2
+

n

2
n0 .

The above equality holds if and only if ε(v) = 2 and deg(v) = n − 2 for any vertices

v ∈ V (G) \ S, i. e., G ∼= Kn0 ∨ (Kn−n0 − n−n0

2
e), n− n0 is even.

Theorem 2.3. Let G be a connected graph on n vertices with m edges. Let

a =

⌊
2n− 1−

√
(2n− 1)2 − 8m

2

⌋

be the largest integer satisfying that x2 + (1− 2n)x+ 2m ≥ 0. Then

ξce(G) ≤ n(n− 2)

2
+

n

2
a

with equality if and only if G ∼= Ka ∨ (Kn−a − n−a
2
e), where n− a is even.

Proof. By Theorem 2.2, we have ξce(G) ≤ n(n−2)
2

+ n
2
n0, where n0 is the number of vertices

with degree n− 1. The equality holds if and only if all vertices of degree less than n− 1

have eccentricity 2. Since 2m =
∑

v∈V (G) d(v) ≥ n0(n − 1) + n0(n − n0), so this implies

that n0 ≤ a. Therefore

ξce(G) ≤ n(n− 2)

2
+

n

2
n0 ≤

n(n− 2)

2
+

n

2
a

with equality if and only if G has exactly a vertices with eccentricity one and all other

vertices have eccentricity two.
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Theorem 2.4. Let G be a connected graph on n vertices with radius r. Then

ξce(G) ≤ n2

r
− n

with equality if and only if G ∼= Kn, or G ∼= Kn − n
2
e for even n.

Proof. It is evident that d(v) ≤ n− ε(v) for any v ∈ V (G). Then

ξce(G) =
∑

v∈V (G)

d(v)

ε(v)

≤
∑

v∈V (G)

n− ε(v)

ε(v)
(1)

≤ n
∑

v∈V (G)

1

r
− n (2)

=
n2

r
− n .

If the equality holds in the above proof, then both (1) and (2) must be equalities.

The equality in (1) holds if and only if ε(v) = n− d(v) for any vertex v. The equality in

(2) holds if and only if ε(v) = r for any vertex v. So if the equalities hold in the above

inequalities, then G is regular with degree n − r and ε(v) = r for any vertex v. The

remaining is similar to (1) of Theorem 2.1.

¿From the definition of CEI, one has

Lemma 2.5. Let G be a non-complete graph. Then ξce(G) < ξce(G+ e) for e ∈ E(G).

We adopt the traditional symbols in graph theory. We use α(G), γ(G), κ(G), κ′(G) to

denote the independence number, the vertex covering number, the vertex connectivity,

the edge connectivity, respectively. It is well known that κ(G) ≤ κ′(G) ≤ δ(G) and

α(G) + γ(G) = n.

Let G� = Kn−α ∨Kα . Let e1 be an edge in G� joining two vertices in Kn−α and Kα .

Let e2 be an edge incident two vertices in Kα .

Theorem 2.6. Let G be a connected graph on n (≥ 6) vertices with independence number

α. Then

1. ξce(G) ≤ (n− α)(n− 1 + α
2
), with equality if and only if G ∼= G�;

2. if G ∈ Gn,α\{G�}, then ξce(G) ≤ 1
2

(
2n2 − (3 + α)n − α2 + α + 1

)
, with equality if

and only if G ∼= G� − e1.

-618-



Proof. The result (1) follows from Lemma 2.5. We next consider result (2). By deleting

an edge in G�, we get two graphs: G� − e1, G
� − e2. From Lemma 2.5, we need only

compare ξsv(G� − e1) with ξce(G� − e2).

By direct calculation we get

ξce(G� − e1) =
1

2

(
2n2 − (3 + α)n− α2 + α + 1

)
ξsv(G� − e2) =

1

2

(
2n2 − (4 + α)n− α2 + 2α

)
.

It follows that

ξsv(G� − e1)− ξsv(G� − e2) =
1

2
(n− α + 1) > 0

which implies the result.

Corollary 2.7. Let G be a connected graph on n vertices with covering number γ. Then

ξce(G) ≤ γ

(
n− 1 +

n− γ

2

)
with equality holding if and only if G ∼= Kγ ∨Kn−γ .

Ilić et al. [22] investigated the EDS of graphs with given vertex connectivity. By

modifying their method, we have

Theorem 2.8. Let G be a connected graph on n vertices with vertex connectivity κ. Then

ξce(G) ≤ 1

2

(
n2 + (κ− 3)n+ κ+ 2

)
with equality holding if and only if G ∼= Kκ ∨ (K1 ∪Kn−κ−1).

Theorem 2.9. Let G be a connected graph on n vertices with edge connectivity κ′. Then

ξce(G) ≤ 1

2

(
n2 + (κ′ − 3)n+ κ′ + 2

)
with equality holding if and only if G ∼= Kκ′ ∨ (K1 ∪Kn−κ′−1) .

Proof. Let f(x) = 1
2

(
n2 + (x− 3)n+ x+ 2

)
. It is easy to verify that f(κ′) ≥ f(κ) due to

the fact that κ ≤ κ′. By Theorem 2.8, we have f(κ′) ≥ f(κ) ≥ ξce(G). If ξce(G) = f(κ′),

then κ′ = κ. This implies the result.

Theorem 2.10. Let G be a connected graph on n vertices with minimum degree δ. Then

nδ

n− δ
≤ ξce(G) ≤ 1

2

(
n2 + (δ − 3)n+ δ + 2

)
with the right–hand side equality holding if and only if G ∼= Kδ ∨ (K1 ∪Kn−δ−1) and the

left–hand side equality holding if and only if G ∼= Kn, or G ∼= Kn − n
2
e for even n.
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Proof. Similarly to the proof of Theorem 2.9, we can obtain the right–hand side inequality.

According to the discussion in Theorem 2.4

ξce(G) ≥
∑

v∈V (G)

d(v)

n− d(v)
≥

∑
v∈V (G)

δ

n− δ
=

nδ

n− δ
.

The left–hand side inequality follows.

3 Connected graphs with k pendent vertices

Let Kk
n be the graph obtained from Kn−k by attaching k pendent edges to one vertex

of Kn−k. For nonnegative integers p, q, let T k
n be the set of trees obtained by identifying

two end-vertices of Pn−k with the centers of stars Sp+1, Sq+1 (p+ q = k), respectively. It

is evident that any two trees in T k
n have the same CEI. Let H(n) be the n-th harmonic

number, i. e, H(n) = 1 + 1
2
+ · · ·+ 1

n
.

Theorem 3.1. Let G be a connected graph on n vertices with k pendent vertices. Then

C ≤ ξce(G) ≤ 1

2
(n2 − 2kn+ k2 + 3k − 1)

where

C =

⎧⎪⎨
⎪⎩

(2k+2)n−2k2−k+2
(n−k)(n−k+1)

+ 4H(n− k − 1)− 4H(n−k
2
) if n− k is even

(2k+6)n−2k2−5k+2
(n−k)(n−k+1)

+ 4H(n− k − 1)− 4H(n−k+1
2

) if n− k is odd.

The left–hand side equality holds if and only if G ∈ T k
n and the right–hand side equality

holds if and only if G ∼= Kk
n .

Proof. Let Gmax be the graph with the maximal CEI among all connected graphs on

n vertices with k pendent vertices. Assume that {v1, v2, · · · , vk} be the set of pendent

vertices in Gmax. By Lemma 2.5, the subgraph G′ induced by V (Gmax)\{v1, · · · , vk} is a

complete graph. All k pendent edges are attached at some vertices of G′. Next we would

prove that Gmax
∼= Kk

n.

Assume that there exist only two vertices ui, uj of G′ such that d(ui) ≥ d(uj) >

n − k − 1. Let G1 be the new graph obtained from Gmax by removing all pendent

edges attached to uj and attaching them to ui. It follows that εGmax(v) = εG1(v) for

v ∈ V (G′)\{ui} and εGmax(ui) > εG1(ui). The degrees of vertices in V (Gmax)\{ui, uj} do

not change, but the degree of ui increases by dGmax(uj) − n + k + 1 and the one of uj
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decreases by dGmax(uj)− n− k + 1. The eccentricities of all pendent vertices decrease by

1. So we have

ξce(Gmax)− ξce(G1) <
dGmax(ui)

εGmax(ui)
+

dGmax(uj)

εGmax(uj)
− dG1(ui)

εG1(ui)
− dG1(uj)

εG1(uj)

<
dGmax(ui)

εG1(ui)
− dG1(ui)

εG1(ui)
+

dGmax(uj)

εGmax(uj)
− dG1(uj)

εGmax(uj)

=
−dGmax(uj) + n− k − 1

εG1(ui)
+

dGmax(uj) − n+ k + 1

εGmax(uj)

<
−dGmax(uj) + n− k − 1

εGmax(uj)
+

dGmax(uj) − n+ k + 1

εGmax(uj)

= 0 .

This contradicts to the fact that Gmax has the maximal CEI.

Assume that there exist at least three vertices in G′ such that their degrees are at least

n − k. We can repeatedly apply the above procedure and get a new graph with larger

CEI, this yields a contraction.

Therefore, Gmax
∼= Kk

n .

Let Gmin be the graph with the minimal CEI among all connected graph on n vertices

with k vertices. By Lemma 2.5, Gmin is a tree. Next we intend to prove that Gmin ∈ T k
n .

In the following we deal with two claims.

Claim 1. Gmin must be a caterpillar.

Proof of Claim 1. Let Pt+1 = v0v1 · · · vt be the longest path in Gmin. If t = 3, then

Gmin must be a caterpillar. so we only consider the case t ≥ 4.

Assume that i ∈ {2, 3, · · · , �k+1
2
�} is the smallest integer such that there exists a

vertex u different to vi−1 and vi+1, which is adjacent to vi and |NGmin
(u)| ≥ 2. Let

NGmin
(u) = {vi, w1, w2, · · · , ws}. Let T1 be the subtree of Gmin − vivi+1 − viu containing

vi. Let T2 (resp. T3) be the subtree of Gmin − vivi+1 − viu containing vi+1 (resp. u).

Let T ′ = Gmin − {uw1, uw2, · · · , uws} + {vtw1, vtw2, · · · , vtws}. It is evident that T ′

has k pendent vertices. It can be checked that

• For any v ∈ V (T1), εGmin
(v) < εT ′(v) and dGmin

(v) = dT ′(v);

• For any v ∈ V (T3 − u), εGmin
(v) < εT ′(v) and dGmin

(v) = dT ′(v);

• εGmin
(u) < εT ′(u), dGmin

(u) = s+ 1 and dT ′(u) = 1;
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• For any v ∈ V (T2 − vt), εGmin
(v) ≤ εT ′(v) and dGmin

(v) = dT ′(v);

• εGmin
(vt) = εT ′(vt), dGmin

(vt) = 1 and dT ′(v) = s+ 1.

Bearing in mind that εT ′(u) ≤ εT ′(vt), it follows that

ξce(Gmin)− ξce(T ′) >
dGmin

(u)

εGmin
(u)

− dT ′(u)

εT ′(u)
+

dGmin
(vt)

εGmin
(vt)

− dT ′(vt)

εT ′(vt)

=
s+ 1

εGmin
(u)

− 1

εT ′(u)
+

1

εGmin
(vt)

− s+ 1

εT ′(vt)

> s
( 1

εT ′(u)
− 1

εT ′(vt)

)
≥ 0 .

This leads to a contradiction.

Assume that j ∈ {�k+1
2
�, · · · , t − 2} is the largest integer such that there exists a

vertex v different from vj−1 and vj+1, which is adjacent to vj and |NGmin
(v)| ≥ 2. Let

NGmin
(v) = {vj, w′

1, w
′
2, · · · , w′

s}. Similarly to the above discussion, we construct a new

graph

T ′′ = Gmin − {vw′
1, vw

′
2, · · · , vw′

s}+ {v0w′
1, v0w

′
2, · · · , v0w′

s}

and get ξce(Gmin) > ξce(T ′′), which is a contradiction.

Therefore, Gmin must be a caterpillar.

Claim 2. Gmin ∈ T k
n .

By Claim 1, Gmin is a caterpillar with k pendent vertices, so Gmin has the diameter

n− k + 1. Let Pn−k+2 = v0v1 · · · vn−k+1 be the longest path in Gmin.

Assume that i ∈ {2, 3, · · · , �k+1
2
�} is the smallest integer such that d(vi) > 2. Let

NGmin
(vi) = {vi−1, vi+1, w1, · · · , ws}. We construct a new tree

T1 = Gmin − {viw1, viw2, · · · , viws}+ {v1w1, v1w2, · · · , v1ws} .

The eccentricities of these pendent vertices are increased, while the eccentricities of other

vertices remain the same. Moreover, the degree of vi decreases by s, while the degree of

v1 increases by s. The degrees of other vertices remain the same. Therefore it follows that

ξce(Gmin)− ξce(T1) >
dGmin

(v1)

εGmin
(v1)

+
dGmin

(vi)

εGmin
(vi)

− dT1(v1)

εT1(v1)
− dT1(vi)

εT1(vi)

= − s

εGmin
(v1)

+
s

εGmin
(vi)

> 0
(
since εGmin

(vi) < εGmin
(v1)

)
.
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This contradicts to the fact that Gmin has the minimal CEI.

Assume that j ∈ {�k+1
2
�, · · · , n− k− 1} is the largest integer such that d(vj) > 2. Let

NGmin
(vj) = {vj−1, vj+1, w

′
1, · · · , w′

s}. Let

T2 = Gmin − vjw
′
1 − vjw

′
2 · · · − vjw

′
s + vn−kw

′
1 + vn−kw

′
2 + · · ·+ vn−kw

′
s .

As above, we get ξce(Gmin) > ξce(T2), which is a contradiction. Therefore, Gmin ∈ T k
n .

4 Connected graphs with k cut edges

Lemma 4.1. Let H1 and H2 be two disjoint connected graphs of order at least 2 with

u ∈ V (H1), v ∈ V (H2). Let G1 be the graph obtained from H1 ∪ H2 by adding an edge

uv. Let G2 be the graph obtained from H1 ∪H2 by identifying u and v (to a new vertex,

say, u) and adding a pendent edge, say uv without confusion. Then ξce(G1) < ξce(G2).

Proof. It is evident that εG1(x) ≥ εG2(x) and dG1(x) = dG2(x) for any x ∈
(
V (H1)\{u}

)
∪(

V (H2)\{v}
)
.

For u and v, we have

• εG1(u) = max{εH1(u), εH2(v) + 1}, dG1(u) = 1 + dH1(u);

• εG2(u) = max{εH1(u), εH2(v)}, dG2(u) = 1 + dH1(u) + dH2(v);

• εG1(v) = max{εH2(v), εH1(u) + 1}, dG1(v) = 1 + dH2(v);

• εG2(v) = max{εH1(u) + 1, εH2(v) + 1}, dG2(v) = 1.

Case 1. εH1(u) ≥ 1 + εH2(v).

In this case we have εG1(u) = εH1(u), εG2(u) = εH1(u), εG1(v) = 1 + εH1(u), εG2(v) =

1 + εH1(u).

Therefore, it follows that

ξce(G1)− ξce(G2) ≤ dG1(u)

εH1(u)
− dG2(u)

εH1(u)
+

dG1(v)

εH1(u) + 1
− dG2(v)

εH1(u) + 1

= −dH2(v)

εH1(u)
+

dH2(v)

εH1(u) + 1
< 0 .

Case 2. εH1(u) ≤ εH2(v).

-623-



Subcase 2.1 εH1(u) = εH2(v).

In this subcase, εG1(u) = εH1(u) + 1, εG2(u) = εH1(u), εG1(v) = 1 + εH1(u), εG2(v) =

1 + εH1(u).

It follows that

ξce(G1)− ξce(G2) ≤ 1 + dH1(u)

1 + εH1(u)
− 1 + dH1(u) + dH2(v)

εH1(u)
+

1 + dH2(v)

1 + εH1(u)
− 1

1 + εH1(u)

= −1 + dH1(u) + dH2(v)

εH1(u)
+

1 + dH1(u) + dH2(v)

εH1(u) + 1
< 0 .

Subcase 2.2 εH1(u) < εH2(v).

In this subcase, εG1(u) = εH2(v) + 1, εG2(u) = εH2(v), εG1(v) = εH2(v), εG2(v) =

1 + εH2(v).

It follows that

ξce(G1)− ξce(G2) ≤ 1 + dH1(u)

1 + εH2(v)
− 1 + dH1(u) + dH2(v)

εH2(v)
+

1 + dH2(v)

εH2(v)
− 1

1 + εH2(v)

= −dH1(u)

εH2(v)
+

dH1(u)

εH2(v) + 1
< 0 .

This completes the proof.

Theorem 4.2. Let G be a connected graph on n vertices with k ≥ 1 cut edges. Then

ξce(G) ≤ 1

2
(n2 − 2kn+ k2 + 3k − 1)

with equality if and only if G ∼= Kk
n.

Proof. By Lemma 4.1, it follows that all cut edges in G0 must be pendent edges. By the

first half of the proof of Theorem 3.1, we obtain the result.

5 Cacti with k cycles

Let Ck
n be a cactus obtained by adding k independent edges among pendent vertices

of Sn.

Theorem 5.1. Let G be a cactus on n ≥ 5 vertices with k cycles. Then ξce(G) ≤
3
2
n+ k − 3

2
, with equality if and only if G ∼= Ck

n.
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Proof. Let V1 = {v ∈ V (G)|ε(v) = 1} and V2 = {v ∈ V (G)|ε(v) ≥ 2}. Then |V1|+ |V2| =
n. Assume that |V1| ≥ 2. Let u, v be two vertices in G such that ε(u) = ε(v) = 1, then

d(u) = d(v) = n − 1. It follows that G is not a cactus since there exists cycles sharing

common edges in G and hence |V1| ≤ 1.

Case 1. |V1| = 1.

Let v be the unique vertex in G such that ε(v) = 1. Then d(v) = n − 1. So each

vertex in V (G)\{v} is adjacent to v. Hence the cactus G is obtained by introducing k

independent edges among pendent vertices of n-vertex star Sn, i. e., G ∼= Ck
n. By direct

calculation we get ξce(Ck
n) =

3
2
n+ k − 3

2
.

Case 2. |V1| = 0.

In this case, ε(v) ≥ 2 for any v ∈ V (G). Note that there are exactly n + k − 1 edges

in G, it follows that

ξce(G) ≤ 1

2

∑
v∈V (G)

d(v) = n+ k − 1

and hence

ξce(G)− ξce(Ck
n) ≤ n+ k − 1−

(3
2
n+ k − 3

2

)
= −1

2
(n− 1) < 0 .

This completes the proof.

¿From the above result, we have

Corollary 5.2. Let T be a tree on n vertex. Then ξce(T ) ≤ 3
2
n− 3

2
, with equality if and

only if T ∼= C0
n = Sn.

Corollary 5.3. Let G be a unicyclic graph on n vertices. Then ξce(G) ≤ 3
2
n − 1

2
, with

equality if and only if G ∼= C1
n .
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