MATCH Communications in Mathematical and in Computer Chemistry

Ordering Trees Having Small General Sum-Connectivity Index¹

Ioan Tomescu^{a,b} and Salma Kanwal^b

^aFaculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania. e-mail: ioan@fmi.unibuc.ro

^bAbdus Salam School of Mathematical Sciences, GC University, Lahore-Pakistan. e-mail: salma.kanwal055@gmail.com

(Received March 12, 2012)

Abstract

The general sum-connectivity index of a graph G is defined as $\chi_{\alpha}(G) = \sum_{uv \in E(G)} (d(u)+d(v))^{\alpha}$, where d(u) denotes the degree of vertex u in G, and α is a real number. The aim of this paper is twofold. We determine the minimum value of the general sum-connectivity index: (i) for trees of order $n \geq 3$ and diameter d, $2 \leq d \leq n-1$ and of trees of order $n \geq 5$ having p pendant vertices, $3 \leq p \leq n-2$ and the corresponding extremal trees for $-1 \leq \alpha < 0$ and (ii) for connected multigraphs of order $n \geq 3$ and size m, $m \geq n-1$ and the corresponding extremal multigraphs for $-3 \leq \alpha < 0$. Further, for n sufficiently large and $-1 \leq \alpha < 0$, we characterize five n-vertex trees having smallest values of χ_{α} .

1. INTRODUCTION

Let G be a simple graph with vertex set V(G) and edge set E(G). For a vertex $u \in V(G)$, N(u) denotes the set of its neighbors in G and the degree of u is $d(u) = d_G(u) = |N(u)|$. The Randić index R(G), proposed by Randić [11] in 1975, is defined as

$$R(G) = \sum_{uv \in E(G)} (d(u)d(v))^{-1/2}.$$

¹This research is partially supported by Higher Education Commission, Pakistan.

-536-

It is one of the most used molecular descriptors in structure-property and structureactivity relationship studies [6, 8, 10, 12]. The general Randić connectivity index (or general product-connectivity index), denoted by R_{α} , of G is defined as [1]:

$$R_{\alpha} = R_{\alpha}(G) = \sum_{uv \in E(G)} (d(u)d(v))^{\alpha},$$

where α is a real number. Then $R_{-1/2}$ is the classical Randić connectivity index.

The sum-connectivity index was proposed in [15] and both sum-connectivity index and Randić index correlate well with the π - electronic energy of benzenoid hydrocarbons [9]. This concept was extended to the general sum-connectivity index $\chi_{\alpha}(G)$ in [16], which is defined as

$$\chi_{\alpha}(G) = \sum_{uv \in E(G)} (d(u) + d(v))^{\alpha},$$

where α is a real number. Then $\chi_{-1/2}(G)$ is the sum-connectivity index [15]. Several extremal properties of the sum-connectivity and general sum-connectivity index for trees, unicyclic graphs and general graphs were given in [3, 4, 15, 16]. Thus for a tree T with $n \geq 4$ vertices, it was shown in Proposition 3 of [16] that if $\alpha > 0$, then $\chi_{\alpha}(T) \leq (n-1)n^{\alpha}$ and if $\alpha < 0$ then $\chi_{\alpha}(T) \geq (n-1)n^{\alpha}$. The unique extremal graph is the *n*-vertex star S_n (also denoted by $K_{1,n-1}$) in both cases. In [15] the tree minimizing $\chi_{-1/2}$ in the set of trees with $n \geq 5$ vertices and p pendant vertices was characterized, where $3 \leq p \leq n-2$. This result will be extended in section 3 for index χ_{α} with $-1 \leq \alpha < 0$.

Another variant of the Randić index of a graph G is the harmonic index, denoted by H(G) and defined as

$$H(G) = \sum_{uv \in E(G)} \frac{2}{d(u) + d(v)} = 2\chi_{-1}(G).$$

We have $H(G) \leq R(G)$ by the inequality between arithmetic and geometric means, with equality if and only if G is a regular graph. This index first appeared in [5] and was studied for simple connected graphs and trees in [14]. We conclude this section with some notation and terminology.

For a simple connected graph G the distance between vertices u and v is the length of a shortest path between them. The diameter diam(G) of a graph G is the maximum distance between the vertices of G, i.e., $diam(G) = \max_{u,v \in V(G)} d(u,v)$. A shortest path of length diam(G) is called a diametral path of G. For $v \in V(G)$, G - v denotes the graph obtained from G by deleting v and the edges incident with v. The path on n vertices is denoted as P_n . A caterpillar is a tree with the property that deleting all pendant vertices the resulting graph is a path. For other notations in graph theory, we follow [2].

2. GRAPH TRANSFORMATIONS

In this section we shall define some graph transformations which strictly decrease the general sum-connectivity index in the case $-1 \le \alpha < 0$. First we need a technical lemma.

Lemma 2.1. For every $-1 \le \alpha < 0$ the function

$$f(x) = x(x+2)^{\alpha} - x(x+3)^{\alpha} - (x+4)^{\alpha}$$

defined on the interval $[0, \infty)$ is strictly increasing.

Proof. It is necessary to show that f'(x) > 0 for every $x \in [0, \infty)$. By induction we easily deduce that the *n*-th derivative of f equals

$$f^{(n)}(x) = (\alpha)_{n-1}[(x+2)^{\alpha-n}((\alpha+1)x+2n) - (x+3)^{\alpha-n}((\alpha+1)x+3n) - (\alpha-n+1)(x+4)^{\alpha-n}],$$

where $(\alpha)_n = \alpha(\alpha - 1) \dots (\alpha - n + 1)$ and $(\alpha)_0 = 1$.

The function $(x + 2)^{\alpha} - (x + 3)^{\alpha}$ defined on $[0, \infty)$ is strictly decreasing for $\alpha < 0$ since its derivative equals $\alpha((x + 2)^{\alpha-1} - (x + 3)^{\alpha-1}) < 0$.

It follows that $(x+2)^{\alpha-n} - (x+3)^{\alpha-n} > (x+3)^{\alpha-n} - (x+4)^{\alpha-n}$, which implies that $\frac{f^{(n)}(x)}{(\alpha)_{n-1}} > (x(\alpha+1)+n)(x+3)^{\alpha-n} - ((\alpha+1)x+\alpha+n+1)(x+4)^{\alpha-n}$. Since $\alpha+1 \ge 0$, $\frac{f^{(n)}(x)}{(\alpha)_{n-1}} > 0$ is equivalent to

$$\left(\frac{x+3}{x+4}\right)^{\alpha-n} > \frac{(\alpha+1)x+\alpha+n+1}{(\alpha+1)x+n}.$$

There exists an index n_0 such that this inequality is true, since for a fixed $x \ge 0$ we have $\lim_{n\to\infty} (\frac{x+3}{x+4})^{\alpha-n} = \infty$ and the right-hand side tends to 1 as $n \to \infty$. We also deduce $\lim_{n\to\infty} f^{(n)}(x) = 0$ for any $n \in \mathbb{N}$. Suppose that n_0 is even. Then $(\alpha)_{n_0-1}$ is negative, which implies that $f^{(n_0)}(x) < 0$ for any $x \in [0, \infty)$. We deduce that $f^{(n_0-1)}(x)$ is strictly decreasing and since $\lim_{n\to\infty} f^{(n_0-1)}(x) = 0$ this implies that $f^{(n_0-1)}(x) > 0$ for $x \in [0, \infty)$. By induction we deduce that for any $n \le n_0$, $f^{(n)}(x) > 0$ for odd n and $f^{(n)}(x) < 0$ for even n for any $x \in [0, \infty)$. In particular, f'(x) > 0. The same conclusion follows if n_0 is odd.

Figure 1: t_1 – transform applied to G at vertex v

Let u and v be two adjacent vertices of a graph G such that $N(u) = \{v, z_1, \ldots, z_p\}$, $N(v) = \{u, w_1, \ldots, w_s\}$, where $\{z_1, \ldots, z_p\} \cap \{w_1, \ldots, w_s\} = \emptyset$, $p \ge 0$ and $s \ge 1$. We define a graph denoted by $t_1(G)$ by removing edges vw_1, vw_2, \ldots, vw_s and adding new edges uw_1, uw_2, \ldots, uw_s . We say that $t_1(G)$ is a t_1 - transform of G (see Fig. 1).

Lemma 2.2. [3] For a graph G denote $G' = t_1(G)$. If $\alpha < 0$ then $\chi_{\alpha}(G') < \chi_{\alpha}(G)$ and if $\alpha > 0$ then the inequality is reversed.

Proof. We have $d_{G'}(u) = d_G(u) + s > d_G(u)$ and $d_{G'}(u) + d_{G'}(v) = d_G(u) + d_G(v) = p + s + 2$. Since $\alpha < 0$ we get $\chi_{\alpha}(G') - \chi_{\alpha}(G) = \sum_{i=1}^{p} [(d_G(z_i) + d_G(u) + s)^{\alpha} - (d_G(z_i) + d_G(u))^{\alpha}] + \sum_{i=1}^{s} [(d_G(w_i) + d_G(u) + s)^{\alpha} - (d_G(w_i) + s + 1)^{\alpha}] < 0$, since $\alpha < 0$ and the degrees of the vertices $z_1, \ldots, z_p, w_1, \ldots, w_s$ remain unchanged.

Other transformations are described below.

Lemma 2.3. For trees G and G' from Fig. 2, where $d_G(w, t) \ge 1$ we have $\chi_{\alpha}(G) > \chi_{\alpha}(G')$ for any $p, q, r \ge 1$ and $-1 \le \alpha < 0$.

Proof. It is easily seen that:

 $\chi_{\alpha}(G) - \chi_{\alpha}(G') = p(p+2)^{\alpha} + r(r+3)^{\alpha} + (r+q+3)^{\alpha} - (p+r)(p+r+2)^{\alpha} - (q+3)^{\alpha} = r(r+3)^{\alpha} + F(p) + G(q), \text{ where } F(p) = p(p+2)^{\alpha} - (p+r)(p+r+2)^{\alpha} \text{ and } G(q) = (r+q+3)^{\alpha} - (q+3)^{\alpha}.$

We obtain $F'(p) = (p+2+p\alpha)(p+2)^{\alpha-1} - (p+r+\alpha(p+r)+2)(p+r+2)^{\alpha-1} = g(p) - g(p+r)$, by denoting $g(x) = (x + \alpha x + 2)(x + 2)^{\alpha-1}$.

Also $g'(x) = \alpha(x+2)^{\alpha-2}(x(\alpha+1)+4) < 0$ for every x > 0 and $-1 \le \alpha < 0$. It follows that F'(p) > 0, which implies that F(p) is strictly increasing. Since G'(q) =

Figure 2: Swaping pendant edges at one end of a diametral path of G

 $\begin{aligned} &\alpha[(r+q+3)^{\alpha-1}-(q+3)^{\alpha-1}]>0 \text{ for } \alpha<0 \text{ we get that } G(q) \text{ is also strictly increasing.} \\ &\text{We can write } \chi_{\alpha}(G)-\chi_{\alpha}(G')\geq r(r+3)^{\alpha}+F(1)+G(1)=(r+4)^{\alpha}-(r+3)^{\alpha}+3^{\alpha}-4^{\alpha}. \\ &\text{Consider the function } h(x)=(x+4)^{\alpha}-(x+3)^{\alpha}. \\ &\text{We get } h'(x)=\alpha[(x+4)^{\alpha-1}-(x+3)^{\alpha-1}]>0, \\ &\text{which implies } h(r)\geq h(1)=5^{\alpha}-4^{\alpha} \text{ for } x\geq 1. \end{aligned}$

It remains to show that $5^{\alpha} + 3^{\alpha} > 2 \cdot 4^{\alpha}$. This inequality can be deduced by Jensen's inequality since the function x^{α} is strictly convex for $-1 \le \alpha < 0$.

Lemma 2.4. Consider two trees G and G' from Fig. 3, where $d_G(u, v) = d_{G'}(u, v) \ge 2$ and $d_G(w, t) = d_{G'}(w, t) \ge 0$. If $p, q, r \ge 1$ and $-1 \le \alpha < 0$ then $\chi_{\alpha}(G) > \chi_{\alpha}(G')$.

Proof. As for the previous lemma we get:

 $\chi_{\alpha}(G) - \chi_{\alpha}(G') = p(p+2)^{\alpha} + (p+3)^{\alpha} + r(r+3)^{\alpha} + (r+4)^{\alpha} + (r+q+3)^{\alpha} - (p+r)(p+r+2)^{\alpha} - (p+r+3)^{\alpha} - (q+3)^{\alpha} - 4^{\alpha}.$ By denoting $f(p) = (p+3)^{\alpha} - (p+r+3)^{\alpha} + p(p+2)^{\alpha} - (p+r)(p+r+2)^{\alpha}$ and $g(q) = (r+q+3)^{\alpha} - (q+3)^{\alpha}$, it follows that

$$\chi_{\alpha}(G) - \chi_{\alpha}(G') = f(p) + g(q) + (r+4)^{\alpha} + r(r+3)^{\alpha} - 4^{\alpha}.$$
 (1)

Since g'(q) > 0 for any $-1 \le \alpha < 0$ we can write $g(q) \ge g(1) = (r+4)^{\alpha} - 4^{\alpha}$. For f(p) we get f'(p) = h(p) - h(p+r) by denoting $h(p) = \alpha(p+3)^{\alpha-1} + (p+2)^{\alpha} + \alpha p(p+2)^{\alpha-1}$. We obtain $h'(p) = \alpha[(\alpha - 1)(p+3)^{\alpha-2} + (4 + (\alpha + 1)p)(p+2)^{\alpha-2}]$. The expression $(\alpha - 1)(p+3)^{\alpha-2} + (4 + (\alpha + 1)p)(p+2)^{\alpha-2} \ge (\alpha - 1)(p+3)^{\alpha-2} + 4(p+3)^{\alpha-2} = (\alpha + 3)(p+3)^{\alpha-2} > 0$, thus implying h'(p) < 0. We have deduced f'(p) > 0, hence $f(p) \ge f(1) = 4^{\alpha} - (r+4)^{\alpha} + 3^{\alpha} - (r+1)(r+3)^{\alpha}$. From (1) we can write

$$\chi_{\alpha}(G) - \chi_{\alpha}(G') \ge (r+4)^{\alpha} - (r+3)^{\alpha} + 3^{\alpha} - 4^{\alpha} > 0$$

since $r \ge 1$, function $(r+4)^{\alpha} - (r+3)^{\alpha}$ is strictly increasing for $r \ge 0$ and $\alpha \ge -1$.

Figure 3: Swaping pendant edges at one end of a diametral path of G

Figure 4: Swaping a pendant edge between ends of a diametral path.

Lemma 2.5. Let G and G' be trees from Fig. 4, where $d_G(u, v) \ge 1$. If $-1 \le \alpha < 0$ and $p \ge q \ge 2$ then $\chi_{\alpha}(G) > \chi_{\alpha}(G')$.

Proof. If $d_G(u, v) = 1$ then $d_{G'}(u) + d_{G'}(v) = d_G(u) + d_G(v) = p + q + 2$, and $\chi_{\alpha}(G) - \chi_{\alpha}(G') = p(p+2)^{\alpha} + q(q+2)^{\alpha} - (p+1)(p+3)^{\alpha} - (q-1)(q+1)^{\alpha}$. By denoting p = q + r, where $r \ge 0$, it is necessary to prove that

$$(q+r)(q+r+2)^{\alpha} - (q+r+1)(q+r+3)^{\alpha} + q(q+2)^{\alpha} - (q-1)(q+1)^{\alpha} > 0, \quad (2)$$

or g(q) > g(q + r + 1), where $g(q) = q(q + 2)^{\alpha} - (q - 1)(q + 1)^{\alpha}$. We deduce $g'(q) = (q + 2 + \alpha q)(q + 2)^{\alpha - 1} - (q + 1 + \alpha(q - 1))(q + 1)^{\alpha - 1} = h(q) - h(q - 1)$, where $h(q) = (q + 2 + \alpha q)(q + 2)^{\alpha - 1}$. Finally, $h'(q) = (4\alpha + \alpha(1 + \alpha)q)(q + 2)^{\alpha - 2} < 0$ since $-1 \le \alpha < 0$.

Consequently, h(q) - h(q-1) < 0, which implies g'(q) < 0. Since g' is strictly decreasing we have g(q) > g(q + r + 1) and (2) is proved.

If
$$d_G(u, v) \ge 2$$
 then $\chi_{\alpha}(G) - \chi_{\alpha}(G') = p(p+2)^{\alpha} - p(p+3)^{\alpha} - (p+4)^{\alpha} - (q-1)(q+1)^{\alpha} + (q-1)(q+2)^{\alpha} + (q+3)^{\alpha} = f(p) - f(q-1)$, where $f(x) = x(x+2)^{\alpha} - x(x+3)^{\alpha} - (x+4)^{\alpha}$.
By Lemma 2.1 $f(x)$ is strictly increasing for $x \ge 0$, which implies $f(p) > f(q-1)$.

3. MINIMUM VALUE OF χ_{α} $(-1 \le \alpha < 0)$ FOR TREES OF GIVEN DIAMETER

Let $d \geq 3$. We shall denote by $MS(n_1, n_2, \ldots, n_{d-1})$ where $n_1, n_{d-1} \geq 1$ and $n_i \geq 0$ for $2 \leq i \leq d-2$, the caterpillar consisting of a path $v_1, v_2, \ldots, v_{d-1}$ of length d-2with n_i pendant vertices attached at v_i for $1 \leq i \leq d-1$. It has diameter equal to d. This multistar may also be obtained by joining by edges the centers of stars $K_{1,n_1}, K_{1,n_2}, \ldots, K_{1,n_{d-1}}$. Note that every tree of order n and diameter three is a bistar $MS(n_1, n_2)$ (denoted by $BS(n_1, n_2)$ in [13]), where $n_1, n_2 \geq 1$ and $n_1 + n_2 = n - 2$. Observe that $MS(n_1, n_2, \ldots, n_{d-1})$ is isomorphic to $MS(n_{d-1}, n_{d-2}, \ldots, n_1)$. The multistar with $d = n - p + 1, n_1 = p - 1, n_2 = \ldots = n_{d-2} = 0$ and $n_{d-1} = 1$ has p pendant vertices and order n and was denoted by $S_{n,p}$ in [15]. Equivalently, for every integers n, pwith $2 \leq p \leq n - 1, S_{n,p}$ is the tree formed by attaching p - 1 pendant vertices to an end vertex of the path P_{n-p+1} . We have $S_{n,2} = P_n$ and $S_{n,n-1}$ is the star $K_{1,n-1}$. $S_{n,p}$ has diameter equal to n - p + 1.

Theorem 3.1. For every $-1 \le \alpha < 0$ in the set of trees T having order $n \ge 3$ and diam(T) = d ($2 \le d \le n - 1$), $\chi_{\alpha}(T)$ is minimum if and only if $T = S_{n,n-d+1}$.

Proof. Using the t_1 - transform in Lemma 2.2 at vertices not belonging to a diametral path of T, we can deduce that among *n*-vertex trees T with diameter d, the minimum of $\chi_{\alpha}(T)$ is achieved exactly in the set of multistars $MS(n_1, n_2, \ldots, n_{d-1})$.

Applying transformations described in Lemmas 2.3 – 2.5 it follows that minimum of $\chi_{\alpha}(T)$ is achieved only for $n_1 = n - d$, $n_2 = n_3 = \ldots = n_{d-2} = 0$ and $n_{d-1} = 1$, i.e., for $S_{n,n-d+1}$.

Corollary 3.2. Let $-1 \le \alpha < 0$. (a) In the set of trees T of order n we have

$$\min_{diam(T)=i} \chi_{\alpha}(T) < \min_{diam(T)=j} \chi_{\alpha}(T)$$

 $\text{if } 2 \le i < j \le n - 1.$

(b) In the set of trees T of order n and diameter d with $3 \le d \le n-2$ the trees having smallest general sum-connectivity index $\chi_{\alpha}(T)$ are (in this order):

$$MS(n-d, 0, ..., 0, 1), MS(n-d-1, 0, ..., 0, 2), ..., MS(\lceil \frac{n-d+1}{2} \rceil, 0, ..., 0, \lfloor \frac{n-d+1}{2} \rfloor).$$

Proof. (a) This inequality follows from Lemma 2.2 since MS(n - i, 0, ..., 0, 1) can be obtained from MS(n - j, 0, ..., 0, 1) applying several times the t_1 - transform.

Figure 5: Five trees T having smallest $\chi_{\alpha}(T)$ for $-1 \leq \alpha < 0$.

(b) This ordering can be deduced using Lemmas 2.2 - 2.4 and then making use of Lemma 2.5 to multistars of order n MS(p, 0, ..., 0, q) with p + q = n - d + 1.

Theorem 3.3. For every $-1 \le \alpha < 0$ there exists $n_0(\alpha) > 0$ such that for every $n \ge n_0(\alpha)$ the trees T having the smallest $\chi_{\alpha}(T)$ are $K_{1,n-1}$, BS(n-3,1), BS(n-4,2), $S_{n,n-3}$ and BS(n-5,3) (in this order). Also we have $n_0(-1) = 16$.

Proof. The unique tree having diameter two is the star $K_{1,n-1}$ and by Corollary 3.2 it reaches the minimum of χ_{α} . The second minimum value of χ_{α} is achieved for $S_{n,n-2} = BS(n-3,1)$, which minimizes this index in the set of trees of diameter three.

The next minimum values in the set of trees of diameter three are reached by BS(n-4, 2)(which coincides to BS(n-3, 1) for n = 5) and BS(n-5, 3) and the minimum value of χ_{α} in the set of trees of diameter four by $S_{n,n-3}$.

We get $\chi_{\alpha}(BS(n-4,2)) < \chi_{\alpha}(S_{n,n-3})$ since BS(n-4,2) can be obtained from $S_{n,n-3}$ by a t_1 - transform. It follows that for every $n \ge 6$ the trees having minimum values of χ_{α} are $K_{1,n-1}$, BS(n-3,1) and BS(n-4,2).

In order to obtain the fourth term in this sequence it is necessary to compare $\chi_{\alpha}(BS(n-5,3))$ with $\chi_{\alpha}(S_{n,n-3})$. We get

$$\begin{split} \chi_{\alpha}(BS(n-5,3)) - \chi_{\alpha}(S_{n,n-3}) &= (n-5)(n-3)^{\alpha} + n^{\alpha} - (n-4)(n-2)^{\alpha} - (n-1)^{\alpha} + 3 \cdot 5^{\alpha} - 4^{\alpha} - 3^{\alpha} \\ \text{and} \lim_{n \to \infty} ((n-5)(n-3)^{\alpha} + n^{\alpha} - (n-4)(n-2)^{\alpha} - (n-1)^{\alpha}) &= 0 \text{ since } \alpha < 0. \text{ We shall} \\ \end{split}$$

-542-

prove that $3 \cdot 5^{\alpha} - 4^{\alpha} - 3^{\alpha} \ge \frac{1}{60}$.

For this consider the function $\varphi(x) = 3 \cdot 5^x - 4^x - 3^x$ defined for $-1 \le x < 0$. Since

$$\varphi^{(n)}(x) = (\ln 5)^n \left[3 \cdot 5^x - 4^x \left(\frac{\ln 4}{\ln 5} \right)^n - 3^x \left(\frac{\ln 3}{\ln 5} \right)^n \right],$$

there exists an index m such that $\varphi^{(m)}(x) > 0$.

This means that $\varphi^{(m-1)}(x)$ is strictly increasing on [-1,0), hence $\varphi^{(m-1)}(x) > \varphi^{(m-1)}(-1) = \frac{3}{5}(\ln 5)^{m-1} - \frac{1}{4}(\ln 4)^{m-1} - \frac{1}{3}(\ln 3)^{m-1} > (\ln 5)^{m-1}(\frac{3}{5} - \frac{1}{4} - \frac{1}{3}) > 0$. By induction it follows that $\varphi(x)$ is strictly increasing for $x \in [-1,0)$ and we deduce that $\varphi(x) \ge \varphi(-1) = \frac{3}{5} - \frac{1}{4} - \frac{1}{3} = \frac{1}{60}$. It follows that $\lim_{n \to \infty} (\chi_{\alpha}(BS(n-5,3)) - \chi_{\alpha}(S_{n,n-3})) = 3 \cdot 5^{\alpha} - 4^{\alpha} - 3^{\alpha} \ge \frac{1}{60}$, which means that there exists $n_0(\alpha)$ such that $\chi_{\alpha}(BS(n-5,3)) > \chi_{\alpha}(S_{n,n-3}))$ for every $n \ge n_0(\alpha)$. If $\alpha = -1$ (corresponding to the harmonic index), the difference

$$\chi_{-1}(BS(n-5,3)) - \chi_{-1}(S_{n,n-3}) = \frac{n-5}{n-3} - \frac{n-4}{n-2} - \frac{1}{n(n-1)} + \frac{1}{60}$$

is negative for $n \leq 15$ but becomes positive for $n \geq 16$.

We also have

$$\chi_{\alpha}(BS(n-5,3)) - \chi_{\alpha}(MS(n-5,0,2)) = n^{\alpha} - (n-2)^{\alpha} + 2(5^{\alpha} - 4^{\alpha}) < 0$$

for every $n \geq 3$ and $\alpha < 0$, where MS(n - 5, 0, 2) realizes the second minimum value of χ_{α} in the set of trees of diameter four after $S_{n,n-3}$. Using a t_1 - transform it can be easily seen that the tree MS(n - 5, 0, 0, 1), reaching minimum of χ_{α} in the set of trees of diameter five obeys $\chi_{\alpha}(MS(n - 5, 0, 0, 1)) > \chi_{\alpha}(MS(n - 5, 0, 2))$, which concludes the proof.

Note that for $\alpha = -1/2$ first three trees from Fig. 5 having smallest χ_{α} index were found in [15]. Another extremal property of the tree $S_{n,p}$ is the following, which extends the corresponding property given in [15] from $\alpha = -1/2$ to $-1 \leq \alpha < 0$.

Theorem 3.4. Let T be a tree with $n \ge 5$ vertices and p pendant vertices, where $3 \le p \le n-2$ and $-1 \le \alpha < 0$. Then

$$\chi_{\alpha}(T) \ge (p-1)(p+1)^{\alpha} + (p+2)^{\alpha} + 3^{\alpha} + (n-p-2)4^{\alpha}$$

with equality if and only if $T = S_{n,p}$.

Proof. First we shall prove that under the assumption of the theorem, if u is a pendant vertex being adjacent to v, then

$$\chi_{\alpha}(T) - \chi_{\alpha}(T-u) \ge (p-2)(p+1)^{\alpha} + (p+2)^{\alpha} - (p-2)p^{\alpha}$$

with equality if and only if $T = S_{n,p}$ and d(v) = p.

Note that $N(v) \setminus \{u\}$ contains some vertex w_0 of degree $d(w_0) \ge 2$ since otherwise T is a star with center v having p = n - 1 pendant vertices, which contradicts the hypothesis. We obtain

$$\begin{split} \chi_{\alpha}(T) - \chi_{\alpha}(T-u) &= (d(v)+1)^{\alpha} - \sum_{w \in N(v) \setminus \{u\}} [(d(v) + d(w) - 1)^{\alpha} - (d(v) + d(w))^{\alpha}]. \\ \text{Since the function } f(x) &= (x-1)^{\alpha} - x^{\alpha} \text{ is strictly decreasing for } x \geq 1 \text{ and } \alpha < 0 \text{ we} \\ \text{have } (d(v) + d(w_0) - 1)^{\alpha} - (d(v) + d(w_0))^{\alpha} \leq (d(v) + 1)^{\alpha} - (d(v) + 2)^{\alpha} \text{ and for all other} \\ d(v) - 2 \text{ vertices } w \in N(v) \setminus \{u, w_0\} \text{ we deduce } (d(v) + d(w) - 1)^{\alpha} - (d(v) + d(w))^{\alpha} \leq \\ d(v)^{\alpha} - (d(v) + 1)^{\alpha} \text{ because } d(w) \geq 1. \text{ It follows that } \chi_{\alpha}(T) - \chi_{\alpha}(T-u) \geq (d(v) + 1)^{\alpha} - \\ [(d(v) + 1)^{\alpha} - (d(v) + 2)^{\alpha}] - (d(v) - 2)[d(v)^{\alpha} - (d(v) + 1)^{\alpha}] = \\ &= (d(v) + 2)^{\alpha} + (d(v) - 2)(d(v) + 1)^{\alpha} - (d(v) - 2)d(v)^{\alpha}. \end{split}$$

We also have $d(v) \leq p$ since T - v consists of d(v) trees. Making use of Lemma 2.1 the function $g(x) = (x+2)^{\alpha} + (x-2)(x+1)^{\alpha} - (x-2)x^{\alpha}$ is strictly decreasing for $-1 \leq \alpha < 0$ and $x \geq 2$ since -g(x) is strictly increasing. Since $2 \leq d(v) \leq p$ this implies

 $\chi_{\alpha}(T) - \chi_{\alpha}(T-u) \ge (p-2)(p+1)^{\alpha} + (p+2)^{\alpha} - (p-2)p^{\alpha}.$

Equality holds if and only if we have d(v) = p, one neighbor of v has degree two, and others are pendant vertices, i.e., $T = S_{n,p}$ and u is adjacent to the vertex of degree p of $S_{n,p}$.

Now the proof of the theorem follows by induction on n. For n = 5 we get p = 3 and $S_{5,3} = BS(1,2)$ from Fig. 5 is a single tree of order five having three pendant vertices.

Let $n \ge 6$ and suppose that the theorem is true for all trees of order n - 1 having p pendant vertices, where $3 \le p \le n - 3$. Let u be a pendant vertex adjacent to the vertex v. We shall consider two subcases: A. d(v) = 2 and B. $d(v) \ge 3$.

A. In this case the unique vertex w adjacent to v has $d(w) \ge 2$, which implies $\chi_{\alpha}(T) - \chi_{\alpha}(T-u) = (d(w)+2)^{\alpha} + 3^{\alpha} - (d(w)+1)^{\alpha} \ge 4^{\alpha}$ since the function $(x+2)^{\alpha} - (x+1)^{\alpha}$ is strictly increasing for $x \ge 0$.

Equality holds if and only if d(w) = 2. In this case T - u has p pendant vertices. By the induction hypothesis, for $p \le n-3$ we have $\chi_{\alpha}(T-u) \ge \chi_{\alpha}(S_{n-1,p})$ with equality if and only if $T - u = S_{n-1,p}$. In this case

$$\chi_{\alpha}(T) \ge \chi_{\alpha}(T-u) + 4^{\alpha} \ge \chi_{\alpha}(S_{n-1,p}) + 4^{\alpha} = \chi_{\alpha}(S_{n,p})$$

and equality holds if and only if $T - u = S_{n-1,p}$ and d(v) = d(w) = 2, i.e., $T = S_{n,p}$.

If p = n - 2, T - u has n - 1 vertices, and n - 2 pendant vertices, i.e., $T - u = K_{1,n-1}$ and $T = S_{n,n-2} = S_{n,p}$.

B. If $d(v) \ge 3$ then T-u has n-1 vertices and p-1 pendant vertices. Using the induction hypothesis for T-u and the above property we get $\chi_{\alpha}(T) \ge \chi_{\alpha}(T-u) + (p-2)(p+1)^{\alpha} + (p+2)^{\alpha} - (p-2)p^{\alpha} \ge \chi_{\alpha}(S_{n-1,p-1}) + (p-2)(p+1)^{\alpha} + (p+2)^{\alpha} - (p-2)p^{\alpha} = \chi_{\alpha}(S_{n,p}).$ Equality holds if and only if $T-u = S_{n-1,p-1}$ and d(v) = p, i.e., $T = S_{n,p}$.

4. MINIMUM VALUE OF χ_{α} (-3 $\leq \alpha < 0$) FOR MULTIGRAPHS

The index $\chi_{\alpha}(G)$ may be defined in the same way when G is a multigraph containing parallel edges.

Theorem 4.1. Let $m, n \in \mathbb{N}$ such that $n \geq 3, m \geq n-1$ and $-3 \leq \alpha < 0$. If G is a connected multigraph with n vertices and m edges, then

$$\chi_{\alpha}(G) \ge (n-2)(m+1)^{\alpha} + (m-n+2)(2m-n+2)^{\alpha}$$

with equality if and only if G is $K_{1,n-1}$ having one edge of multiplicity m - n + 2 and n - 2 edges of multiplicity 1.

Proof. For any multigraph G we shall define the t_2 - transform relatively to the pair $\{u, v\}$ of adjacent vertices from V(G) such that $N(u) \neq \{v\}$ and $N(v) \neq \{u\}$. Suppose that $N(u) \setminus N(v) = \{v\} \cup \{z_1, \ldots, z_p\}$; $N(v) \setminus N(u) = \{u\} \cup \{w_1, \ldots, w_s\}$ and $N(u) \cap N(v) = \{x_1, \ldots, x_r\}$, where $p, r, s \ge 0$ and $p + r \ge 1$, $s + r \ge 1$.

We swap all edges $x_1v, \ldots, x_rv, w_1v, \ldots, w_sv$ incident to v from v to u, making them incident to u and preserving their multiplicities. If $m_G(xy)$ denotes the multiplicity of an edge xy in G, this means that in the graph $G_1 = t_2(G)$ thus obtained v is adjacent only to u and $m_{G_1}(uw_i) = m_G(vw_i)$ for every $1 \le i \le s$, $m_{G_1}(ux_i) = m_G(ux_i) + m_G(vx_i)$ for every $1 \le i \le r$.

We have $d_{G_1}(v) = m_G(uv)$, $m_{G_1}(uv) = m_G(uv)$, hence $d_{G_1}(u) + d_{G_1}(v) = d_G(u) + d_G(v)$. This transformation is illustrated in Fig. 6 when G does not contain parallel edges. By this transformation only degrees of vertices u and v are changed. We can write $d_G(u) \ge m_G(uv) + p + r \ge m_G(uv) + 1$.

We deduce $d_{G_1}(u) = d_G(u) + d_G(v) - m_G(uv) \ge d_G(v) + 1$ and also $d_{G_1}(u) \ge d_G(u)$. It follows that for all edges xy, invariant or transformed, the sum of degrees increases

or remains constant in G_1 and for at least one edge the increment is positive. We get $\chi_{\alpha}(G) > \chi_{\alpha}(G_1)$.

Let G be a connected multigraph of order n and size $m \ge n-1$ such that $\chi_{\alpha}(G)$ is minimum and let $uv \in E(G)$. If $N(u) \ne \{v\}$ and $N(v) \ne \{u\}$ we have seen that $\chi_{\alpha}(G)$ cannot be minimum, thus yielding $N(u) = \{v\}$ or $N(v) = \{u\}$. Suppose that $N(v) = \{u\}$; for any edge uz of G incident to u we also have $N(z) = \{u\}$. Since G is connected we obtain that G is $K_{1,n-1}$ containing some parallel edges, such that the size of G is m. Let w be the center of $K_{1,n-1}$. If there exist two vertices $u, v \ne w$ such that m(uw) = p, m(vw) = qand $p \ge q \ge 2$, we shall prove that $\chi_{\alpha}(G)$ cannot be minimum. For this we shall define another graph G_2 which is obtained by transforming one parallel edge between w and v into a parallel edge between w and u, such that $d_{G_2}(u) = p+1$, $d_{G_2}(v) = q-1$ and other degrees remain unchanged. If d(w) = p + q + s and $s \ge 0$ we get

$$\chi_{\alpha}(G_2) - \chi_{\alpha}(G) = (p+1)(2p+q+s+1)^{\alpha} + (q-1)(p+2q+s-1)^{\alpha} - p(2p+q+s)^{\alpha} - q(p+2q+s)^{\alpha}.$$

We shall prove that if $-3 \leq \alpha < 0$ then $\chi_{\alpha}(G_2) - \chi_{\alpha}(G) < 0$, which is equivalent to

$$(p+1)(2p+q+s+1)^{\alpha} - p(2p+q+s)^{\alpha} < q(p+2q+s)^{\alpha} - (q-1)(p+2q+s-1)^{\alpha}.$$
 (3)

Consider the function $f(x) = (x+1)(x+a+1)^{\alpha} - x(x+a)^{\alpha}$, where x > 0 and a > x. We have $f'(x) = \varphi(x+1) - \varphi(x)$, where $\varphi(x) = (x+a+\alpha x)(x+a)^{\alpha-1}$. Since $-3 \le \alpha < 0$ and a > x one obtains $\varphi'(x) = \alpha(x+a)^{\alpha-2}(2a+x+\alpha x) < 0$, thus implying that φ is strictly decreasing on $(0,\infty)$, hence f'(x) < 0, or f(x) is strictly decreasing on $(0,\infty)$. Consequently, f(p) < f(q-1) for any a > p since p > q-1 and we can write $(p+1)(p+a+1)^{\alpha} - p(p+a)^{\alpha} < q(q+a)^{\alpha} - (q-1)(q-1+a)^{\alpha}$. Letting a = p+q+s > p this inequality becomes (3).

Consequently, if $\chi_{\alpha}(G)$ is minimum then only one vertex different from w has degree equal

to m - n + 2 and other non-central vertices have degree equal to 1, whenever

$$\chi_{\alpha}(G) = (n-2)(m+1)^{\alpha} + (m-n+2)(2m-n+2)^{\alpha} .$$

If m = n - 1 then G is a tree and min $\chi_{\alpha}(G)$ is reached if and only if G is $K_{1,n-1}$, which does not contain parallel edges. This result holds for trees in a more general setting when $\alpha < 0$ [16].

Denote by $M_{k,m}(K_{1,n-1})$ the set of multigraphs of size $m \ge n+k-1$ deduced from $K_{1,n-1}$ by considering k multiple edges and n-1-k simple edges for $1 \le k \le n-1$. Denote also by $(d_1, \ldots, d_k, \underset{\iota}{1, \ldots, 1})$ with $d_1 \ge d_2 \ge \ldots \ge d_k \ge 2$ the vector of degrees of non-central vertices, where $\sum_{i=1}^{\kappa} d_i = m - n + k + 1$.

From this proof it follows that if $m \ge n+k-1$ then the multigraph G of order n and size m having k multiple edges and minimum general sum-connectivity index belongs to $M_{k,m}(K_{1,n-1})$, it is unique and has the vector of degrees $(m-n-k+3, \underbrace{2, \ldots, 2}_{k-1}, \underbrace{1, \ldots, 1}_{n-k-1})$.

Also

$$\min_{G \in M_{k,m}(K_{1,n-1})} \chi_{\alpha}(G) < \min_{G \in M_{k+1,m}(K_{1,n-1})} \chi_{\alpha}(G)$$

$$\tag{4}$$

holds for any $1 \le k \le n-2$ provided $m \ge n+k$.

Corollary 4.2. Suppose that $-3 \le \alpha < 0$. For fixed $n \ge 3$ and $m \ge n+3$, among the connected multigraphs of order n and size m the multigraphs having the minimum, the second and the third minimum general sum-connectivity index are deduced from $K_{1,n-1}$ having the vectors of degrees of non-central vertices equal to (m - n + 2, 1, ..., 1), (m - n + 2, 1, ..., 1) $n + 1, 2, 1, \ldots, 1$ and $(m - n, 3, 1, \ldots, 1)$, respectively.

Proof. We have seen that (m - n + 2, 1, ..., 1) corresponds to the multigraph reaching $\min \chi_{\alpha}(G)$; in this case k = 1.

If k = 2 the minimum is reached for (m - n + 1, 2, 1, ..., 1) and the second minimum is achieved for (m - n, 3, 1, ..., 1).

For k = 3 the minimum is reached for (m - n, 2, 2, 1, ..., 1). The value of χ_{α} corresponding to this vector is greater than the value corresponding to (m - n, 3, 1, ..., 1), as we have seen in the proof of Theorem 4.1. Since (4) holds, the conclusion follows.

Acknowledgement. The authors are indebted to the referee for his/her careful reading of the manuscript and valuable comments. This work has been done while the first author was invited at Abdus Salam School of Mathematical Sciences, GC University, Lahore.

References

- [1] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Comb. 50 (1998) 225–233.
- [2] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
- [3] Z. Du, B. Zhou, N. Trinajstić, Minimum general sum-connectivity index of unicyclic graphs, J. Math. Chem. 48 (2010) 697–703.
- [4] Z. Du, B. Zhou, N. Trinajstić, On the general sum-connectivity index of trees, Appl. Math. Lett. 24 (2011) 402–405.
- [5] S. Fajtlowicz, On conjectures of Graffiti II, Congr. Numer. 60 (1987) 187–197.
- [6] R. Garcia–Domenech, J. Gálvez, J. V. de Julián–Ortiz, L. Pogliani, Some new trends in chemical graph theory, *Chem. Rev.* 108 (2008) 1127–1169.
- [7] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
- [8] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure Activity Analysis, Wiley, New York, 1986.
- B. Lučić, N. Trinajstić, B. Zhou, Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, *Chem. Phys. Lett.* 475 (2009) 146–148.
- [10] L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors, *Chem. Rev.* **100** (2000) 3827–3858.
- [11] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [12] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.
- [13] I. Tomescu, S. Kanwal, Ordering connected graphs having small degree distances. II, MATCH Commun. Math. Comput. Chem. 67 (2012) 425–437.
- [14] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
- [15] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270.
- [16] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210–218.