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Abstract

The general sum-connectivity index of a graph G is defined as xo(G) = > (d(u)+d(v)),
wel(G

where d(u) denotes the degree of vertex u in G, and « is a real number. The ziiril of this paper
is twofold. We determine the minimum value of the general sum-connectivity index:
(i) for trees of order n > 3 and diameter d, 2 < d < n — 1 and of trees of order n > 5 having p
pendant vertices, 3 < p < n — 2 and the corresponding extremal trees for —1 < a < 0 and
(ii) for connected multigraphs of order n > 3 and size m, m > n — 1 and the corresponding
extremal multigraphs for —3 < a < 0. Further, for n sufficiently large and —1 < a < 0, we
characterize five n-vertex trees having smallest values of 4.

1. INTRODUCTION

Let G be a simple graph with vertex set V(G) and edge set E(G). For a vertex u € V(G),
N (u) denotes the set of its neighbors in G and the degree of u is d(u) = dg(u) = |N(u)|.
The Randi¢ index R(G), proposed by Randié¢ [11] in 1975, is defined as

RG) = > (du)d(v))™.

weE(GQ)
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It is one of the most used molecular descriptors in structure-property and structure-
activity relationship studies [6, 8, 10, 12]. The general Randi¢ connectivity index (or
general product-connectivity index), denoted by R,, of G is defined as [1]:

Ry = Ro(G) = Y (d(u)d(v))*,

weFR(G)
where « is a real number. Then R_,; is the classical Randi¢ connectivity index.

The sum-connectivity index was proposed in [15] and both sum-connectivity index and
Randi¢ index correlate well with the 7 - electronic energy of benzenoid hydrocarbons [9].
This concept was extended to the general sum-connectivity index x.(G) in [16], which is

defined as
Xa(G) = > (d(u) +d(v)*,

web(G)

where « is a real number. Then x_;/2(G) is the sum-connectivity index [15]. Several
extremal properties of the sum-connectivity and general sum-connectivity index for trees,
unicyclic graphs and general graphs were given in [3, 4, 15, 16]. Thus for a tree T" with
n > 4 vertices, it was shown in Proposition 3 of [16] that if & > 0, then x,(T) < (n—1)n®
and if a < 0 then xo(7T) > (n — 1)n®. The unique extremal graph is the n-vertex star
Sy (also denoted by Kj,,_1) in both cases. In [15] the tree minimizing x_;/ in the set of
trees with n > 5 vertices and p pendant vertices was characterized, where 3 < p <n —2.
This result will be extended in section 3 for index y, with —1 < «a < 0.

Another variant of the Randi¢ index of a graph G is the harmonic index, denoted by

H(G) and defined as
2

H(G) = uUEZE(G) a0+ d) 2x-1(G).

We have H(G) < R(G) by the inequality between arithmetic and geometric means, with
equality if and only if G is a regular graph. This index first appeared in [5] and was
studied for simple connected graphs and trees in [14]. We conclude this section with some
notation and terminology.

For a simple connected graph G the distance between vertices u and v is the length of
a shortest path between them. The diameter diam(G) of a graph G is the maximum
distance between the vertices of G, i.e., diam(G) = uﬂljlel%)((G) d(u,v). A shortest path of

length diam(G) is called a diametral path of G. For v € V(G), G — v denotes the graph

obtained from G by deleting v and the edges incident with v. The path on n vertices is
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denoted as P,. A caterpillar is a tree with the property that deleting all pendant vertices

the resulting graph is a path. For other notations in graph theory, we follow [2].

2. GRAPH TRANSFORMATIONS

In this section we shall define some graph transformations which strictly decrease the

general sum-connectivity index in the case —1 < a < 0. First we need a technical lemma.
Lemma 2.1. For every —1 < av < 0 the function

fl@)=z(x+2)" —z(x+3)" — (z +4)°
defined on the interval [0, 00) is strictly increasing .

Proof. It is necessary to show that f’(x) > 0 for every = € [0, 00). By induction we easily

deduce that the n-th derivative of f equals
FO() = (@)amal(@+2)° 7" (@t Da+2n) = (2+3)* " ((a+D)z+3n) - (a—n+1)(z+4)"""],

where (), = a(e—1)...(a —n+1) and (a)g = 1.
The function (x + 2)* — (z + 3)* defined on [0, co) is strictly decreasing for a < 0 since
its derivative equals o((z + 2)*~t — (z + 3)*7!) < 0.
It follows that (xz +2)* " — (z + 3)*" > (x + 3)* " — (x + 4)*", which implies that
PG (@(a+1) +n)(z+3)* "= ((a+ 1z +a+n+1)(z+4)*" Since a+ 1 > 0,

(@)n—1
J) (@)

@ 0 is equivalent to

z+3\"" _ (a+z+a+n+1
x+4 (a+ 1Dz +n

There exists an index ng such that this inequality is true, since for a fixed z > 0 we
have lim (Z£3)*™™ = 0o and the right-hand side tends to 1 as n — co. We also deduce
n—oo Z+4

lim f™(x) = 0 for any n € N. Suppose that ng is even. Then (a),,_; is negative,
n—0o0

which implies that f(")(z) < 0 for any 2 € [0, 00). We deduce that f"0~Y(z) is strictly
decreasing and since lim f("0~Y(z) = 0 this implies that =Y (z) > 0 for z € [0, c0).

n—o00
By induction we deduce that for any n < ng, f™(x) > 0 for odd n and f™(z) < 0 for

even n for any = € [0,00). In particular, f'(z) > 0. The same conclusion follows if ng is

odd. |
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Figure 1: t; — transform applied to G at vertex v

Let u and v be two adjacent vertices of a graph G such that N(u) = {v, z1,..., %},
N(w) = {u, wy,..., ws}, where {z1,..., z,} N{w1,..., ws} = 0, p>0and s > 1. We
define a graph denoted by ¢(G) by removing edges vwy, vws, ..., vw, and adding new
edges wwy, uws, ..., uws. We say that ¢1(G) is a t;— transform of G (see Fig. 1).

Lemma 2.2. [3] For a graph G denote G’ = t;(G). If o < 0 then x,(G') < xa(G) and

if @ > 0 then the inequality is reversed .

Proof. We have de/(u) = dg(u) + s > dg(u) and de/(u) + der(v) = dg(u) + de(v) =
p+ s+ 2. Since « < 0 we get

XalG) =Xa(G) = Y- [(de(z)+dc(w)+5)° (dG(ZszG(u))a]+Z[(dc(1lh)+dc(1t)+é)
(da(w;) +s+1)7] <10 since o < 0 and the degrees of the VeItlces Pl Zpy Wi, .., W

remain unchanged . |

Other transformations are described below.

Lemma 2.3. For trees G and G’ from Fig. 2, where dg(w,t) > 1 we have x(G) > xa(G)

for any p, ¢, r > 1land -1 <a<0.

Proof. It is easily seen that:

Xo(G) = Xal(G) = plp+2)* +r(r +3)*+ (r+q¢+3)* = (p+r)p+r+2)*—(¢+
3)* = r(r+3)* + F(p) + G(q), where F(p) = p(p+2)*—(p+r)(p+r+2)* and
Glg) = (r+q+3)*—(q+3)~

We obtain F'(p) = (p+2+pa)(p+2)* ' —(p+r+a(p+r)+2)(p+r+2)°~" = g(p)—g(p+r),
by denoting g(z) = (z + az + 2)(z +2)*~L.

Also ¢'(z) = a(z +2)*2(z(a+1)+4) < 0 for every z > 0 and —1 < o < 0. It
follows that F’(p) > 0, which implies that F(p) is strictly increasing. Since G'(q) =
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Figure 2: Swaping pendant edges at one end of a diametral path of G

af(r+q+3)*t = (g +3)*71] > 0 for @ < 0 we get that G(q) is also strictly increasing.
We can write xo(G) — Xa(G') > r(r+3)*+ F(1) + G(1) = (r+4)* — (r +3)* + 3% — 4.
Consider the function h(z) = (z44)*—(z+3)% We get I/ (z) = af(z+4)*"1—(2+3)*71] >
0, which implies h(r) > h(1) = 5* — 4% for z > 1.

It remains to show that 5* + 3% > 2 - 4%, This inequality can be deduced by Jensen’s

inequality since the function z® is strictly convex for —1 < a < 0. |

Lemma 2.4. Consider two trees G and G’ from Fig. 3, where dg(u,v) = de(u,v) > 2
and dg(w,t) = de/(w,t) > 0. If p,g,r > 1 and —1 < a < 0 then x(G) > xo(G').

Proof. As for the previous lemma we get:

Xa(G) = Xa(G') = p(p+2)" + (p+3)* +7(r +3)" + (r +4)" + (r+¢+3)" = (p+7)(p +
r+2)* = p+r+3)*—(¢+3)*—

By denoting f(p) = (p+3)*—(p+r+3)*+plp+2)*—(p+r)(p+r+2)* and
9(q) = (r+q+3)*—(q¢+3)°, it follows that

Xal(G) = XalG") = f(p) +9(q) + (r +4)* +7(r +3)* — 4% (1)

Since ¢'(q) > 0 for any —1 < o < 0 we can write g(q) > g(1) = (r+4)*—4“. For f(p)
we get f'(p) = h(p) — h(p+r) by denoting h(p) = a(p+3)*~1+ (p+2)* +ap(p +2)°~L.
We obtain 7'(p) = af(a —1)(p+3)*2 + (4 + (a+ 1)p)(p +2)* 2.

The expression (a—1)(p+3)*"2+(4+(a+1)p)(p+2)*2 > (a—1)(p+3)*2+4(p+3)*~2 =
(a+ 3)(p + 3)*72 > 0, thus implying /'(p) < 0. We have deduced f’(p) > 0, hence
F) 2 F1) = 45— (4 4%+ 30 — ()7 + 30,

From (1) we can write
XalG) = Xa(G) > (r+4)* = (r+3)*+3*—4°>0

since r > 1, function (r +4)* — (r + 3)® is strictly increasing for r > 0 and a > —1. W
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Figure 3: Swaping pendant edges at one end of a diametral path of G
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Figure 4: Swaping a pendant edge between ends of a diametral path.

Lemma 2.5. Let G and G’ be trees from Fig. 4, where dg(u,v) > 1. If =1 < a <0 and
P> q>2then xo(G) > xa(G').

Proof. If dg(u,v) = 1 then dg/(u) + der(v) = da(u) + de(v) = p+ ¢+ 2, and
Xa(G) = Xa(G) = p(p+2)* +qlg+2)* = (p+ D(p+3)* — (¢ = D¢+ 1)~

By denoting p = ¢ + 7, where r > 0, it is necessary to prove that
(g+r)(g+r+2)*=(g+r+1(g+r+3)"+ql¢+2)* = (¢—D(g+1)* >0, (2)

or g(q) > g(g +r+1), where g(q) = q(q+2)* — (¢ — (g +1)*.

We deduce ¢'(q) = (¢+2+0q)(¢+2)*" = (¢+1+a(g—1))(g+1)*"" = h(q) —h(g—1),
where h(q) = (¢ + 2+ aq)(qg+2)*"

Finally, V'(¢) = (4o + (14 a)q)(g+2)*"2 < 0 since —1 < o < 0.

Consequently, h(q) — h(qg — 1) < 0, which implies ¢'(¢) < 0. Since ¢ is strictly decreasing
we have g(¢) > g(¢+r+1) and (2) is proved.

If dg(u, v) = 2 then xa(G) = Xa(G') = p(p+2)* —p(p+3)* = (p+4)* = (¢ =g+ 1)+
(4= 1)(a+2)"+(q+3)" = F(p)— Fla—1), where f(z) = #(z+2)" —a(z+3)" - (s+4)".
By Lemma 2.1 f(z) is strictly increasing for x > 0, which implies f(p) > f(¢—1). H
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3. MINIMUM VALUE OF y, (-1 < a <0) FOR TREES OF GIVEN

DIAMETER
Let d > 3. We shall denote by MS(ny, na, ..., ng_1) where ny,ng_y > 1 and n; > 0
for 2 < i < d — 2, the caterpillar consisting of a path vy, ve, ..., v4_1 of length d — 2

with n; pendant vertices attached at v; for 1 < ¢ < d — 1. It has diameter equal
to d. This multistar may also be obtained by joining by edges the centers of stars
Ky, Kipg, ..., K1y, . Note that every tree of order n and diameter three is a bis-
tar MS(n1, ng) (denoted by BS(nq, na) in [13]), where nq, ny > 1 and nqy +ny = n — 2.
Observe that MS(ny, na, ..., ng_1) is isomorphic to MS(ng_1, ng_2, ..., n1). The mul-
tistar withd=n—p+1,ny=p—1,ny= ... = ng o= 0and ng_; = 1 has p pendant
vertices and order n and was denoted by S,,, in [15]. Equivalently, for every integers n, p
with 2 < p <n -1, 5,, is the tree formed by attaching p — 1 pendant vertices to an
end vertex of the path P,_, 1. We have S,,» = P, and S, ,— is the star K, ,,_;. S, , has

diameter equal ton —p + 1.

Theorem 3.1. For every —1 < a < 0 in the set of trees 7" having order n > 3 and
diam(T) = d (2<d <n—1), xo(T) is minimum if and only if T' = S, ,,_q41.

Proof. Using the ¢;— transform in Lemma 2.2 at vertices not belonging to a diametral
path of 7', we can deduce that among n-vertex trees 7" with diameter d, the minimum of
Xo(T) is achieved exactly in the set of multistars MS(nq, no, ..., ng_1).

Applying transformations described in Lemmas 2.3 — 2.5 it follows that minimum of
Xa(T) is achieved only for ny = n—d, ng = n3= ... = ngo= 0and ng_y = 1, i.e., for

Sn,nfdJrl . L
Corollary 3.2. Let —1 < o < 0. (a) In the set of trees T of order n we have

min T)< min T
diam/(T)=1 Xa ( ) diam(T)= j Xa( )

if2<i<j<n-—1.
(b) In the set of trees T of order n and diameter d with 3 < d < n — 2 the trees having
smallest general sum-connectivity index y,(7") are (in this order):

MS(n—d, 0, ...,0,1), MS(n—d—1,0, ..., 0,2), ..., MS([2=2] 0, ..., 0, 2=t ]).

Proof. (a) This inequality follows from Lemma 2.2 since M S(n —4, 0, ..., 0, 1) can be

obtained from MS(n —j, 0, ..., 0, 1) applying several times the ¢;— transform.
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K1,n-1 Sn,n-2= BS(n-3.1) BS(n-4,2)

Snns BS(n5.3)

Figure 5: Five trees T having smallest y,(T) for —1 < a < 0.

(b) This ordering can be deduced using Lemmas 2.2 — 2.4 and then making use of Lemma

2.5 to multistars of order n MS(p, 0, ..., 0, q) withp+¢g=n—d+1. [ |

Theorem 3.3. For every —1 < o < 0 there exists ng(«) > 0 such that for every n > ngy(a)
the trees T having the smallest x,(7') are Ky ,_1, BS(n—3,1), BS(n —4,2), S, ,—3 and
BS(n —5,3) (in this order). Also we have ng(—1) = 16.

Proof. The unique tree having diameter two is the star K;,_; and by Corollary 3.2 it
reaches the minimum of x,. The second minimum value of x,, is achieved for S, ,—o =
BS(n — 3,1), which minimizes this index in the set of trees of diameter three.

The next minimum values in the set of trees of diameter three are reached by BS(n—4,2)
(which coincides to BS(n —3,1) for n = 5) and BS(n — 5, 3) and the minimum value of
Xo in the set of trees of diameter four by S, ,_3.

We get xo(BS(n—4,2)) < Xa(Spn—3) since BS(n —4,2) can be obtained from S, ,,_3 by
a t— transform. It follows that for every n > 6 the trees having minimum values of y,
are Ky ,_1, BS(n —3,1) and BS(n —4,2).

In order to obtain the fourth term in this sequence it is necessary to compare x,(BS(n —
5,3)) with xa(Snn-3). We get

Xa(BS(n—5,3))—Xa(Snn-3) = (n—=5)(n—3)*+n*—(n—4)(n—2)*—(n—1)*+3-5*—4*—3“
and lim ((n —5)(n —3)*+n*— (n—4)(n — 2)* — (n — 1)*) = 0 since a < 0. We shall

n—o00
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prove that 3 - 5% — 4% — 3% > %

For this consider the function ¢(z) = 3 - 5% — 4% — 3* defined for —1 < < 0. Since

In4\" In3\"
(n) _ n LET T _qu
o™ (z) = (Inb) {3 5% — 4 <ln5) 3 (1115> } ,

there exists an index m such that o™ (z) > 0.

This means that (™~ (x) is strictly increasing on [—1,0), hence (™D (z) > p(m=D(—1) =
3(In5)m !t —1(In4)"'—L(In3)™! > (In5)"~'(2—1—1) > 0. By induction it follows that
o(z) is strictly increasing for z € [—1,0) and we deduce that p(z) > ¢(—1) = 2 —3—2 =
- 1t follows that nliﬁnolo()((,(BS(nfS, 3)) = Xa(Snn-3)) = 3-5%—4*—3> > L _which means
that there exists ng(a) such that x,(BS(n —5,3)) > Xa(Snn—3)) for every n > ng(a).
If &« = —1 (corresponding to the harmonic index), the difference

n—-5 n—4 1 1

n=3 n—2 nn—1 60

is negative for n < 15 but becomes positive for n > 16.

X-1(BS(n—5,3)) — x-1(Snn-3) =

We also have

Xa(BS(n—5,3)) — xa(MS(n —5,0,2)) = n* — (n—2)*4+2(5* —4%) <0
for every n > 3 and a < 0, where M S(n — 5,0,2) realizes the second minimum value
of X, in the set of trees of diameter four after S, ,_s. Using a t;— transform it can be
easily seen that the tree MS(n — 5,0,0,1), reaching minimum of x, in the set of trees
of diameter five obeys x(MS(n —5,0,0,1)) > xo(MS(n —5,0,2)), which concludes the
proof. |

Note that for a = —1/2 first three trees from Fig. 5 having smallest yx, index were
found in [15]. Another extremal property of the tree S, is the following, which extends

the corresponding property given in [15] from o = —1/2to —1 < o < 0.

Theorem 3.4. Let T be a tree with n > 5 vertices and p pendant vertices, where

3<p<n—2and -1 < a < 0. Then
Xa(T) = (p=1p+1)"+ (p+2)* +3%+ (n—p—2)4°
with equality if and only if T'= S,, .

Proof. First we shall prove that under the assumption of the theorem, if u is a pendant

vertex being adjacent to v, then

Xa(T) = Xa(T —u) > (p=2)(p+ )"+ (p+2)* — (p — 2)p"
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with equality if and only if 7= S, , and d(v) =

Note that N(v) \ {u} contains some vertex wy of degree d(wy) > 2 since otherwise 7' is a
star with center v having p = n — 1 pendant vertices, which contradicts the hypothesis.
We obtain

Xa(T) = Xa(T —u) = (d(v) +1)* — VWEN%\{H}[(d(U) + d(w) = 1)* = (d(v) + d(w))"].
Since the function f(z) = (z — 1)* — 2 is strictly decreasing for > 1 and o < 0 we
have (d(v) + d(wp) — 1)* — (d(v) + d(wp))* < (d(v) + 1)* — (d(v) 4+ 2)* and for all other
d(v) — 2 vertices w € N(v) \ {u,wo} we deduce (d(v) + d(w) — 1)* — (d(v) + d(w))* <
d(v)® — (d(v) + 1)* because d(w) > 1. It follows that xo(7T) — Xo(T —u) > (d(v) + 1)* —
[(d(v) + 1)* = (d(v) +2)%] = (d(v) = 2)[d(v)* = (d(v) +1)*] =

= (d(v) +2)* + (d(v) = 2)(d(v) + 1)* = (d(v) = 2)d(v)"-

We also have d(v) < p since T — v consists of d(v) trees. Making use of Lemma 2.1 the
function g(x) = (z+2)*+(z—2)(x+1)* — (z —2)z* is strictly decreasing for -1 < a <0

and x > 2 since —g(z) is strictly increasing. Since 2 < d(v) < p this implies

Xa(T) = xa(T —u) = (p=2)(p+ )" + (p+2)" — (p — 2)p"
Equality holds if and only if we have d(v) = p, one neighbor of v has degree two, and
others are pendant vertices, i.e., T'= S, , and u is adjacent to the vertex of degree p of
Shp-
Now the proof of the theorem follows by induction on n. For n = 5 we get p = 3 and
Ss3 = BS(1,2) from Fig. 5 is a single tree of order five having three pendant vertices.
Let n > 6 and suppose that the theorem is true for all trees of order n — 1 having p
pendant vertices, where 3 < p < n — 3. Let u be a pendant vertex adjacent to the vertex
v. We shall consider two subcases: A. d(v) = 2 and B. d(v) >3
A. In this case the unique vertex w adjacent to v has d(w) > 2, which implies x,(7") —
Xo(T —u) = (d(w) + 2)* + 3% — (d(w) + 1) > 4 since the function (x + 2)* — (z + 1)*
is strictly increasing for x > 0.
Equality holds if and only if d(w) = 2. In this case T — u has p pendant vertices. By the
induction hypothesis, for p < n — 3 we have xo(T — u) > Xa(Sn—1,) with equality if and

only if ' —u = S,_1,. In this case
Xa(T) > XQ(T - “) + 4« > Xa(snfl,p) + 4% = Xa(Sn,p)

and equality holds if and only if T — u = S,_1, and d(v) = d(w) = 2,1ie., T = S,,.
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If p=mn—-2,T —wuhasn —1 vertices, and n — 2 pendant vertices, i.e., T'—u = Ky,
and 7' = S, -2 = S p-

B.If d(v) > 3 then T'—u has n—1 vertices and p—1 pendant vertices. Using the induction
hypothesis for T'—u and the above property we get xo(T') > xo(T —u)+(p—2)(p+1)*+
(P+2)" = (p = 2)p" 2 Xa(Sn-1p-1) + (P = 2)(p+ )" + (P +2)* = (P = 2)p" = Xa(Snp)-
Equality holds if and only if T'—u = S,_1,1 and d(v) = p,ie, T = 5,,. |

4. MINIMUM VALUE OF y, (-3 < o < 0) FOR MULTIGRAPHS

The index x,(G) may be defined in the same way when G is a multigraph containing

parallel edges.

Theorem 4.1. Let m,n € Nsuchthat n >3, m>n—1land -3 <a<0.IfGisa

connected multigraph with n vertices and m edges, then
Xa(G) > (n—=2)(m+1)*+ (m —n+2)(2m —n+2)°

with equality if and only if G is K;,_; having one edge of multiplicity m —n + 2 and
n — 2 edges of multiplicity 1.

Proof. For any multigraph G we shall define the ¢;— transform relatively to the pair
{u, v} of adjacent vertices from V(@) such that N(u) # {v} and N(v) # {u}. Suppose
that N(u) \ N(v) = {v}U{z1, ..., z}; N0)\ N(uv) = {u} U{w, ..., w,} and N(u)N
N@) = {z1, ..., 2.}, where p,r,s > 0and p+r >1,s+r> 1.

We swap all edges xjv, ..., z,v, wiv, ..., wsw incident to v from v to u, making them
incident to u and preserving their multiplicities. If mg(2y) denotes the multiplicity of an
edge zy in G, this means that in the graph G| = #,(G) thus obtained v is adjacent only
to u and mg, (uw;) = mg(vw;) for every 1 < i <'s, mg, (uz;) = mg(uz;) + mg(vz;) for
every 1 <7 <.

We have dg, (v) = mg(uv), mg, (uw) = mg(uw), hence dg, (u) + dg, (v) = de(u) + de(v).
This transformation is illustrated in Fig. 6 when G does not contain parallel edges.
By this transformation only degrees of vertices u and v are changed. We can write
de(u) > me(uwv) +p+r > me(uv) + 1.

We deduce dg, (u) = dg(u) + da(v) — mg(uv) > de(v) + 1 and also dg, (u) > dg(u).

It follows that for all edges xy, invariant or transformed, the sum of degrees increases
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Figure 6: G1 = t2(G)

or remains constant in G and for at least one edge the increment is positive. We get
Xo(G) > Xa(G1).

Let G be a connected multigraph of order n and size m > n—1 such that y,(G) is minimum
and let uwv € E(G). If N(u) # {v} and N(v) # {u} we have seen that x,(G) cannot be
minimum, thus yielding N(u) = {v} or N(v) = {u}. Suppose that N(v) = {u}; for any
edge uz of G incident to u we also have N(z) = {u}. Since G is connected we obtain that
G is K;,-1 containing some parallel edges, such that the size of G is m. Let w be the
center of Ky ,_1. If there exist two vertices u,v # w such that m(uw) = p, m(vw) = ¢
and p > ¢ > 2, we shall prove that x,(G) cannot be minimum. For this we shall define
another graph G5 which is obtained by transforming one parallel edge between w and v
into a parallel edge between w and w, such that dg,(u) = p+1, dg,(v) = ¢—1 and other
degrees remain unchanged. If d(w) = p+ g+ s and s > 0 we get

Xo(G2)=Xa(G) = (p+1)(2p+q+s+1)*+(¢—1)(p+2q+5—1)*—p(2p+q+5)*—q(p+2q+s)".
We shall prove that if —3 < a < 0 then x.(G2) — xa(G) < 0, which is equivalent to
(P+D2p+q+s+1)"—p2p+q+s)" <ap+2¢+s)"—(@—1)(p+2¢+s—1)" (3)

Consider the function f(z) = (z+1)(z+a+1)* —z(z+a)*, where z > 0 and a > z. We
have f'(x) = p(z + 1) — @(x), where ¢(x) = (v +a + ax)(z + a)* 1. Since =3 < a <0
and @ > x one obtains ¢'(z) = a(z + a)*%(2a + z + az) < 0, thus implying that ¢ is
strictly decreasing on (0, 00), hence f'(z) < 0, or f(x) is strictly decreasing on (0, co).
Consequently, f(p) < f(¢g—1) for any a > p since p > ¢ — 1 and we can write (p+ 1)(p +
a+1D)*—plp+a)* <ql¢g+a)®—(¢g—1)(¢—1+a)* Letting a = p+ ¢+ s > p this
inequality becomes (3).

Consequently, if x,(G) is minimum then only one vertex different from w has degree equal
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to m — n + 2 and other non-central vertices have degree equal to 1, whenever

Xa(G)= (n=2)(m+ 1)+ (m—n+2)2m—n+2)*. |

If m = n—1 then G is a tree and min x,(G) is reached if and only if G is Ky ,_1,
which does not contain parallel edges. This result holds for trees in a more general setting
when a < 0 [16].

Denote by My, ., (K1,-1) the set of multigraphs of size m > n+k—1 deduced from K ,,_4
by considering k£ multiple edges and n — 1 — k simple edges for 1 < k < n—1. Denote also
by (dy, ..., dg, 1, ..., 1) with d; > dy > ... > dj, > 2 the vector of degrees of non-central
vertices, where i di=m-n+k+1.

From this proofl:i; follows that if m > n + k — 1 then the multigraph G of order n and
size m having k& multiple edges and minimum general sum-connectivity index belongs to

My (K1 —1), it is unique and has the vector of degrees (m—n—Fk+3,2, ...,2, 1, ..., 1).
’ — e ———

k—1 n—k—1

Also
Xa(G) (4)

min Xa(G) < min
GeEMy, i (K1,n—1) GEMpy1,m(K1n—1)

holds for any 1 < k < n — 2 provided m > n + k.
Corollary 4.2. Suppose that —3 < a < 0. For fixed n > 3 and m > n + 3, among the
connected multigraphs of order n and size m the multigraphs having the minimum, the

second and the third minimum general sum-connectivity index are deduced from K ,_;

having the vectors of degrees of non-central vertices equal to (m —n+2, 1, ..., 1), (m—
n+1,2,1,...,1)and (m—mn, 3, 1, ..., 1), respectively.
Proof. We have seen that (m —n+2, 1, ..., 1) corresponds to the multigraph reaching

min y,(G); in this case k = 1.

If & = 2 the minimum is reached for (m —n+1, 2, 1, ..., 1) and the second minimum is
achieved for (m —n, 3, 1, ..., 1).

For k = 3 the minimum is reached for (m —n, 2, 2, 1, ..., 1). The value of x, corre-
sponding to this vector is greater than the value corresponding to (m —n, 3, 1, ..., 1),

as we have seen in the proof of Theorem 4.1. Since (4) holds, the conclusion follows. W
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