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Abstract: In this paper, we report some recent results, mainly focusing on the ordering
results, of some typical variable Wiener indices, Wiener polarity index or hyper-Wiener
index in some given classes of graphs.

1 Introduction

The distance dG(u, v) (or simply d(u, v) when no confusion arise) between the vertices u

and v of G is equal to the length of (number of edges in) the shortest path that connects

u and v. Let γ(G, k) denote the number of unordered vertex pairs of G, the distance of

which is equal to k.

As early as in 1947, Wiener [1] used the next formula to calculate the boiling points

tB of the paraffins:

tB = aW (G) + bWP (G) + c,

where a, b, and c are constants for a given isomeric group, W (G) is equal to the sum of

distance dG(u, v) of unordered vertex pairs pertaining to G, and WP (G) is equal to the
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number of unordered vertex pairs of distance 3. In the sequel, this simple numerical rep-

resentation of a molecule has shown to be a very useful quantity to use in the quantitative

structure-property relationships (QSPR) [2, 3]. Moreover, it also has many applications

in communication, facility location, cryptology, etc., that are effectively modeled by a

connected graph G satisfying certain restrictions [4]. Thus, W (G) receives much atten-

tion and it is called Wiener index of G, while WP (G) is named Wiener polarity index of

G.

By the definitions of WP (G) and W (G), it turns out that WP (G) = γ(G, 3) and

W (G) =
∑

{u,v}⊆V (G)

d(u, v) =
∑
k≥1

kγ(G, k). (1.1)

Actually, Wiener himself conceived W (G) only for acyclic molecules and he showed that

his index can be computed by means of the next formula:

W (T ) =
∑
e

n1(e) · n2(e) (1.2)

where T is a tree, n1(e) and n2(e) are the number of vertices on the two sides of the edge

e, and where the summation goes over all edges of T . The definition of the Wiener index

in term of distances between vertices of a graph, such as in Eq. (1.1), was first given by

Hosoya [5]. When G is a tree, Eq. (1.1) is equivalent to Eq. (1.2). For the proof, one

can refer to [4]. Moreover, [4] is a comprehensive survey for the Wiener index, and the

reader is referred to the paper for further details.

A large number of modifications and extensions of the Wiener index was considered

in the chemical literature; an extensive bibliography on this matter can be found in the

reviews [6, 7]. Lately, Nikolić, Trinajstić and Randić [8] put forward a modified Wiener

index mW , defined as

mW (T ) =
∑
e

(n1(e) · n2(e))
−1 (1.3)

In the same paper, they illustrated some examples to show that this modification leads

to improved QSPR models by comparing with the Wiener index, and they also used this

index to establish the structure-boiling point models for octanes. Recently, motivated by

the analogy between Eqs. (1.2) and (1.3), Gutman, Vukičević and Z̆erovnik [9] extended

the definitions of W (T ) and mW (T ) to

mWλ(T ) =
∑
e

(n1(e) · n2(e))
λ. (1.4)
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In [9], the authors called mW (T ) the modified Wiener index of T , and mWλ(T ) the

variable Wiener index of T . The Wiener index and all kinds of variable Wiener indices

have important applications in chemistry, for instance, the optima value of λ which gives

the smallest standard error of estimate, in the the structure-boiling point modeling of

isomeric octanes was studied in [10], and the relation between variable Wiener indices

and internal molecular energy was studied in [11]. Thus, more and more mathematicians

and chemists became interested in them and devoted themselves to the study (see e.

g. [10–14]). For more results on the mathematical properties and their applications in

chemistry of different kinds of variable Wiener indices, one can refer to [10–15] and the

references cited therein.

Among these modifications and extensions of Wiener index, the hyper-Wiener index

is another important one. The hyper-Wiener index WW (G) is introduced by Randić

in [16] and is defined as

WW (G) =
1

2
W (G) +

1

2

∑
{u,v}⊆V (G)

d2(u, v) =
1

2

∑
k≥1

k(k + 1)γ(G, k). (1.5)

It rapidly gained popularity and numerous results on it were reported [17–21]. For the

mathematical properties and extensions of hyper-Wiener index, one can be referred to

[17–22] and the references cited therein.

In this paper, we shall report some recent results, mainly focus on the ordering results,

of some typical variable Wiener indices, Wiener polarity index or hyper-Wiener index, in

some given class of graphs.

2 The Variable Wiener indices of trees

We shall begin with some graph transformations, under which the variable Wiener index

increases or decreases. Suppose v is a vertex of a tree R. As shown in Fig. 2.1, let

Rk,l (l ≥ k ≥ 1) be the graph obtained from R by attaching at v two new paths P :

v(= v0)v1v2· · · vk and Q: v(= u0)u1u2· · · ul of length k and l, respectively, where v1, v2,

..., vk and u1, u2, ..., ul are distinct new vertices. Let Rk−1,l+1 = Rk,l − vk−1vk + ulvk.
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Fig. 2.1. The trees Rk,l and Rk−1,l+1.
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Proposition 2.1 [9] Let R be a tree with at least two vertices or an isolated vertex. If

l ≥ k ≥ 1, then mWλ(Rk,l) ≤ mWλ(Rk−1,l+1) for λ > 0, and mWλ(Rk,l) ≥ mWλ(Rk−1,l+1)

for λ < 0, where both equalities hold if and only if R is an isolated vertex.
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Fig. 2.2. The trees Mt,t+s and Mt+1,t+s.

Suppose v is a vertex of a tree R, and v2, ..., vt+s, u0 are distinct new vertices (not in

R). Let R′ be the graph obtained from R by attaching a new path P : v1v2· · · vt+s. Let

Mt,t+s = R′ + vtu0 and Mt+i,t+s = R′ + vt+iu0, where 1 ≤ i ≤ s. For instance, Mt,t+s and

Mt+1,t+s are depicted in Fig. 2.2.

Proposition 2.2 Let R be a tree with at least two vertices or an isolated vertex. If t ≥
s ≥ 1, then mWλ(Mt,t+s) ≤ mWλ(Mt+i,t+s) for λ > 0, and mWλ(Mt,t+s) ≥ mWλ(Mt+i,t+s)

for λ < 0, where 1 ≤ i ≤ s.

Remark 2.1 In [25], Proposition 2.2 was proved to be true in the case of λ = 1, i.e., the

Wiener index, since mW1(T ) = W (T ). Actually, with the similar method applied in [25],

we can also deduce Proposition 2.2.
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Fig. 2.3. The tree’s transfer operation: T → TA → TB → TC .

A vertex u of a tree T is called a branching vertex of T if d(u) ≥ 3. Furthermore, u

is said to be an out-branching vertex if at most one of the components of T − u is not a

path.

Now we introduce a transfer operation, which was applied in [24–26]: T → TA →
TB → TC , as shown in Fig. 2.3, where T is a tree of order n, u is an out-branching point

of T , d(u) = m ≥ 3, and all the components T1, T2, ..., Tm of T − u except T1 are paths.
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Proposition 2.3 [26] Let u be an out-branching vertex of a tree T of order n, d(u) = m

(m ≥ 3), and let all components T1, T2, ..., Tm of T − u except T1 be paths.

(1) If λ > 0, then mWλ(T ) ≤ mWλ(TA) ≤ mWλ(TB) <
mWλ(TC), where

mWλ(T ) =

mWλ(TA) if and only if T ∼= TA, and
mWλ(TA) =

mWλ(TB) if and only if TA
∼= TB.

(2) If λ < 0, then mWλ(T ) ≥ mWλ(TA) ≥ mWλ(TB) >
mWλ(TC), where

mWλ(T ) =

mWλ(TA) if and only if T ∼= TA, and
mWλ(TA) =

mWλ(TB) if and only if TA
∼= TB.
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Fig. 2.4. The trees P ∗
n and S∗

n.

As usual, let Cn, Pn, Sn and Kn be a cycle, a path, a star and a complete graph on n

vertices, respectively. Let P ∗
n and S∗

n be the trees as shown in Fig. 2.4. By Proposition

2.1, Gutman et al. demonstrated the following:

Theorem 2.1 [9] Let T be an arbitrary tree on n vertices, and T �∈ {Pn, P
∗
n , Sn, S

∗
n}.

(1) If λ > 0 and n ≥ 5, then mWλ(Pn) > mWλ(P
∗
n) > mWλ(T ) > mWλ(S

∗
n) >

mWλ(Sn).

(2) If λ < 0 and n ≥ 5, then mWλ(Pn) < mWλ(P
∗
n) < mWλ(T ) < mWλ(S

∗
n) <

mWλ(Sn).

Remark 2.2 By the results of Theorem 2.1, it turns out that the variable Wiener in-

dices mWλ may be viewed as a branching index, namely a topological index capable of

measuring the extent of branching of the carbon-atom skeleton of molecules and capable

of ordering isomers according to the extent of branching [9], for all λ.

A caterpillar is a tree in which a removal of all pendant vertices makes a path. Let

T (n, d;n1, n2, ..., nd−1) be a caterpillar obtained from a path v0, v1, ..., vd by attaching

ni (ni ≥ 0) pendant vertices to vi (i = 1, 2, ..., d − 1). Clearly, n = d + 1 +
∑d−1

i=1 ni.

Let C(v0 · · · vt; p) denote a comet, which is a tree obtained from a path v0v1 · · · vt by

attaching p pendant vertices to the vertex vt, where t, p ≥ 1. For brevity, sometimes

we write C(v0 · · · vn−Δ; Δ − 1) as C(n,Δ). Let Tn be the set of trees on n vertices, and

T Δ
n be the set of trees on n vertices with maximum degree Δ. In the following, let

F (n,Δ) = T (n, n − Δ;Δ − 2, 0, ..., 0, 1), H(n,Δ) = T (n, n − Δ + 1; 0,Δ − 2, 0, ..., 0).

Using Propositions 2.1 and 2.3 proper number of times, the next result can be achieved.
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Theorem 2.2 Let T be a tree in T Δ
n \ {C(n,Δ), F (n,Δ), H(n,Δ)}. Then,

(1) mWλ(T ) < max{mWλ(F (n,Δ)),mWλ(H(n,Δ))} < mWλ(C(n,Δ)) for λ > 0;

(2) mWλ(T ) > min{mWλ(F (n,Δ)), mWλ(H(n,Δ))} > mWλ(C(n,Δ)) for λ < 0.

Remark 2.3 In [26], Theorem 2.2 was present in the restriction of Δ ≥ n
2
. Actually,

by employing the similar method used in [26], the condition Δ ≥ n
2
can be deleted. For

detail, one can be referred to the proof of Theorems 2.1 and 2.2 of [26].

Let T 1,Δ
n be the set of trees on n vertices, whose vertices are of degree 1 or Δ. Let

M1(n,Δ) be the caterpillar tree of order n, whose vertices are of degree 1 or Δ.

Theorem 2.3 [75] Let T be a tree in T 1,Δ
n \ {M1(n,Δ)}. Then,

(1) mWλ(T ) <
mWλ(M1(n,Δ)) for λ > 0;

(2) mWλ(T ) >
mWλ(M1(n,Δ)) for λ < 0.

Let Tn, k (n ≥ 3) be the set of trees with n vertices and k pendant vertices. It is

easy to see that Tn, 2 = {Pn} and Tn, n−1 = {Sn}. Paths Pl1 , ..., Plk are said to have

almost equal lengths if l1, ..., lk satisfy |li − lj| ≤ 1 for 1 ≤ i ≤ j ≤ k. The notation Bn,k

denotes the tree on n vertices formed by attaching k paths of almost equal lengths to

one common vertex v. Obviously, Bn,k ∈ Tn, k. Let S(p;n1, n2) be a tree on n vertices

obtained from a path v1v2 · · · vp by attaching n1 and n2 pendant vertices to the vertices

v1 and vp, respectively, where n1 + n2 + p = n. For 3 ≤ k ≤ n − 2, the maximum and

minimum variable Wiener indices in Tn, k were determined.

Theorem 2.4 [23] Suppose T ∈ Tn, k \ {Bn,k, S(n− k; 	k
2

, �k

2
�)}, where 3 ≤ k ≤ n− 2.

Then,

(1) mWλ(Bn,k) <
mWλ(T ) <

mWλ(S(n− k; 	k
2

, �k

2
�)) if λ > 0;

(2) mWλ(S(n− k; 	k
2

, �k

2
�)) < mWλ(T ) <

mWλ(Bn,k) if λ < 0.

Let T (n, d) be the set of trees with n vertices and diameter d. It is easy to see that

T (n, 2) = {Sn}, and T (n, n − 1) = {Pn}. Let Cn,d be the caterpillar obtained from a

path Pd with vertices {v0, v1, ..., vd} by attaching n− d− 1 pendent edges to vertex v� d
2
�.

Zhang and Zhou [87] determined the extremal variable Wiener index in T (n, d) via the

next result.

Theorem 2.5 [87] Suppose T ∈ T (n, d) \ {Cn,d}, where 3 ≤ d ≤ n − 1. Then,

mWλ(Cn,d) <
mWλ(T ) if λ > 0, and mWλ(Cn,d) >

mWλ(T ) if λ < 0.
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3 The Modified Wiener indices of trees

For modified Wiener index, Theorem 2.2 can be improved to

Theorem 3.1 [26] Let T be a tree in T Δ
n \{C(n,Δ)}. Then, mW (T ) ≥ mW (H(n,Δ)) >

mW (C(n,Δ)), and the first equality holds if and only if T ∼= H(n,Δ).

The tree S(i, n − i) on n vertex is called a double star graph, which is obtained by

joining the center of Si to that of Sn−i by an edge. In particularly, S(n− 1, 1) is the star

Sn and S(Δ, n−Δ) ∼= T (n, 3;Δ− 2, n−Δ− 2). The next result determines the first two

largest values of mW (T ) in T Δ
n , where Δ ≥ n

2
and n ≥ 10.

Theorem 3.2 [26] Suppose T ∈ T Δ
n , where Δ ≥ n

2
and n ≥ 10. If T �= S(Δ, n − Δ),

then

mW (T ) ≤ mW (T (n, 4;n−Δ− 3,Δ− 2, 0)) < mW (S(Δ, n−Δ)),

where the first equality holds if and only if T ∼= T (n, 4;n−Δ− 3,Δ− 2, 0).

A starlike tree is a tree with only one branching point. Let T (n;n1, n2, ..., nd) denote

the starlike tree of order n obtained by inserting n1−1, ..., nd−1 vertices into the d edges

of the star Sd+1 of order d + 1 respectively, where n1 + · · · + nd = n − 1. For example,

P ∗
n
∼= T (n;n − 3, 1, 1). The first k-th greatest and smallest modified Wiener indices in

the class of trees on n vertices for all k up to 	n
2

 + 1, respectively, are characterized by

the following two results.

Theorem 3.3 [24] Suppose T ∈ Tn\{Sn, S
∗
n, S(n− 3, 3), S(n− 4, 4), ..., S(�n

2
�, 	n

2

),

T (n, 4; 0, n−5, 0)}. If n ≥ 6, then mW (Sn) >
mW (S∗

n) >
mW (S(n−3, 3)) > mW (S(n−

4, 4)) > · · · > mW (S(�n
2
�, 	n

2

)) > mW (T (n, 4; 0, n− 5, 0)) > mW (T ).

Theorem 3.4 [24] If T is a tree with n ≥ 45 vertices, then mW (Pn) < mW (P ∗
n) <

mW (T (n;n − 4, 2, 1)) < · · · < mW (T (n;n − 13, 11, 1)) < mW (T (n;n − 5, 2, 2)) <

mW (T (n;n − 14, 12, 1)) < · · · < mW (T (n; �n
2
�, 	n

2

 − 2, 1)) < mW (T (n; �n

2
� − 1, 	n

2

 −

1, 1)), and for any other tree T , mW (T (n; �n
2
� − 1, 	n

2

 − 1, 1)) < mW (T ).

By Theorem 2.4, it immediately follows that

Theorem 3.5 Suppose T ∈ Tn, k\{Bn,k, S(n−k; 	k
2

, �k

2
�)}, where 3 ≤ k ≤ n−2. Then,

mW (S(n− k; 	k
2

, �k

2
�)) < mW (T ) < mW (Bn,k).
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By Theorem 2.5, we have

Theorem 3.6 Suppose T ∈ T (n, d) \ {Cn,d}, where 3 ≤ d ≤ n− 1. Then, mW (Cn,d) >

mW (T ).

4 The Wiener index and hyper-Wiener index

of graphs

In this section, we shall consider the ordering results of Wiener index and hyper-Wiener

index in some given class of graphs. The reason for us to combine them together here is

that they have many similar ordering results, for instance, see Remarks 4.1, 4.2, 4.3 and

4.4.

Let G(n) be the set of all the connected graphs on n vertices. Suppose k is a nonneg-

ative integer, the notation S(Kn − ke) denotes the set of all connected graphs obtained

from Kn by deleting k edges. By the definition, S(Kn− 0e) = {Kn}. The diameter of G,

denoted by d(G), is d(G) = max{d(u, v) : u, v ∈ V (G)}. By some observations to Eqs.

(1.1) and (1.5), it is straightforward to see that the smaller diameter, the smaller Wiener

index and the smaller hyper-Wiener index. The next result will confirm this observation.

Theorem 4.1 [27] Let n and k be two nonnegative integers with n > 2k. The first to

(k + 1)-th smallest Wiener indices of G(n) is
(
n
2

)
,
(
n
2

)
+ 1, ...,

(
n
2

)
+ k, and the first to

(k + 1)-th smallest hyper-Wiener indices of G(n) is
(
n
2

)
,
(
n
2

)
+ 2, ...,

(
n
2

)
+ 2k. Moreover,

W (G) =
(
n
2

)
+ i or WW (G) =

(
n
2

)
+ 2i if and only if G ∈ S(Kn − ie), where 0 ≤ i ≤ k.

Remark 4.1 Suppose n and k are two nonnegative integers with n > 2k. Theorem 4.1

implies that the graphs which reach the i-th smallest Wiener indices even share the i-th

smallest hyper-Wiener indices in the class of connected graphs on n vertices for every

i ∈ {1, 2, ..., k + 1}.

As early as in 1997, it has been demonstrated [28] that the Sn and Pn have the

maximum and minimum Wiener indices in Tn, respectively. After then, the first up to

twelfth smallest (resp. fifteenth greatest) Wiener indices in Tn were identified in [29]

(resp. [25]). Also, Gutman considered the similar order of hyper-Wiener index in Tn, and

he found that Sn and Pn also have the minimum and maximum hyper-Wiener indices in

Tn [30]. In the sequel, Liu et al. identified the second up to ninth smallest hyper-Wiener
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indices of trees on n ≥ 17 vertices and the second up to fifteenth greatest hyper-Wiener

indices of trees on n ≥ 20 vertices in [31, 32]. Next we shall introduce these results. We

first would like to report some operations that increase or decrease the hyper-Wiener

indices of trees.

Proposition 4.1 [32] Let R be a tree with at least two vertices, or an isolated vertex.

If l ≥ k ≥ 1, then WW (Rk,l) ≤ WW (Rk−1,l+1), where the equality holds if and only if R

is an isolated vertex.

Proposition 4.2 [32] Let R be a tree with at least two vertices, or an isolated vertex.

If t ≥ s ≥ 1, then WW (Mt,t+s) ≤ WW (Mt+i,t+s), where 1 ≤ i ≤ s.

Proposition 4.3 [32] Let u be an out-branching point of a tree T of order n, d(u) = m

(m ≥ 3), and let all components T1, T2, ..., Tm of T − u except T1 be paths. Then,

WW (T ) ≤ WW (TA) ≤ WW (TB) < WW (TC), where WW (T ) = WW (TA) if and only

if T ∼= TA, and WW (TA) = WW (TB) if and only if TA
∼= TB.

If T is a tree of order n with exactly two branching points u1 and u2, with d(u1) = r

and d(u2) = t. The orders of those r−1 components of T−u1, which are paths, are p1, ...,

pr−1, the order of the component which is not a path of T−u1 is pr = n−p1−· · ·−pr−1−1.

The orders of t− 1 components, which are paths, of T − u2 are q1, ..., qt−1, the order of

the component which is not a path of T −u2 is qt = n−q1−· · ·−qt−1−1. We denote this

tree by T (n; p1, ..., pr−1; q1, ..., qt−1), where r ≤ t, p1 ≥ · · · ≥ pr−1 and q1 ≥ · · · ≥ qt−1. For

example, T (n; 1, 1; 1, 1) = T (n, n− 3; 1, 0, ..., 0, 1). The next result, which can be proved

by invoking Propositions 2.1–2.3 and Propositions 4.1–4.3, gives some largest Wiener

indices and hyper-Wiener indices in Tn, respectively.

Theorem 4.2 Let T ∈ Tn. (1) [25, 28] If n ≥ 28, then W (Pn) > W (T (n;n− 3, 1, 1)) >

W (T (n;n−4, 2, 1)) > W (T (n; 1, 1; 1, 1)) > W (T (n;n−5, 3, 1)) > W (T (n;n−4, 1, 1, 1)) =

W (T (n; 1, 1; 2, 1)) > W (T (n;n−6, 4, 1)) > W (T (n;n−5, 2, 2)) > W (T (n; 1, 1;n−5, 1)) =

W (T (n; 1, 1; 3, 1)) > W (T (n; 2, 1; 2, 1)) > W (T (n; 1, 1; 1, 1, 1)) > W (T (n;n − 7, 5, 1)) >

W (T (n; 1, 1;n− 6, 1)) = W (T (n; 1, 1; 4, 1)) > W (T (n;n− 5, 2, 1, 1)) = W (T (n; 1, 1; 2, 2))

= W (T (n; 2, 1; 3, 1)) > W (T (n, n− 4; 1, 1, 0, ..., 0, 1)) > W (T ).

(2) [30,32] If n ≥ 20, then WW (Pn) > WW (T (n;n−3, 1, 1)) > WW (T (n;n−4, 2, 1)) >

WW (T (n; 1, 1; 1, 1)) > WW (T (n;n− 5, 3, 1)) > WW (T (n;n− 4, 1, 1, 1))

> WW (T (n; 1, 1; 2, 1)) > WW (T (n;n− 6, 4, 1)) > WW (T (n;n− 5, 2, 2))
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> WW (T (n; 1, 1;n− 5, 1)) > WW (T (n; 1, 1; 3, 1)) > WW (T (n; 2, 1; 2, 1))

> WW (T (n; 1, 1; 1, 1, 1)) > WW (T (n;n−7, 5, 1)) > WW (T (n; 1, 1;n−6, 1)) > WW (T ).

Remark 4.2 Theorem 4.2 implies that the trees which reach the first to fifteenth greatest

hyper-Wiener indices even share the first to thirteenth greatest Wiener indices in Tn when

n ≥ 28.

�
�

�
�
�

�

�

�

�

� ��

T2
�

�

�
�
�

�

�

�

� �
�

�
�

�

�

� �

T3
�

�

�
�

����
�

�

�

�

�

�

�

� ��

T4
�

�

�
�
�

�

�

�

�

� �
�
�

�

�
��

�

T5

�
�

�
�

�
�
�
�

�

�

�

�

�

�

� ���
���

�

T6
�

�

�
�

����
�

�

����
�

�

�

�

�

�

�

� ��

T7
�

�

�
�
�

�

�

�

�

� � � �

T8
�

�

�
�
�

�

�

�

�

� �
�
�

�

�
��

�
��
�

�

T9

Fig. 4.1. The trees T2, ..., T9.

Theorem 4.3 Let T ∈ Tn\{T1, T2, T3, T4, T5, T6, T7, T8, T9}, where T1 = Sn, T2, ..., T9

are the trees as shown in Fig. 4.1. (1) [30–32] If n ≥ 18, then WW (T ) > WW (T9) >

WW (T8) > WW (T7) > WW (T6) > WW (T5) > WW (T4) > WW (T3) > WW (T2) >

WW (T1). (2) [28, 29] If n ≥ 24, then W (T ) > W (T9) > W (T8) > W (T7) = W (T6) >

W (T5) > W (T4) > W (T3) > W (T2) > W (T1).

Remark 4.3 Theorem 4.3 implies that the trees which reach the first to ninth smallest

hyper-Wiener indices even share the first to eighth smallest Wiener indices in Tn when

n ≥ 24. Actually, Dong and Guo [29] had determined the first twelfth smallest Wiener

indices in Tn when n ≥ 24.
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Fig. 4.2. The unicyclic graphs U2, ..., U13.

Let U(n) and B(n) be the set of unicyclic graphs and bicyclic graphs on n vertices,
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respectively. Next we shall introduce some ordering results of the Wiener indices and

hyper-Wiener indices in U(n) and B(n), respectively. Let U1 be the unicyclic graph

obtained from Sn by adding one edge to two pendent vertices of Sn, and let U2, ..., U13

be the unicyclic graphs on n vertices as depicted in Fig. 4.2.

Theorem 4.4 Suppose n ≥ 13 and U ∈ U(n)\{U1, U2, ..., U13}. Then, (1) [31] WW (U) >

WW (U13) > WW (U12) = WW (U11) > WW (U10) = WW (U9) > WW (U8) = WW (U7) >

WW (U6) = WW (U5) > WW (U4) > WW (U3) = WW (U2) > WW (U1); (2) [31, 84]

W (U) > W (U13) > W (U12) = W (U11) > W (U10) = W (U9) > W (U8) = W (U7) >

W (U6) = W (U5) > W (U4) > W (U3) = W (U2) > W (U1).

Remark 4.4 Theorem 4.4 implies that the unicyclic graphs which reach the first to

eighth smallest hyper-Wiener indices even share the first to eighth smallest Wiener indices

in U(n) when n ≥ 13.

Let Cg(Pn−g) be the unicyclic graph on n vertices formed by attaching a path Pn−g to

one vertex of Cg. Let C
1
n,g be the unicyclic graph obtained from a cycle Cg by attaching

a path Pn−g−1 to a vertex u0 of Cg, and one pendent vertex to another vertex v0 of Cg.

Theorem 4.5 Let U ∈ U(n) \ {C3(Pn−3)}. If n ≥ 6, then (1) [72, 73, 84] W (U) ≤
W (C4(Pn−4)) = W (C1

n,3) < W (C3(Pn−3)), where the first equality holds if and only if

U ∼= C4(Pn−4) or U ∼= C1
n,3; (2) [43] WW (U) < WW (C3(Pn−3)).
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Fig. 4.3. The bicyclic graphs B1 and B2.

Let Dn be the bicyclic graph on n vertices formed by attaching a path of order

n − 4 to one vertex of degree two of K4 − e. Let B1 and B2 be the bicyclic graphs as

shown in Fig. 4.3.

Theorem 4.6 Let B ∈ B(n). If n ≥ 6, then (1) [44, 45] W (B2) = W (B1) ≤ W (B) ≤
W (Dn); (2) [45] WW (B2) = WW (B1) ≤ WW (B) ≤ WW (Dn), where the left equality

holds if and only if B ∼= B1 or B ∼= B2, and the right if and only if B ∼= Dn.
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Let PKn,m be the path-complete graph obtained from the disjoint union of a path and

a complete graph by the addition of edges between one end-vertex of the path and some,

but not all, vertices of a complete graph.

Theorem 4.7 [64] Suppose G has n vertices and m edges, where n−1 ≤ m ≤
(
n
2

)
, then

the path-complete graph PKn,m has maximum Wiener index.

A connected graph G is called a cactus if each block of G is either an edge or a

cycle. Denote by Cat(n, t) the set of connected cacti possessing n vertices and t cycles.

Let C0(n, t) be the cactus graph obtained from a star Sn by adding t independent edges

between the pendent vertices of Sn.

Theorem 4.8 Among all graphs in Cat(n, t) with n ≥ 8, (2) [69] C0(n, t) is the unique

graph having the minimum Wiener index for t ≥ 0; (2) [70] C0(n, t) is the unique graph

having the minimum hyper-Wiener index for t ≥ 1.

By Theorem 2.4, the next known result follows at once.

Theorem 4.9 [46–48] Suppose T ∈ Tn, k\{Bn,k, S(n−k; 	k
2

, �k

2
�)}, where 3 ≤ k ≤ n−2.

Then, W (Bn,k) < W (T ) < W (S(n− k; 	k
2

, �k

2
�)).

Recently, Yu et al. also considered the extremal value of hyper-Wiener index in the

class of trees with n vertices and k pendent vertices, and they showed that

Theorem 4.10 [49] (1) Suppose T ∈ Tn, k \ {Bn,k}, where 3 ≤ k ≤ n − 2. Then,

WW (Bn,k) < WW (T ). (2) Let T be a starlike tree on n vertices and k pendent vertices.

If T �= Bn,k and T �= C(n, k), then WW (Bn,k) < WW (T ) < WW (C(n, k)).

In [61], Ilić et al. obtained a generalization to Theorem 4.9, and they also showed the

following interesting result.

Theorem 4.11 [61] Among trees on n vertices and 0 ≤ p ≤ n − 2 vertices of degree

two, Bn,n−1−p is the unique tree having minimum Wiener index.

Let n, g and k be integers with g ≥ 3, k ≥ 2 and g + k ≤ n. For integer a with

0 ≤ a ≤ n− g − k, let p(a) = 	n−g−a
k


 and s = n− g − a− k · p(a), and let Un,g,k(a) be

the unicyclic graph obtained from the cycle Cg = v0v1...vg−1v0 by attaching the path Pa

at an end vertex to v0, and then attaching to the other end vertex of the path the end
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vertices of k − s paths with p(a) vertices, and s paths with p(a) + 1 vertices (if a = 0,

then these k paths are attached to v0).

For integers n, g and k with g ≥ 3, k ≥ 0 and g + k ≤ n, let U(n, g, k) be the set of

unicyclic graphs with n vertices, cycle length g and k pendent vertices. Du et al. [55],

later Hong et al. [83] independently determined the minimum Wiener index in the class

of U(n, g, k).

Theorem 4.12 [55, 83] Let n, g and k be integers with n ≥ 6, g ≥ 3, k ≥ 2 and

g + k ≤ n. Let γ = γ(n, g, k) = max{	n−2
k+1


+ 2− g, 0}. Then, Un,g,k(γ) and Un,g,k(γ − 1)

if γ ≥ 1 and n−1
k+1

is not an integer, and Un,g,k(γ) otherwise are the unique graphs in

U(n, g, k) with minimum Wiener index.

Denote by Kk
n the graph obtained by attaching k pendent vertices to one vertex of

complete graph Kn−k. Let Gn,k be the set of connected graphs with n vertices and k cut

edges. The following result implies that Kk
n is the unique graph sharing the minimum

hyper-Wiener index and the minimum Wiener index in Gn,k, respectively.

Theorem 4.13 If G ∈ Gn,k \ {Kk
n}, then (1) [66] W (G) > W (Kk

n); (2) [67] WW (G) >

WW (Kk
n).

The join graph G1 ∨G2 of two vertex disjoint graphs G1 and G2 is the graph having

vertex set V (G1∨G2) = V (G1∪G2) and edge set E(G1∨G2) = E(G1)∪E(G2)∪{(u, v) :
u ∈ V (G1), v ∈ V (G2)}. Let G be the complement graph of G. For K2 = {u, v}, the
graph Gl1,l2 is obtained from Kn−d ∨ K2 by identifying one end vertex of each path of

length l1 and l2 with u and v, respectively, l1 ≥ l2, l1 + l2 = d− 2. It is easy to see that

Gl1,l2 has diameter d. If l1 − l2 ≤ 1, we denote the graph by G∗
d. Let G(n, d) be the set of

connected graphs with n vertices and diameter d. Plesnik [50] firstly obtained the graphs

(may not be unique) with minimum Wiener index in G(n, d). Very recently, Feng et al.

considered the similar problem for hyper-Wiener index. They showed that

Theorem 4.14 Let G ∈G(n, d) \ {G∗
d}, where n ≥ 2 and d ≥ 2. Then, (1) [50] W (G) >

W (G∗
d); (2) [54] WW (G) > WW (G∗

d).

Denote by G∗∗ a graph of diameter d (3 ≤ d ≤ 4 and |V (G∗∗)| ≥ d + 2), having

the following property: Assume Pd+1 is a path contained in G∗∗, then for any vi ∈
V (G∗∗)\V (Pd+1) and vj ∈ V (G∗∗), j �= i, it should be either d(vi, vj) = 1 or d(vi, vj) = 2.
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Theorem 4.15 [54] Suppose G ∈G(n, d) with m edges. If n ≥ 2, and d ≥ 2, then

(1) WW (G) ≥ 1
2

(
3n(n− 1)− 4m+ 1

12
d(d− 1)(d− 2)(d+ 9)

)
, where the equality holds

if and only if G is a graph of diameter at most 2 or G ∼= Pn or G is one graph of

G∗∗; (2) WW (G) ≤ 1
2

(
1
2
d(d+ 1)n(n− 1) + (2− d− d2)m− 1

12
d(d− 1)(d− 2)(5d+ 9)

)
,

where the equality holds if and only if G is a graph of diameter at most 2 or G ∼= Pn.

Wang and Guo [51] determined the minimum Wiener index in T (n, d). This bound

was also independently obtained by Liu and Pan [52]. In the sequel, Ilić et al. [53] gave

a generalization to the former results of [51,52]. Recently, Yu et al. [49] also determined

the minimum hyper-Wiener index in T (n, d).

Theorem 4.16 Suppose T ∈ T (n, d) \ {Cn,d}, where 3 ≤ d ≤ n − 1. Then, (1) [51–53]

W (Cn,d) < W (T ); (2) [49] WW (Cn,d) < WW (T ).

It is easy to see that (1) of Theorem 4.16 is also a corollary of Theorem 2.5. Actually,

Liu and Pan [52] also determined the second minimum Wiener indices in T (n, d). Wang

and Guo [51] also considered the maximum Wiener index in T (n, d), they obtained the

extremal trees when d ≤ 4. Furthermore, they claimed that it is impossible to give

a universal characterization for the trees with maximum Wiener indices in T (n, d) for

5 ≤ d ≤ n− 4. For the case of caterpillar trees, Wang and Guo showed that

Theorem 4.17 [51] Let T be an arbitrary caterpillar trees of order n and diameter

d. Then, W (Cn,d) ≤ W (T ) ≤ W (S(d − 1; 	n−d+1
2


, �n−d+1
2

�)), where the lower bound

is realized if and only if T ∼= Cn,d, and the upper bound if and only if T ∼= S(d −
1; 	n−d+1

2

, �n−d+1

2
�).

Theorem 4.18 Let T be a caterpillar tree on n vertices with radius r. If T �= Cn,2r−1,

then (1) [53] W (Cn,2r−1) < W (T ); (2) [49] WW (Cn,2r−1) < WW (T ).

For the Wiener indices of connected graphs with fixed radius, Ilić et al. [53] verified

that

Theorem 4.19 [53] Among connected graphs on n vertices and radius r, the caterpillar

Cn,2r−1 is the unique graph with minimum Wiener index.

For integers n and d with 4 ≤ d ≤ n− 3, let Nn,d be the tree obtained from the path

Pd+1 labeled as v0, v1, ..., vd by attaching the path P2 and n− d− 3 pendant vertices to
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the vertex v� d
2
�. The unique tree with minimum Wiener index in the class of all n-vertex

non-caterpillars with given diameter d is determined for 4 ≤ d ≤ n − 3 by the following

result.

Theorem 4.20 [60] Let T be a non-caterpillar tree on n vertices with diameter d, where

4 ≤ d ≤ n− 3. Then,

W (T ) ≥ d(d+ 1)(d+ 2)

6
+ (n− d− 1)

(
n+

1

2

⌊
(d+ 1)2

2

⌋)
+ d− 2,

where equality holds if and only if T = Nn,d.

Du and Zhou [56] also considered the extremal problem in the case of unicyclic graphs,

and they determined the minimum Wiener index in the class of unicyclic graphs with n

vertices, cycle length t and diameter d. For detail, one can be referred to [56]. Moreover,

for any connected graph G, some lower and upper bounds, respectively, of W (G) in terms

of the order, the size and the diameter of G were given in [33].

Let β(G), β for short if there is no confusion, be the matching number of G, i.e., the

maximum size of an independent (pair-wise nonadjacent) set of edges of G. Let Gn,β be

the set of connected graphs with n vertices and matching number β. Similarly, let Un,β

and Tn,β be the class of unicyclic graphs and trees with n vertices and matching number

β, respectively. As early as in 1994, the maximum Wiener index in Gn,β was determined

by Dankelmann, that is

Theorem 4.21 [63] Suppose G ∈ Gn,β, where 2 ≤ β ≤ 	n
2

. If G �= S(2β − 1; �n+1

2
� −

β, 	n+1
2

 − β), then W (G) < W (S(2β − 1; �n+1

2
� − β, 	n+1

2

 − β)).

As the next result shown, the extremal graphs with the minimum Wiener index in

Gn,β is somewhat difficultly described, by comparing to the maximum case.

Theorem 4.22 [65] Suppose G ∈ Gn,β, where n ≥ 4 and 2 ≤ β ≤ 	n
2

. (1) If 2 ≤ β ≤

[2n
5
] and β �= 2n

5
, then W (G) ≥ n(n − 1) − 1

2
β(2n − β − 1), with equality if and only if

G ∼= Kβ ∨Kn−β; (2) If [
2n
5
] ≤ β ≤ [n

2
]− 1 and β �= 2n

5
, then W (G) ≥ n2 − 2n− 2β2 +3β,

with equality if and only if G ∼= K1 ∨
(
Kn−2β ∪K2β−1

)
; (3) If β = 2n

5
, then W (G) ≥

1
25
(17n2−20n), with equality if and only if G ∼= K1∨

(
Kn−2β ∪K2β−1

)
or G ∼= Kβ∨Kn−β.

Recently, Feng et al. characterized the minimum hyper-Wiener index together with

its corresponding graphs in Gn,β via the next Theorem.
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Theorem 4.23 [68] Suppose G ∈ Gn,β, where n ≥ 4 and 2 ≤ β ≤ 	n
2

. (1) If β = 	n

2

,

then WW (G) ≥ 1
2
n(n − 1), with equality if and only if G ∼= Kn; (2) If 2n

5
< β ≤

	n
2

 − 1, then WW (G) ≥ 1

2
n(3n − 7) − 4β2 + 6β, with equality if and only if G ∼=

K1 ∨
(
Kn−2β ∪K2β−1

)
; (3) If 2 ≤ β < 2n

5
, then WW (G) ≥ 3

2
n(n − 1) + β2 + β − 2nβ,

with equality if and only if G ∼= Kβ ∨Kn−β; (4) If β = 2n
5
, then W (G) ≥ 1

50
n(43n− 55),

with equality if and only if G ∼= K1 ∨
(
Kn−2β ∪K2β−1

)
or G ∼= Kβ ∨Kn−β.

For 2 ≤ b ≤ 	n
2

, let Hn,b be the tree obtained by attaching a pendent vertex to

each of b − 1 noncentral vertices of the star Sn−b+1, and let Fn,b be the unicyclic graph

obtained by attaching a pendent vertex to each of b−2 noncentral vertices and adding an

edge between two other noncentral vertices of the star Sn−b+2. By Theorem 4.21, we can

conclude that S(2β − 1; �n+1
2
� − β, 	n+1

2

 − β) is also the unique tree with the maximum

Winer index in Tn,β. The next result determines the extremal trees for the minimum

cases of Wiener index and hyper-Wiener index, respectively, of Tn,β.

Theorem 4.24 Suppose T ∈ Tn,β, where 2 ≤ β ≤ 	n
2

. Then, (1) [62] W (T ) ≥ n2 +

(β − 3)n − 3β + 4, with equality if and only if T ∼= Hn,β; (2) [49] WW (T ) ≥ 1
2
(3n2 +

6nβ − 13n+ β2 − 21β

+24), with equality if and only if T ∼= Hn,β.

As the following Theorem shown, the minimum Wiener index and hyper-Wiener

index, respectively, in Un,β were also determined.

Theorem 4.25 Suppose U ∈ Un,β, where 2 ≤ β ≤ 	n
2

. If n ≥ 9 and U �= Fn,β, then

(1) [62] W (U) > W (Fn,β); (2) [74] WW (U) > WW (Fn,β).

Moreover, Du and Zhou [62] had characterized the maximum Wiener index together

with its corresponding unicyclic graphs in Un,β for β = 2 and β = 	n
2

. Simultaneously,

for the case of 3 ≤ β ≤ 	n
2

 − 1, they claimed that it seems to be difficult and remains a

task for the future.

Assume that n ≥ 2β ≥ 3g ≥ 9, and Cg = u1u2...ugu1. If g is odd, let Fn,g,β be the

unicyclic graph formed by attaching n−2β+1 pendent vertices and β− g+1
2

independent

edges to the vertices u1 of Cg. If g is even, let Fn,g,β be the unicyclic graph formed by

attaching n − 2β + 1 pendent vertices and β − g
2
− 1 independent edges to the vertices

u1 of Cg, and attaching a pendent vertex to u2 of Cg. It is easy to see that Fn,g,β is a
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unicyclic graph on n vertices with girth g and matching number β. Very recently, Chen

and Zhang showed that

Theorem 4.26 [76] Let U be a unicyclic graph of order n with girth g and the matching

number β. If β ≥ 3g
2
and U �= Fn,g,β, then W (U) > W (Fn,g,β).

A subset S of V is called a dominating set of G if for every vertex v ∈ V − S, there

exists a vertex u ∈ S such that v is adjacent to u. The domination number of G is the

minimum cardinality of a dominating set of G.

Theorem 4.27 [49] Let T be a tree on n vertices with domination number γ. Then,

WW (T ) ≥ 1
2
(3n2 + 6nγ − 13n+ γ2 − 21γ + 24) , with equality if and only if T ∼= Hn,γ.

As usually, let α(G) be the independence number, namely, the size of a maximum

independent (pair-wise nonadjacent) set of vertices of G. Recall that the clique number

of G, ω(G), is the largest number of pairwise adjacent vertices of G. Let Ln,k be the Kite

graph, obtained by attaching one end vertex of Pn−k to a vertex of Kk. Let R(n, t) be

the Turán graph, i.e., a complete t-partite graph of order n with partition sets differ in

size by at most one. Recently, Došlić et al. [85] and Feng et al. [71] showed that

Theorem 4.28 [85] Let G be a nontrivial graph with clique number ω and independence

number α. Then, W (G) ≥ 1
2
(ω − 1)ω + α(α − 1) + (ω − 1)(α − 1), with equality if and

only if G ∼= Kω−1 ∨Kα.

Theorem 4.29 [71] Let G be a connected graph with n ≥ 2 vertices and clique number

ω ≥ 2. If G �= Ln,ω, then W (G) < W (Ln,ω) and WW (G) < WW (Ln,ω). Moreover, if

G �= R(n, ω), then W (G) > W (R(n, ω)) and WW (G) > WW (R(n, ω)).

For the relation between (resp. hyper-Wiener) Wiener index and the independence

number of an arbitrary graph (resp. tree), we have

Theorem 4.30 [85] Let G be a nontrivial graph with n vertices and independence number

α. Then, W (G) ≥ 1
2
(n−α)(n−α−1)+α(n−1), with equality if and only if G ∼= Kn−α∨Kα.

Theorem 4.31 [49] Let T be a tree on n vertices with independence number α. Then,

WW (T ) ≥ 1
2
(10n2 + α2 − 8nα + 21α− 34n+ 24) , with equality if and only if T ∼=

Hn,n−α.
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The chromatic number, χ(G), of G is the minimum number of colors to be assigned

to the vertices of G such that no two adjacent vertices receive the same color.

Theorem 4.32 [71] Let G be a connected graph with n ≥ 2 vertices and chromatic num-

ber χ ≥ 2. If G �= Ln,χ, then W (G) < W (Ln,χ) and WW (G) < WW (Ln,χ). Moreover, if

G �= R(n, χ), then W (G) > W (R(n, χ)) and WW (G) > WW (R(n, χ)).

Došlić et al. [85] also demonstrated a lower bound of W (G) in terms of the order and

the cardinality of every color class of a coloring of G. We denote by Cn,g the unicyclic

graph obtained from Cg by adding n− g pendent vertices to a vertex of Cg. Let C
2
n,g be

the unicyclic graph obtained from a cycle Cg by attaching n− g − 1 pendent vertices to

a vertex u0 of Cg, and one pendent vertex to another vertex v0 of Cg. Let C3
n,g be the

unicyclic graph obtained from a cycle Cg by attaching a path Pn−g−1 to a vertex u0 of Cg,

and one pendent vertex to the vertex of degree two in Pn−g−1, which has the maximum

distance from u0. Let U(n, g) be the set of unicyclic graph with n vertices and girth g.

The first two largest and first two smallest Wiener indices of U(n, g), respectively, are

determined by the following two results.

Theorem 4.33 [72,73] Suppose U ∈ U(n, g) \ {Cn,g, C
2
n,g}, where 3 ≤ g ≤ n− 2. Then,

W (U) > W (C2
n,g) > W (Cn,g).

Theorem 4.34 [72, 73] Suppose U ∈ U(n, g) \ {Cg(Pn−g)}, where 3 ≤ g ≤ n − 2 and

n ≥ 13. (1) If g = 3 or g = 4 or g = n − 3 or g = n − 2, then W (U) ≤ W (C1
n,g) <

W (Cg(Pn−g)). Moreover, the equality holds if and only if U ∼= C1
n,g, where d(u0, v0) = 	g

2

.

(2) If 5 ≤ g ≤ n− 4, then W (U) ≤ W (C3
n,g) < W (Cg(Pn−g)), where the equality holds if

and only if U ∼= C3
n,g.

Moreover, Feng et al. determined the maximum and minimum hyper-Wiener indices

in U(n, g), respectively, via the next Theorem.

Theorem 4.35 [43] Suppose U ∈ U(n, g), where 3 ≤ g ≤ n − 2. Then, WW (Cn,g) ≤
WW (U) ≤ WW (Cg(Pn−g)). The left equality holds if and only if U ∼= Cn,g, and the right

equality holds if and only if U ∼= Cg(Pn−g).

For any connected graph G with n vertices and girth g, Bekkai and Kouider [34]

demonstrated an upper bound for W (G) in terms of n and g according to the parity of

g.
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A dendrimer of degree Δ on n vertices, Dn,Δ is a tree with maximum degree Δ defined

inductively as follows: The tree D1,Δ consists of a single vertex labeled 1. The tree Dn,Δ

has vertex set {1, 2,..., n} and is obtained by attaching a pendant vertex to the vertex

with smallest degree of Dn−1,Δ, which has degree < Δ. The trees attaining the minimum

Wiener index among trees with maximum degree at most Δ had been determined by

Fischermann et al. in [35] and, independently, by Jelen et al. in [59]. Moreover, Liu et

al. [58] determined the unique trees which minimizes the Wiener index in the class of T Δ
n .

Theorem 4.36 [58] If T ∈ T Δ
n \ {Dn,Δ}, then W (T ) > W (Dn,Δ).

Note that Dn,Δ = S(Δ, n−Δ) if Δ ≥ n
2
. When Δ ≥ n

2
, Theorem 4.36 can be extended

to

Theorem 4.37 [26] Suppose T ∈ T Δ
n \{S(Δ, n−Δ), T (n, 4;n−Δ−3,Δ−2, 0)}, where

Δ ≥ n
2
. If n ≥ 6, then W (T ) > W (T (n, 4;n−Δ− 3,Δ− 2, 0)) > W (S(Δ, n−Δ)).

Theorem 4.38 [26] Suppose T ∈ T Δ
n \{S(Δ, n−Δ), T (n, 4;n−Δ−3,Δ−2, 0)}, where

Δ ≥ n
2
. (1) If Δ > 3n−9

4
, then W (T ) ≥ W (T (n, 4;n − Δ − 4,Δ − 2, 1)), where the

equality holds if and only if T ∼= T (n, 4;n−Δ− 4,Δ− 2, 1); (2) If n
2
≤ Δ ≤ 3n−9

4
, then

W (T ) ≥ W (T (n, 4;Δ − 2, n −Δ − 3, 0)). Moreover, if Δ �= 3n−9
4

, then equality holds if

and only if T ∼= T (n, 4;Δ− 2, n−Δ− 3, 0).

Wang et al. [51] (resp. Yu et al.) characterized the tree with the maximum Wiener

(resp. hyper-Wiener) index in T Δ
n . In the sequel, Liu et al. [26] determined the second

maximum Wiener index in T Δ
n when Δ ≥ n

2
.

Theorem 4.39 Let T be a tree in T Δ
n \ {C(n,Δ)}. If T �= C(n,Δ), then (1) [51]

W (T ) < W (C(n,Δ)); (2) [49] WW (T ) < WW (C(n,Δ)).

Theorem 4.40 [26] Let T be a tree in T Δ
n \ {C(n,Δ)}, n ≥ 10. If Δ = n − 3, then

W (T ) ≤ W (H(n,Δ)) < W (C(n,Δ)), with the equality if and only if T ∼= H(n,Δ); If

n
2
≤ Δ ≤ n− 4, then W (T ) ≤ W (F (n,Δ)) < W (C(n,Δ)), with the equality if and only

if T ∼= F (n,Δ).

Stevanović [57] generalized (1) of Theorem 4.39 to

Theorem 4.41 [57] Let G be a connected graph with n vertices and maximum degree

Δ. If G �= C(n,Δ), then W (G) < W (C(n,Δ)).
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Let b = n−2
Δ−1

≥ 4. LetM2(n,Δ) be the tree of T 1,Δ
n obtained by attaching Δ−1 pendant

vertices to one pendant vertex being adjacent to v2 of T (n + 1 −Δ, b; Δ − 2, ...,Δ − 2),

and M3(n,Δ) be the tree of T 1,Δ
n obtained by attaching Δ − 1 pendant vertices to one

pendant vertex being adjacent to v3 of T (n+ 1−Δ, b; Δ− 2, ...,Δ− 2). Fischermann et

al. [35] also considered the extremal Wiener index in T 1,Δ
n , and they showed that

Theorem 4.42 [35] If T ∈ T 1,Δ
n \{M1(n,Δ)}, then W (T ) < W (M1(n,Δ)).

Clearly, Theorem 4.42 can be immediately deduced by Theorem 2.3. Wang et al. [51]

extended the order of Theorem 4.42 to the third largest value, but in the class of trees

with more restrictions.

Theorem 4.43 [51] Suppose T ∈ T 1,Δ
n with Δ ≥ 3. (1) If T �∈ {M1(n,Δ),M2(n,Δ)}

and n ≥ 4Δ− 2, then W (T ) < W (M2(n,Δ)) < W (M1(n,Δ));

(2) If T �∈ {M1(n,Δ),M2(n,Δ),M3(n,Δ)} and n ≥ 6Δ−4, then W (T ) < W (M3(n,Δ)) <

W (M2(n,Δ)) < W (M1(n,Δ)).

Recently, by using different approaches, Wang [77] and Zhang et al. [78] independently

characterized the tree that minimizes the Wiener index among trees of given degree

sequences. Moreover, the maximum Wiener index among trees of given degree sequences

was also investigated in [77] and [79], respectively.

5 The Wiener Polarity index of trees and unicyclic

graphs

As mentioned before, the Wiener index is popular in chemical and mathematical litera-

tures. However, it seems that less attention has been paid for the Wiener polarity index

WP (G) up to now. Actually, WP (G) was received earlier attention in the chemical lit-

eratures than mathematical literatures. For instance, by employing the Wiener polarity

index, the authors in [80] demonstrated quantitative structure-property relationships in a

series of acyclic and cycle-containing hydrocarbons, and Hosoya gave a physical-chemical

interpretation of WP (G) in [81]. In this section, some results invoking the extremal

Wiener polarity indices in the class of trees or unicyclic graphs on n vertices are present.

Denote by V (Δ)(T ) = {v ∈ V (T ) | dT (v) = Δ}, and N (Δ)(T ) =
⋃

u∈V (Δ)(T ) NT (u).

Let h = n− (Δ + 1) and T0 = SΔ+1. Let Ti be a tree obtained from Ti−1 by attaching a
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pendant vertex to one vertex of N (Δ)(Ti−1) \ V (Δ)(Ti−1), where i = 1, 2, ..., h. Then we

can construct a tree Th after h steps, and the set of all Th is denoted by T (n, Δ)
max . From

the forgoing construction, it is easy to see that

WP (T ) = h · (Δ− 1) = (n−Δ− 1)(Δ− 1) for T ∈ T (n, Δ)
max .

Du et al. firstly characterized the trees maximizing the Wiener polarity index in Tn.

Theorem 5.1 [37] Let T be a tree of order n (≥ 4). Then, WP (T ) ≤ �n−2
2
� · 	n−2

2

, and

the equality holds if and only if T ∈ T (n, 	n
2

)

max or T ∈ T (n, �n
2
�)

max .

In the sequel, Liu et al. considered the minimum case, and they verified that

Theorem 5.2 [36] Suppose T ∈ Tn \ {Sn}, then WP (T ) ≥ n− 3. Moreover, the equality

holds if and only if T ∼= S(k;n− k − b, b), where k ≥ 3, n− k ≥ b ≥ 0.

A chemical graph is a graph with the maximum degree not larger than 4. Deng

obtained the maximum Wiener polarity index in the class of chemical trees on n vertices.

Theorem 5.3 [39] Let T be a chemical tree of order n (≥ 7). Then, WP (T ) ≤ 3(n− 5),

and the equality holds if and only if T ∈ T (n, 4)
max .

Deng merely determined the upper bound of Theorem 5.3 without characterizing the

extremal tree, and the extremal tree is given by the following results, which determine

the maximum and minimum Wiener polarity indices in T Δ
n , respectively.

Theorem 5.4 [38] Let T ∈ T Δ
n , where 3 ≤ Δ ≤ n−3. Then WP (T ) ≤ (n−Δ−1)(Δ−1),

and the equality holds if and only if T ∈ T (n, Δ)
max .

Theorem 5.5 [38] Let T ∈ T Δ
n , where 3 ≤ Δ ≤ n − 3. Then, WP (T ) ≥ n − 3,

and the equality holds if and only if T ∼= S(n − Δ + 1 − l; Δ − 1, l), where 0 ≤ l ≤
min{Δ− 1, n−Δ− 2}.

For T ∈ T Δ
n , by Theorem 5.4 it follows that

WP (T ) ≤ (n−Δ− 1)(Δ− 1) ≤
⌈
n− 2

2

⌉
·
⌊
n− 2

2

⌋
,

the first equality holds if and only if T ∈ T (n, Δ)
max , the second equality holds if and only

if Δ = �n
2
� or 	n

2

. Thus, Theorem 5.1 is a corollary of Theorem 5.4. With the similar

reason, Theorem 5.3 is also a corollary of Theorem 5.4.

By the definition of WP (G), if d(G) ≤ 2, then WP (G) = 0. For 3 ≤ d(G) ≤ n− 1, we

have

-511-



Theorem 5.6 [42] Let T ∈ T (n, d), where 3 ≤ d ≤ n−1. Then, WP (T ) ≥ n−3, where

equality holds if and only if T ∼= S(d− 2;n+ 2− d− t, t), where n+ 2− d− t ≥ t ≥ 1, if

d > 3; and T ∼= T2 if d = 3.

When 3 ≤ d ≤ 4, Theorem 5.1 implies that WP (T ) ≤ �n−2
2
� · 	n−2

2

 if T ∈ T (n, d).

For detail discussion, one can be referred to [37,42]. For the case of d ≥ 5, the maximum

value of WP (T ) in T (n, d) is determined by the next result.

Theorem 5.7 [42] Let T ∈ T (n, d), where 5 ≤ d ≤ n− 1. Then,

WP (T ) ≤
⌊
n− d− 1

2

⌋⌈
n− d− 1

2

⌉
+ 2n− d− 4 .

Moreover, the equality holds if and only if T ∼= T (n, d; 0, ..., 0, xi, xi+1, xi+2, 0, ..., 0), where

2 ≤ i ≤ d− 4, xi ≥ 0, xi+2 ≥ 0, and xi+1 =
⌊
n−d−1

2

⌋
or xi+1 =

⌈
n−d−1

2

⌉
.

Actually, Tong and Deng [82] had characterized the trees with the first three smallest

Wiener polarity indices in T (n, d). Next we shall gave the extremal values for trees in

Tn,k. It is easy to see that Tn, 2 = {Pn} with WP (Pn) = n − 3; and Tn, n−1 = {Sn} with

WP (Sn) = 0. For 3 ≤ k ≤ n− 2, we have

Theorem 5.8 [38, 41] Tn, n−2 = {S(n1, n2), where n1 + n2 = n and n1 ≥ n2 ≥ 2}.
Moreover, if T ∈ Tn, n−2, then n − 3 ≤ WP (T ) ≤

⌊
n−2
2

⌋ ⌈
n−2
2

⌉
, where the left equality

holds if and only if T ∼= S(n − 2, 2), and the right equality holds if and only if T ∼=
S(

⌈
n−2
2

⌉
+ 1,

⌊
n−2
2

⌋
+ 1).

Theorem 5.9 [38] Let T ∈ Tn, k, where 3 ≤ k ≤ n− 3. Then, WP (T ) ≥ n− 3, with the

equality if and only if T ∼= S(n− k;n1, k − n1), where 0 < n1 ≤ k − n1.

Suppose the neighbor vertices of v2 of T (n−l1−· · ·−ls, 4; k1, s+k2, k3) are u1, ..., us, w1,

..., wk2 . Let T (k1, k2, k3, l1, ..., ls) be a tree obtained from T (n−l1−· · ·−ls, 4; k1, s+k2, k3)

by attaching li pendent vertices to ui for 1 ≤ i ≤ s. Clearly, T (k1, k2, k3, l1, ..., ls) is a tree

on n vertices with n− s− 3 pendent vertices.

Theorem 5.10 [41] Let T ∈ Tn, k, where k + 2 ≤ n ≤ 2k and n ≥ 4. Then, WP (T ) ≤
	n−2

2

�n−2

2
�, where the equality holds if and only if (i) T ∼= T (k1, k2, k3, l1, ..., ls) with

k2 = k + 1− �n
2
� or k2 = k + 1− 	n

2

, or (ii) T ∼= S(

⌈
n
2

⌉
,
⌊
n
2

⌋
).
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Theorem 5.11 [41] Let T ∈ Tn, k. If n ≥ 2k + 1, then WP (T ) ≤ k2 − 3k + n− 1, with

equality if and only if T is a starlike tree of order n in which the lengths of all pendant

chains are at least 2.

Let l be a nonnegative integer, and l1, l2 be two positive integers. Let Cg =

u1u2 · · · ugu1 be a cycle of order g. Let C
(j)
g, l1, l2

be a unicyclic graph obtained from

Cg by attaching l1 and l2 pendant vertices to ui and ui+j respectively, where i, j ∈
{1, ..., g (mod g)}.

Theorem 5.12 [40] Suppose n ≥ 9. Then,

(1) U(n, n) = {Cn}, and WP (Cn) = n;

(2) U(n, n− 1) = {Cn,n−1}, and WP (Cn,n−1) = n+ 1;

(3) U(n, n− 2) = {Cn−2(P2), Cn,n−2, C
(j)
n−2, 1, 1}, where 1 ≤ j ≤ 	n−2

2

.

And WP (C
(1)
n−2, 1, 1) = n + 3 > n + 2 = WP (Cn−2(P2)) = WP (Cn,n−2) = WP (C

(j)
n−2, 1, 1),

where 1 < j ≤ 	n−2
2

.

Let Cg(k1, k2, ..., kg) denote a caterpillar cycle, which is a unicyclic graph obtained

from Cg by attaching ki pendant vertices to the vertex ui, where ki ≥ 0 for i = 1, 2, ..., g.

Let Cg � C(v0 · · · vt; n − t − g) be a unicyclic graph obtained from a cycle Cg and

C(v0 · · · vt; n− t− g) by identifying a vertex of Cg and v0.

Theorem 5.13 [40] Let U ∈ U(n, g), where 5 ≤ g ≤ n − 3. Then, WP (U) ≥ n + 2

(resp. n− 1, n− 3) if g ≥ 7 (resp. g = 6, 5), where all the equalities hold if and only if

U ∼= Cg � C(v0 · · · vt; n− t− g) with t ≥ 2, n− t− g ≥ 1.

Theorem 5.14 [36] Suppose n ≥ 7. If U ∈ U(n, 3) \ {U1}, then WP (U) ≥ n − 4, with

equality if and only if U ∼= U2. If U ∈ U(n, 4), then WP (U) ≥ n− 4, with equality if and

only if U ∼= Cn, 4 or C
(2)
4, l, n−4−l, where 1 ≤ l ≤ n− 5.

By combining Theorems 5.12–5.14, we can conclude that

Remark 5.1 The minimum Wiener polarity index together with its corresponding uni-

cyclic graphs of U(n, g) are determined for 3 ≤ g ≤ n. And the first three smallest Wiener

polarity indices of U(n) are 0, n− 4, and n− 3, respectively.
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Theorem 5.15 [40] Let U ∈ U(n, g), where 5 ≤ g ≤ n− 3. Then,

WP (U) ≤
⌊
n− g

2

⌋
·
⌈
n− g

2

⌉
+

⎧⎪⎨
⎪⎩
2n− 10, g = 5,

2n− 9, g = 6,

2n− g, g ≥ 7,

with equality if and only if U ∼= Cg(k1, k2, k3, 0, ..., 0), where k1, k2, k3 ≥ 0,
∑3

i=1 ki =

n− g, and k2 = 	n−g
2

 or �n−g

2
�.

Let C4(k1, k2, k3, 0)⊗(t) denote the unicyclic graph obtained from t isolated vertices

and C4(k1, k2, k3, 0) by attaching each of the t isolated vertices to any pendant vertices

of NC4(k1, k2, k3, 0)(v2), where k1, k2, k3 ≥ 0 and t ≥ 1.

Theorem 5.16 [40] Let U ∈ U(n, 4). Then, WP (U) ≤ 	n−4
2

·�n−4

2
�+n−4, with equality

if and only if U ∼= C4(k1, k2, k3, k4), where k1, k2, k3, k4 ≥ 0 and n − 4 − k1 − k3 =

k2 + k4 = 	n−4
2

 or �n−4

2
�, or U ∼= C4(k1, k2, k3, 0) ⊗ (t), where k1, k2, k3 ≥ 0, t ≥ 1

and n− 4− k1 − k3 − t = k2 = 	n−4
2

 or �n−4

2
�.

Let Δ3(n) be the caterpillar cycle C3(k1, k2, k3) with |ki − kj| ≤ 1, where i, j ∈
{1, 2, 3}.

Theorem 5.17 [40] Let U ∈ U(n, 3), where n ≥ 11. Then,

WP (U) ≤
{

1
3
(n− 3)2 , n ≡ 0 (mod 3),

1
3
(n− 2)(n− 4), n �≡ 0 (mod 3),

where the equality holds if and only if U ∼= Δ3(n).

By Theorems 5.15–5.17, we can conclude that

Remark 5.2 When n ≥ 12, the maximum Wiener polarity index of U(n) is 1
3
(n− 3)2

if n ≡ 0 (mod 3), or 1
3
(n− 2)(n− 4) if n �≡ 0 (mod 3). Moreover, the maximum Wiener

polarity index together with its corresponding unicyclic graphs of U(n, g) are determined

for 3 ≤ g ≤ n.

For the chemical unicyclic graphs on n vertices, the maximum and minimum Wiener

polarity indices are determined by the next result.

Theorem 5.18 [86] Let U be a unicyclic chemical graph with n ≥ 9 vertices, then

n− 3 ≤ WP (U) ≤ 3n+ 12.
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Let Un, k be the set of unicyclic graphs on n vertices with k pendent vertices. Clearly,

0 ≤ k ≤ n − 3. The next result determines the minimum Wiener polarity index in Un,k

for arbitrary k.

Theorem 5.19 [40] Suppose n ≥ 9. (1) Un, 0 = {Cn}, and WP (U) = n; (2) Un,1 =

{Cg(Pn−g)} (n > g ≥ 3), where WP (Cn−1(P1)) = n + 1, and WP (Cg(Pn−g)) = n + 2 for

g ≤ n− 2. (3) Let U ∈ Un,n−3. Then, WP (U) ≥ 0, where the equality holds if and only if

U ∼= U1. (4) Let U ∈ Un,n−4. Then, WP (U) ≥ n− 4, where the equality holds if and only

if U ∼= Cn,4 or C
(2)
4, l, n−4−l, where 1 ≤ l ≤ n− 5. (5) If 2 ≤ k ≤ n− 5 and U ∈ Un,k, then

WP (U) ≥ n− 3.

Actually, for 2 ≤ k ≤ n− 5, the extremal unicyclic graphs of Theorem 5.19 were also

characterized in [40]. Let UΔ
n be the set of unicyclic graphs on n vertices with maximum

degree Δ. Clearly, 2 ≤ Δ ≤ n − 1. It is easy to see that U2
n = {Cn} and Un−1

n = {U1}.
For 3 ≤ Δ ≤ n− 2, we have

Theorem 5.20 [40] Let U ∈ UΔ
n and n ≥ 7. (1) If 3 ≤ Δ < �n

2
�, then WP (U) ≥ n− 3.

(2) If �n
2
� ≤ Δ ≤ n − 2, then WP (U) ≥ n − 4, where the equality holds if and only if

U ∼= C
(1)
3,n−4,1 or Cn,4 if Δ = n− 2, and U ∼= C

(2)
4,Δ−2,n−2−Δ if �n

2
� ≤ Δ ≤ n− 3.

Clearly, Theorem 5.20 determines the minimum Wiener polarity index in UΔ
n for

arbitrary Δ, since WP (Cn) = n and WP (U1) = 0 for n ≥ 7. Moreover, the extremal

unicyclic graphs for 3 ≤ Δ < �n
2
� of Theorem 5.20 were also characterized in [40].
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[14] D. Vukičević, I. Gutman, Note on a class of modified Wiener indices, MATCH
Commun. Math. Comput. Chem. 47 (2003) 107–117.
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[57] D. Stevanović, Maximizing Wiener index of graphs with fixed maximum degree,
MATCH Commun. Math. Comput. Chem. 60 (2008) 71–83.

[58] S. Liu, L. Tong, Y. Yeh, Trees with the minimumWiener number, Int. J. Quantum
Chem. 78 (2000) 331–340.

[59] F. Jelen, E. Triesch, Superdominance order and distance of trees with bounded
maximum degree, Discr. Appl. Math. 125 (2003) 225–233.

[60] W. Luo, B. Zhou, On ordinary and reverse Wiener indices of non–caterpillars,
Math. Comput. Modell. 50 (2009) 188–193.
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