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Abstract 

Multi-indicator systems are of increasing importance in every field of science, 
corresponding to the complexity of objects to be ranked. Here we apply multi-indicator 
systems in order to describe and characterize the pollution in the South-West of Germany 
by the metals Lead, Pb, Cadmium, Cd, Zinc, Zn and Sulfur, S. We demonstrate the need of 
a preprocessing of data, before an analysis towards ranking is possible or meaningful. The 
univariate clustering method after Ward is applied and analyzed with respect to its 
robustness by a “soft bootstrapping procedure”. We show that without the need of 
numerically aggregated indicators (which may insert a high degree of subjectivism into the 
analysis) or without performing more complex operations (as in traditional Decision 
Support Systems such as e.g. PROMETHEE) we can obtain relative orders of regions 
corresponding to their pollution load. In our example we discuss the pollution by chemicals 
elements in two biological targets.  
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1 Monitoring Pollution  
For monitoring of pollution, the south-west German state of Baden-Wuerttemberg is 

divided into 60 regions by the Environmental Protection Agency of Baden-Wuerttemberg 

(EPA) (Fig. 1). The regions are defined by their most homogeneous natural and geological 

environments, with the minority with granitic underground (Bruggemann et al. 1998, 1999, 

2003; Luther et al., 2000). 

 

Figure 1: Location of the state of Baden-Wuerttemberg, Germany, and its division into 60 
regions. In the inset map, the grey regions show different geology (granitic rock) from the 
remainder of the white regions (limestone and other geological formations).  
 

For monitoring pollution caused by four important chemical elements, the EPA of Baden 

Wuerttemberg selected different targets: for instance (i) herb layer (Ks: German 

“Krautschicht”) and (ii) epiphytic mosses (Ms). Results of the monitoring of these targets 

then form the basis of a priority list to reduce pollution. 

 

In the study presented here, we consider pollution by Pb, Cd, Zn and S, in the herb layer 

and the epiphytic mosses.  These elements are of particular interest because they affect the 

environment and human health in many ways, and in a wide range of temporal sequences, 
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corresponding to different transport paths and reaction networks within the environment. 

The problem is how to obtain from this multi-indicator system a ranking, i.e. a meaningful 

partially ordered set of regions.  

The chemical elements Pb, Cd and Zn were monitored in the herb layer and in the 

epiphytic mosses. In the herb layer additionally sulfur concentrations were measured. Thus 

there were 7 parameters by which the pollution was quantitatively described (each is 

described by the two letter code for the vegetation, followed by the code for the element): 

KsPb, KsCd, KsZn, and KsS, and MsPb, MsCd, and MsZn (Table 1). 

Table 1: Data matrix with measured data of pollution by chemical elements in two targets, 
the herb layer (Ks) and in the epiphytic mosses (Ms). Because of some missing data only 
58 regions remain. 

Region KsPb KsCd KsZn KsS MsPb MsCd MsZn 

1 1 0.04 21 1540 21.7 0.396 76.2 

2 0.7 0.14 27 1770 12.9 0.351 68.7 

3 0.8 0.14 31 1710 13.34 0.468 47.5 

4 0.8 0.02 26 1790 10.87 0.294 34.1 

5 1.1 0.1 32 1990 14.13 0.424 45.2 

6 1 0.07 29 1750 11.1 0.207 31 

7 1.2 0.09 28 1600 14.4 0.304 41 

8 1.5 0.07 27 1750 19.8 0.361 55 

9 0.09 0.2 850 580 17.5 0.309 45.4 

10 1 0.03 29 1780 13.35 0.527 62.2 

11 0.9 0.08 27 1720 23.4 0.43 63.1 

12 0.16 0.23 910 1460 9.78 0.213 39.9 

13 0.18 0.18 1160 350 14.4 0.276 48.2 

14 1 0.17 34 1830 12.04 0.591 41.4 

15 0.9 0.1 24 1670 13.7 0.362 43.2 

16 1 0.12 32 1520 13.4 0.36 50.5 

17 0.6 0.06 36 1820 12.77 0.295 63.4 
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18 0.5 0.43 28 4030 11.3 0.346 46.7 

19 0.8 0.01 18 4030 11.33 0.384 83.9 

20 1.5 0.14 32 1730 16.2 0.324 58.4 

21 0.06 0.24 830 620 14 0.474 63.6 

22 1 0.03 28 2150 14.5 0.312 41.3 

23 1.1 0.04 42 2000 17.1 0.265 56 

24 1.7 0.18 39 1740 13.7 0.254 56.7 

25 0.9 0.09 35 1460 18.4 0.592 74.9 

26 0.8 0.05 19 1620 12.16 0.262 43.9 

27 0.1 0.12 26 1600 14.3 0.364 54.4 

28 0.9 0.05 34 1670 11.5 0.277 36.1 

29 0.6 0.14 27 1680 9.22 0.404 29.5 

30 0.8 0.08 27 1610 14.25 0.347 52.8 

31 1.1 0.15 28 1740 22.5 0.423 49.6 

32 1.2 0.03 35 1820 18.6 0.434 81.2 

33 0.16 0.26 800 530 51 0.54 84.8 

34 0.14 0.39 950 400 17.8 0.409 62 

35 0.08 0.24 720 1960 30.1 0.475 102 

36 1.2 0.05 31 1570 12.9 0.352 38.6 

37 0.6 0.12 33 1580 13.1 0.338 47.3 

38 1.7 0.18 34 1720 16.1 0.313 49.7 

39 1 0.1 38 1740 16.7 0.417 40.9 

40 0.7 0.06 34 1770 11.2 0.367 12.3 

41 0.7 0.17 39 1840 11.22 0.54 43.2 

42 0.7 0.1 33 1690 10.74 0.491 63 

43 0.5 0.11 39 4030 11.92 0.265 89.5 

44 0.8 0.08 38 1800 16.9 0.282 56.7 
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45 1.5 0.17 45 1780 17.3 0.433 48.8 

46 0.8 0.09 33 1680 15.1 0.333 74 

47 1.1 0.11 25 1650 21.3 0.419 135 

48 2.3 0.42 33 1600 23.5 0.682 72.3 

49 0.8 0.11 37 1680 9.6 0.337 49.6 

50 1.4 0.13 29 1730 17.8 0.308 142 

51 0.8 0.14 22 1640 19.2 0.489 55.1 

52 2 0.23 36 4030 22.4 0.379 57.2 

53 1 0.12 36 1750 16.9 0.403 46.3 

54 0.7 0.1 26 1750 9.08 0.285 42.6 

56 1 0.11 34 1970 40.2 0.631 118 

57 1.7 0.15 39 1850 19.4 0.402 57.4 

58 1 0.11 28 1980 11.65 0.244 47.3 

59 1.3 0.13 26 1470 17.4 0.554 50.2 

60 1 0.2 32 2160 14.8 0.368 54.4 

 
In this paper we discuss the problem of ranking by statistical and order theoretical 

methods. Our approach presents: the problem of ranking within a multi-indicator system, 

principles of partial order, data preprocessing by cluster analysis, results of statistical and 

order theoretical methods, a summary and a critical discussion. 
 

2 Ranking within Multi-indicator Systems  

There are many methods to obtaining a ranking on the basis of a multi-indicator system. 

Most of these methods aim at a definition of a scalar (univariate) ranking index. Beside the 

simple process of defining a weighted sum of the parameter values (see for example 

MAUT, Schneeweiss, 1991), many more sophisticated methods are often considered such 

as PROMETHEE and ELECTRE (Brans and Vincke, 1985, Roy, 1990). A recent overview 

is given by Huang et al., 2011. 
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Following Munda, 2008 and Munda and Nardo, 2008, different decision support methods 

should be characterized by the degree of compensation: When a weighted sum is used as 

aggregation method, then compensation (in our example of pollution in Baden-

Wuerttemberg)  means that a region can get a ranking indicating a good state, even though 

good (i.e. low concentrations) values in some chemical elements can mask the potentially 

dangerous value of one single other chemical element. This compensation effect is 

generally unwanted. Nevertheless the use of weighted sums is widespread, because of their 

simplicity and transparency.  For example, weighted sums play an important role in the 

European Communities monitoring of the progress of innovation in different European 

member states (Nardo, 2008, Annoni and Kozovska, 2010, Cherchye et al. 2010, N.N. 

2009, Falbo et al., 2010, Fattore, 2010). The crucial problem of finding appropriate 

weights by which the parameter values are combined in the weighted sum, has been 

studied in a robustness approach (Annoni and Kozovska, 2010) and by fuzzy concepts 

(Annoni et al., 2008, Fattore, 2008, Yager 1988). Nevertheless the main disadvantage of 

weighted sum is the compensation.  

Discrete mathematics, especially partial order theory, provides a very simple non-

compensatory method (Figure 2) (see Annoni and Bruggemann, 2009, Bruggemann et al., 

2001, Bruggemann and Voigt, 2008, Bruggemann and Patil, 2010, 2011, Carlsen, 2008, 

Sørensen et al., 2003, Tsakovski and Simeonov, 2008, Bruggemann, Carlsen, 2012). 

Therefore we apply the method of partially ordered sets in this study, which in turn needs a 

careful preprocessing of data. 

 
Figure 2: The degree of compensation as a scale to characterize different methods of 
evaluating multi-indicator systems (see text). 
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3 Methods 
3.1 Overview 
There is considerable interest in combining the two theoretical aspects of clustering and 

ordering. Recently, Owsinski (2011) has proposed a unifying approach based on formal 

mathematical programming schemes, which is applicable to both clustering and ordering 

(see also Owsinski (2012)). The algorithms, however, are computationally difficult and 

here we prefer a two step procedure. Firstly a preprocessing of data is proposed in order to 

secondly obtain a partial order which is to be analyzed. 

 

3.2 Basics of partial order theory 
In our context, a set of objects X is to be examined. The elements of X are the regions of 

Baden- Wuerttemberg, and each element of X is characterized by a tuple of indicators q(x) 

= (q1(x), q2(x),..., qm(x)). In the present study, m = 7, corresponding to the seven indicators 

of pollution. We give X a binary structure, namely that of a partial order as follows: 

x, y 0 X : x < y if and only if  q(x) < q(y), i.e. 

if and only if qi(x) < qi(y) for all i = 1,...,m      (1) 

The relationship (1) among elements of X, the objects, leads to partially ordered sets. 

Although this relationship is simple, its evaluation is difficult and needs software support. 

There are many possibilities to endow a set with relations such that this set gets the 

structure of a partially ordered set. The decisive point to speak of partially ordered sets is 

that the relations have to obey the following axioms (reflexivity (an object can be 

compared with itself), antisymmetry (if an object x is better than object y then the 

statement object y is better than object x implies x = y) and transitivity (x < y and y < z then 

x < z)). Eq. (1) as one of the relations to obtain partially ordered sets fulfills the above 

mentioned axioms and has the advantage of avoiding a mingling and hence a compensation 

of indicator values qi(x) in order to get a ranking index. In chemistry, other useful 

realizations of partial order can be found, see e.g. Klein and Brickmann, 2000, Ruch, 1975, 

Ruch and Gutman, 1979, Restrepo and Klein, 2011, Klein and Ivanciuc, 2006 or Randic 

1990. If q(x) < q(y) we say that x and y can be compared and that x is “less” y. If qi(x) < 

qi(y) for some i and qi(x) > qi(y) for some other i, then x and y cannot be compared. Then, 
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the pair (x, y) is a pair of incomparable objects, the technical notation is: x || y. Such an 

incomparability always indicates that any aggregation of indicator values is crucial, 

depending on external information.   

For evaluation purposes, the partial order concept of a “chain” is important. A chain is a 

subset X’ of X, such that for all elements of X’ a sequence x1 < x2 < x3 <...< x|X’| can be 

found. |X’| denotes the number of elements in X’. Hence the more chains we can find and 

the longer the chains are, the more important is the result for evaluation purposes. The 

reason is that these sequences do not depend on any subjective information, i.e. they are 

purely based on the data matrix which finally is used.   

An antichain is a subset X’, where for no pair (x, y), x, y 0 X’ a <-relation can be found. 

Antichains are important because the priority elements are almost every time elements of 

an antichain. In the case studied here, regions which are in an antichain and do not have an 

upper neighbor in the Hasse diagram are called maximal elements and are of special 

interest, because these regions need as first an environmental improvement. 

In the Hasse Diagram Technique (HDT) the partially ordered set (often denoted by (X, ≤)) 

depends on the selected indicators and their values. Therefore we write (X, IB), where IB is 

the “information base” (Bruggemann and Voigt, 1995), which is the set of indicators (or 

attributes), to indicate that the set X is partially ordered due to eq. (1). The HDT is an 

ordinal method, the detailed metric information is lost, and only the ordinal information is 

retained. Therefore one of the most crucial methodological tasks in HDT is how to 

preprocess data which are continuous in concept. We apply a cluster analysis for any single 

indicator with the aim of determining: (i) the number of clusters, and (ii) where to set the 

border between two neighboring clusters (see below, to understand why we can speak of 

“neighboring clusters”).  

 

3.3 Statistical methods  

Univariate clustering 

Usually cluster analysis is considered as a multivariate statistical method. The main aim of 

clustering is a rigorous reduction of the size of the dataset, without losing the essential 

information. Indeed, the clustering tasks can be solved for a large number of objects.  
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Well-known cluster analysis techniques such as the partitional K-means and the 

hierarchical Ward’s method are based on minimization of the sum of squares criterion 

(Bartel et al. 2003, Luther et al. 2000, Mucha 1992, Mucha 2002). Clustering requires 

some measures of pairwise distance on the multivariate space. Unfortunately, distances are 

often dependent on the scales of the variables. In applications, this can become a crucial 

point. To avoid this problem the data is usually standardized before doing multivariate 

cluster analysis. More information on data preparation by standardization, in an application 

of cluster analysis to ecology, is given by Mucha et al. (2002). 

In the present paper, we propose a data preprocessing step based on univariate cluster 

analysis accompanied by a special bootstrap validation. The aims are to objectify and 

automate the determination of categories for each single indicator (variable) when data is 

continuous. That is, in the present study, m = 7 univariate clusterings are necessary. 

Generally, a categorization (down-grading in the scale) of a quantitative variable is often 

referred as data binning. 

Our approach of univariate cluster analysis results in a categorization of quantitative data 

where the number of categories (clusters) is validated by automatic resampling techniques. 

In order to find homogeneous clusters (i.e., intervals in the univariate case) in the sense of 

minimizing the within-cluster variances, we choose the hierarchical Ward’s method 

because it investigates numerous partitions at the same time, and usually provides a unique 

result. The hierarchical cluster analysis contrasts with the partitional cluster analysis such 

as the iterative K-means method (Steinhaus 1956, MacQueen 1967), where the result 

depends on both the initial partition used as the starting point, and on the number of 

clusters that has to be fixed in advance. For explanation purposes (and without loss of 

generality), we will consider the indicator MsPb (lead in epiphytic mosses) in more detail 

in the present paper.  

Of course, there are other appropriate cluster analysis methods that can be used for solving 

the task of binning. Beside our favorite Ward’s method looking for clusters of similar 

volumes we recommend also the “generalized” Ward’s method that can find clusters of 

different volumes (for details, see Mucha 2009).  
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Technical procedure, Ward’s method 

Starting from a matrix of pairwise squared Euclidean distances (dih) between any two 

observations i and h, Ward’s method merges in a stepwise manner those two clusters that 

result in a minimum increment of within-cluster variance (for details, see Mucha et al., 

2002). In the first step, the within-cluster sum of squares w{i, h} of two objects i and h is 

simply w{i,h} = mi mh / (mi + mh) dih. Usually, and as it is in the present application, the 

masses mi and mh are equal to 1. However, when starting with already aggregated data, the 

mass of an object equals the cardinality of the observations that it presents, i.e., the mass is 

a positive number 1,2,3,… At the end of the agglomeration procedure, Ward’s hierarchical 

cluster analysis method presents a hierarchy of nested partitions that can be visualized in a 

dendrogram (Figure 3). By cutting the tree at a certain level of increment of within-cluster 

variance (at the ordinate in Figure 3), one gets a partition into K clusters (K= 2, 3, 4,...). 

Thus, in one run, many partitions are obtained simultaneously. The aim of our proposed 

data preprocessing step is to determine K categories (i.e. K clusters) on the ordinal scale. In 

other words, we apply univariate clustering, based on a quantitative original indicator, in 

order to obtain a new ordinal indicator with a range of K categories. The choice of an 

appropriate K is the main problem in clustering. Therefore, for each variable, we 

performed clustering accompanied by special bootstrap validation.  

 
Figure 3: An ordered dendrogram (Mucha et al. 2005) where the horizontal coordinate of 
the regions are their values of MsPb (lead in the epiphytic moss, see data matrix in Table 
1). The points are jittered slightly in the opposite direction to reduce overlap.  
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Bootstrapping 

Efron’s (1979) bootstrap approach is resampling taken with replacement from the original 

data. Concretely, the original bootstrap technique can be formulated by choosing the 

following weights of objects: mi = l, if object i is drawn l times, and mi = 0, otherwise. 

Here it is supposed that originally mi = 1 with i = 1, 2,…,n.  In clustering, the so-called 

sub-sampling (i.e., resampling taken without replacement from the original data) is another 

approach (see Hartigan (1969)):  mi = 1, if object i is drawn randomly, and mi = 0, 

otherwise. Here we recommend another bootstrap method, called soft bootstraping in the 

following, that consists of random change of the original masses mi = 1 to some degree. 

This resampling scheme of assigning randomized masses mi > 0 (under the constraint that 

the total sum of masses equals n) is especially appropriate for a small sample size because 

no object is excluded from the bootstrap sample. Ward’s clustering is performed for every 

bootstrap sample. Such a result is called a bootstrap clustering. As the final result of the 

simulations, the validated number of clusters K will become the number of categories. 

Let us look at the results of simulations for the indicator MsPb in detail. Figure 3 shows the 

result of Ward’s method based on the original sample. We refer to it later on as the original 

clustering. Because of outliers in MsPb a logarithmic transformation of the data was done. 

There is a total order of the regions in the univariate case (see the locations of the regions 

at the abscissa). The terminal nodes of the tree correspond to the (logarithmic) values of 

MsPb of these regions. By cutting the tree by a horizontal line at a high distance level such 

as 1 one gets a partition into K=2 clusters. Furthermore, by cutting at a middle distance 

level such as 0.5, the result is a partition into K=3 clusters.  

However, the key question remains: how many clusters (categories) should be selected? 

And, what are stable clusters from a statistical point of view? The original clustering has to 

be confirmed and reproduced in face of random perturbations of the data set by resampling 

methods as mentioned above. Hennig (2007) pointed out: “An important aspect of cluster 

validity is stability. Stability means that a meaningful valid cluster shouldn’t disappear  
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Figure 4: The distance levels of the original clustering (at left) and 250 bootstrap 
clusterings by Ward’s method. A point on the abscissa refects one result of a cluster 
analysis: The corresponding distance levels of algamation of clusters are located above the 
point parallel to the ordinate. 

 

easily if the data set is changed in a non-essential way.” Bootstrapping and some 

alternative resampling methods are recommended for validation of the original clustering. 

Thus, cluster analysis of a random drawn sample of the data should lead to similar results. 

The results of many Ward’s clusterings for the indicator MsPb are visualized in Figures 4 

and 5, and show the distance levels for different number of clusters. Usually, Figure 5 is 

used for a so-called scree-test about the number of clusters. In addition to the original 

clustering, there are 250 bootstrap clusterings based on random generated masses mi 

coming from the interval around 1: [0.25, 1.75], i.e. mi = 1 + (1.5 ri – 0.75) is a 

randomized mass of object i, where ri 0 [0,1] is a random generated uniform number. To 

assess the stability of the original clustering with respect to a new bootstrap clustering, a 

similarity measure between two cluster analysis results is needed. 
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Figure 5: Distance levels of clusterings by Ward’s method versus the number of clusters. 
Each line represents one clustering. This is another view of the results presented in Fig. 4.  

 

Measures of cluster stability 

Some measures of cluster stability are based on the comparison of pairs of observations 

(objects) concerning their class membership of two partitions. Examples are the Rand 

index R*= (a
 
+ d ) / (n (n–1)/2) (Rand 1971) and the adjusted Rand index R (Hubert and 

Arabie 1985). The number of objects is denoted by n, a is the number of pairs of objects 

placed together in both partitions, d is the number of pairs placed in different clusters in 

both partitions. Simply, in the numerator, one counts the pairwise matches of objects that 

are “good” in the sense of similarity between the two partitions, and this is done with 

regard to the total number of pairwise matches in the denominator. The adjusted Rand 

index R is the preferred index for determining the number of clusters. It is obtained by 

some additional adjustments, for details see Hubert and Arabie 1985. 
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Additionally, these measures can be easily determined on the basis of the confusion matrix 

(pivot table) that is obtained by crossing two partitions. Such a confusion matrix has two 

key benefits: it simplifies the computation of R and it is the basis for similarity measures 

between individual clusters of different partitions (see below). For an introduction in this 

topic and for further details, see Mucha, 2009. In our example, concerning the regional 

pollution, soft bootstrapping is applied. At this juncture, a reasonable amount of 

randomness is added to the original mass mi of object (region) i. The number of clusters 

(categories) is estimated based on the adjusted Rand index R. For the decision about the 

number of clusters, the mean of 250 R values is used (see Figure 6). Other well-known 

indices measure the similarity between two sets (clusters) E and F such as the Jaccard 

index γ(E,F) = |E ∩ F| / |E  F| and the Dice index ?(E,F) = 2|E ∩ F| / (|E| + |F|). The two 

indices evaluate the stability of individual clusters. By repeating resampling techniques 

many times, one gets many values of similarity by comparing the original clustering with 

many bootstrap clusterings (Figure 6).  

Figure 6: Mean and standard deviation of the adjusted Rand index R versus the number of 
clusters K. Herein, for reasons of comparison the standard deviation is multiplied by 4. It 
decreases strongly between four and five clusters. The final decision for K=5 clusters is 
motivated by both the maximum mean value and the minimum standard deviation (and its 

strong decrease) that are obtained from 250 
R values resulting from 250 bootstrap 
clusterings. 

 

The main results of the bootstrap validation 

are shown as an “informative dendrogram” 

(Figure 7). Usually, a dendrogram 

summarizes graphically a hierarchical 

clustering (as shown in Figure 3). However, 

additional information is presented in an 

informative dendrogram about the stability of the clusters, and the number of regions of the 

clusters (shown below the symbol #). The averaged Jaccard measure γ* is the mean value 

of 250 Jaccard values γ. It is used to evaluate the stability of every cluster. It is difficult to 

determine an appropriate threshold by which a cluster is considered stable. Let us look at 

the partition into five clusters in Figure 7. Here cluster 3 (comprising 15 regions) is the 

most stable cluster, and has reached the highest level (=0.9961) near the maximum Jaccard 
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value of 1 (i.e., 100%). In contrast, cluster 5 (comprising only two regions) is the least 

stable cluster. It has a Jaccard measure γ* of only 0.9173 (i.e., approximately 92%).  

Figure 7: An “informative dendrogram” that contains the results of validation of stability 
for each cluster (the tree at the top with Jaccard index in bold) and for the whole clustering 
(partition) into 2, 3, 4, and 5 clusters. At the bottom, the values of Jaccard and Dice are 

pooled values of the 
corresponding estimates of the 
clusters above. All these values 
and the adjusted Rand index R are 
in %. Below the symbol # the 
number of regions in each cluster 
is indicated. For example: Going 
from right to left, the 58 MsPb 
values are divided  in two clusters 
of 34 and 24 objects, respectively. 

The numerical values at the 

bottom of Figure 7 can be used for 

decisions about the number of 

clusters. For instance, the total 

Jaccard measure is obtained by 

averaging all Jaccard-stability values of individual clusters of a partition. The partition into 

K=5 clusters is the most stable one because it has a total Jaccard index of 0.99 (i.e., 99%). 

Therefore, in our example, 5 clusters (categories) are assessed as the most stable result also 

by all other of the applied indexes. This is also in agreement with the so-called scree-test of 

the distance levels (see Figure 5). Cluster C1 becomes value (category) 1, cluster C2 

becomes 2 and so forth. There is automatically a total order in the set of the clusters with 

Ck-1 < Ck because the Ward procedure and the bootstrapping are applied on the single 

quantitative indicator MsPb. 
 

Borders of the clusters 

The concept “border between two clusters” comes into play when an object i being 

member of cluster C1 could almost equivalently be an element of cluster C2. Then object i 

crosses the border between C1 and C2. It is clear that here topological argumentation could 

be established, see Restrepo et al., 2005 and 2006; Restrepo and Mesa, 2011, where 

boundaries and inner elements of a cluster are rigorously defined. Beyond this the 

similarity of tree-graphs is an important concept to deepen the concept of “borders of 
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clusters”, see Restrepo et al., 2007. These theoretical investigations based on topological 

concepts will be of high interest in the future. Here, the border between two clusters 

(intervals) Ck-1 and Ck is simply defined as the mean of the maximum value of Ck-1 and the 

minimum value of Ck. and we can investigate the stability of the borders themselves based 

on bootstrap simulations (Figure 8).  

 

 

Figure 8: Variation of the borders of several bootstrap clusterings into K=5 clusters. 

Figure 8 visualizes the variability of the borders between the neighboring clusters for all 

251 clusterings into 5 clusters. The border between C2 and C3 is the most stable one: it is 

shifted only four times out of 250 runs. However, not in all cases such a stable result can 

be obtained:  Consider the border between cluster C4 and C5. Evidently it switches between 

two extrema. The reason is that C5 has only a small size (see Figure 3 at the right hand 

side: The cluster consisting of the two regions 33 and 56, respectively). Obviously, these 

two regions seem to be outliers of the indicator MsPb, see Table 1. The uncertainty with 

respect to the border of C4-C5 can be boiled down to the question, should region 56 get the 

ordinal value of 4 (standard) or 5 concerning the indicator MsPb. 
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Result of the preprocessing by cluster analysis 

Table 2 contains the within-cluster averages of the data preprocessing step performed for 

all 7 indicators of the multi-indicator system. For this purpose, each of the original 

quantitative variables is transformed into an ordinal variable by applying univariate cluster 

analysis including validation by bootstrapping (as described above in detail for the 

indicator MsPb). 

Table 2: Within-cluster averages 

Class MsPb MsCd MsZn KsPb KsCd KsZn KsS 

1 10.92 0.24 28.6 0.12 0.04 20.0 520.0 

2 13.84 0.30 45.1 0.74 0.1 27.0 1 600.0 

3 17.71 0.35 58.3 1.06 0.13 34.0 1 769.0 

4 23.56 0.42 78.4 1.54 0.18 40.0 2 030.0 

5 45.60 0.50 110.0 2.15 0.24 822.0 4030 

6  0.62 138.5  0.43 1 160.0  

Total 16.30 0.38 58.2 0.92 0.13 119.0 1 812.0 

 

As a byproduct of the simulations, the univariate assessment of the importance of variables 

can be figured out: It is based on how likely it is that the underlying distribution is 

heterogeneous with several different populations.  The univariate cluster analysis delivers a 

decomposition of the indicators due to the heterogeneity of their variances. The more 

modes in its density an indicator has the more important it is. So, an additional result of 

clustering can be the estimates of weights of indicators (this can be the subject to future 

investigations, see also section 5 of this paper). 
 

4 Final Results 

4.1 Summarizing Ward’s cluster method 

After applying the statistical methods explained in section 3.3, the clusters and their 

borders are derived. In performing the cluster analysis, the separation in modes for some 

indicators is best visualized when an order preserving transformation is performed. Such 
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an order-preserving transformation, f, is a transformation of the indicators, such that in 

terms of the original attributes for any two objects a < b we find f(a) < f(b). The indicators 

are now as follows (Table 3). 

 

Table 3: Summarizing the preprocessing steps to obtain the final indicators 
Second column: transformation of the original data, third column: The results of cluster 
analysis 
 

Indicator Trans-formation Number of discrete values Interpretation 
MsPb log 5 Pb in epiphytic mosses 
MsCd – 6 Cd in epiphytic mosses 
MsZn – 6 Zn in epiphytic mosses 
 
KsPb 

 
– 

 
5 

 
Pb in herb layer 

KsCd – 6 Cd in herb layer 
KsZn log 6 Zn in herb layer 
KsS – 6 S in herb layer 

 

 

4.2 Analysis by partial order concepts 

Three aspects are now considered: (i) comparison of the  preprocessing versus original data 

matrix, (ii) discussing the results of the partial order concept in terms of evaluation of the 

polluted regions, and (iii) uncertainty of assigning the value 4 or 5 of MsPb for region 57. 

(i) Comparison of the preprocessed data matrix versus the original data matrix 

The objective is to describe the pollution of the different Baden-Wuerttemberg regions, 

and to visualize this by a Hasse diagram, based on eq. (1). Therefore the effect of 

preprocessing must be measured by partial order theory concepts. In Table 4 we compare 

the number of possible comparisons (i.e. how many pairs x < y can be found), the number 

of incomparable pairs (i.e. how many pairs x || y can be found),  and the maximal length of 

the chains (length of maximum chain)  in each partially ordered set. As each comparison 

allows a decision about the status of the two regions, the tripling of the number of 

comparisons brought about by a using a preprocessed data matrix, shows the great value of 

this approach for evaluation purposes. 
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Table 4: Comparison of the preprocessed and the original data matrix according to partial 
order theory 

Method for the data 
matrix 

Number  of 
comparisons 

Number of 
incomparable pairs 

Length of the 
maximum chain 

original  125 1,528 3 
preprocessed  324 1,329 7 
 

As equivalences do not appear, an increase in the number of comparisons is accompanied 

by a decrease of the number of incomparable pairs. The high number of incomparable pairs 

(in comparison to the number of comparable pairs) indicates, how frequently an averaging 

process to get a scalar ranking index would be crucial for a possible compensation. The 

preprocessing reduces those incomparabilities arising from small numerical data 

differences. The marked increase in the maximum length of a chain after pre-processing of 

the data shows that now a ranking at maximum among 6 regions is possible, (in 

comparison to among only three regions with the original data matrix). 
 

(ii) The Hasse diagram of the preprocessed data matrix is shown in Figure 9. 

Maximal, minimal elements, chains: 

The items of particular interest in the Hasse diagram (Figure 9) are:  

= 17 maximal elements (representing the regions with the worst pattern of pollution). 

They can be found in Figure 9 as those elements, which have no upper neighbor.  

= 10 minimal elements  (4, 6, 9, 12, 13, 21, 26, 27, 28, 29, 27,) which are regions of 

least pollution and which can be found from Figure 9 as those elements which have 

now lower neighbor. See for example region 6. From this element there are no lines 

to lower neighbors.  

= Two chains as example: 

chain no: 10  (start: 26, endpoint: 57) count of elements: 6: 26, 15, 30, 59, 

20, 57, 

chain no: 2 (start: 26, endpoint 48)  count of elements: 6: 26, 15, 30, 46, 25, 48, 

= Following the lines upwards one may end at different regions. Starting from region 

26 (which is one of the minimal elements), one will stop once for example in region 
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57, and once in e.g. region 48. Evidently, the values of all of the 7 indicators do not 

decrease. However, the values of the 7 indicators change in different pollution 

profiles:  In case of region 57, the main increase in pollution is due to MsPb (75% 

of the total possible range), MsCd (80%), whereas for region 48 which is the 

endpoint of another chain (also starting from region 26,) the main increase is due to 

MsPb(75%) , MsCd(100%) , KsPb(75%), KsCd(100%).   

Sensitivity: 

The impact of each attribute, i.e. of KsPb, KsCD,..., MsZn on the structure of the poset 

is 

MsPb < MsZn = KsPb < KsCd < MsCd < KsS < KsZn 

(For details, see Bruggemann et al., 2001, Voigt et al, 2011.) 

Within the three most important attributes the herb layer appears two times and the target 

epiphytic mosses once. Hence the time and cost intensive monitoring of both, herb layer 

and epiphytic mosses seems to be justified. The chemical element Pb either found in 

epiphytic mosses, MsPb, or in the herb layer Ks does not have much impact on the poset. 

The chemical element Zn in the herb layer is striking as it has a high influence on the 

structure of the partial order, based on the 7 attributes. Elimination of this column (KsZn) 

from the data matrix leads to a poset which has only 10 maximal elements. Elimination of 

the first attribute (MsPb) from the data matrix leads to a poset with the same number of 

maximal elements, 17, i.e. has obviously less influence on the structure of the poset. 

Antichain: 

The 17 maximal objects in Figure 9 form an antichain, we call this set simply MAX. The 

pairs of attributes which imply the incomparability between any two regions of MAX can 

be counted, for details see Bruggemann and Voigt, 2012. For example the pair MsPb, 

MsZn implies rarely an incomparability among the elements of MAX, whereas MsZn, 

KsCd imply in almost 50% of all incomparable pairs made of elements of MAX an 

incomparability. In Table 5 the relative contribution, “density”, of each possible attribute 

pair is shown. A density of 1 means that the corresponding attribute pair leads to an 

incomparability among all possible pairs, made of elements of MAX.  
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Figure 9: Hasse diagram of the 58 regions in Baden-Wuerttemberg, characterized by 7 
indicators of pollution, after preprocessing. PyHasse software (free available from the first 
author) was used in constructing this Hasse diagram. The regions are located in six 
horizontal levels according to an increasing pollution from the bottom to the top  

Table 5: Density of attribute pairs, such as [‘MsPb’,’MsCd’] based on the 136 possible 
pairs of regions, taken from MAX 

Attribute pair density Attribute pair density 

['MsPb', 'MsCd'] 0.22 ['MsZn', 'KsPb'] 0.26 

['MsPb', 'MsZn'] 0.15 ['MsZn', 'KsCd'] 0.49 

['MsPb', 'KsPb'] 0.25 ['MsZn', 'KsZn'] 0.45 

['MsPb', 'KsCd'] 0.32 ['MsZn', 'KsS'] 0.35 
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['MsPb', 'KsZn'] 0.3 ['KsPb', 'KsCd'] 0.34 

['MsPb', 'KsS'] 0.46 ['KsPb', 'KsZn'] 0.48 

['MsCd', 'MsZn'] 0.34 ['KsPb', 'KsS'] 0.38 

['MsCd', 'KsPb'] 0.34 ['KsCd', 'KsZn'] 0.28 

['MsCd', 'KsCd'] 0.27 ['KsCd', 'KsS'] 0.43 

['MsCd', 'KsZn'] 0.4 ['KsZn', 'KsS'] 0.45 

['MsCd', 'KsS'] 0.47   

 

A graph can be obtained, with the attributes as vertices and edges if the two elements of a 
pair have densities 1 limit (here we arbitrarily select 0.4 as limit), Figure 10. 

 

 

 

 

 

 

 

Figure 10: Which attribute pairs are mainly responsible for the incomparabilities among 
the 136 pairs of regions, taken from MAX. 

 

In the graph (Figure 10) MsZn and KsCd are connected by an edge, because these two 

attributes have the density 0.49 and lead to conflicts in almost 50% of all 136 pairs of 

regions, taken from MAX (Table 4).  There is no connection between MsZn and KsS, 

because the density is only 0.35. From the six edges, corresponding to densities 1 0.4 three 

edges refer to attributes with different targets (herb layer and epiphytic mosses) (one of 

them with the same chemical element, Zn) and three edges appear, where the 

incomparability is not induced by concentrations in different targets but only by 

concentrations of different elements in the same target, i.e. in the herb layer. 

 

 

KsPb MsCd 

KsZn 

KsS 

KsCd 

MsZn 
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(iii) Effect of data uncertainty for region 57 due to the pollution parameter MsPb 

In terms of partial order theory, an object is characterized by (i) its position, (ii) the regions 

to which it is order-theoretically adjacent, and (iii) the number of incomparabilities it has. 

When considering all these properties,  there are no differences whether or not the attribute 

MsPb is assigned a value of 4 or 5. Hence the assignment within the cluster analysis for 

this single uncertain case has no consequence in partial order theory. 
 

5 Summary and Discussion 
More and more multi-indicator systems are used, due to the complexity of the phenomena 

to be ranked and it is good policy for the sake of transparency to keep the valuable 

information inherent in each indicator separated. The HDT is the technique by which this 

can be achieved (see Bruggemann, Carlsen, 2012). 

We have shown how a partially ordered set can be analyzed, where the Hasse diagram is 

an important tool. The identification of chains may be considered as the most important 

question. In practical applications, the appearance of incomparabilities is considered as 

uncomfortable, even as a reason not to apply partial order methods.  Although nowadays 

many methods are available to deal with antichains, any further research is welcomed.  We 

have only shown an example, how the list of maximal elements can be further studied; a 

systematic procedure is far beyond the focus of this paper. The obvious next question is, 

which attribute pair is specifically contributing to a selected pair of regions. One possible 

method would be to analyse tripartite graphs, as shown in Bruggemann and Voigt, 2011. 
 

One of the main problems in HDT is the notion of “relevant” numerical differences among 

the data. The preprocessing based on univariate Ward’s cluster analysis is a promising 

approach. An alternative already published is fuzzy partial order (Annoni et al., 2008, De 

Loof et al, 2012, Bruggemann et al., 2012), however  beside some technical questions the 

problem appears to be how to defuzzify, and which membership-value should be used to 

get crisp results? Therefore we recommend  using univariate clustering as a preprocessing 

step, despite the disadvantage  that the procedure is not yet integrated in the PyHasse 

software. 

 There is considerable scinentific, statistical interest in the impact of attributes, and the 

realized values within an object set, on the structure of the partial order and hence on the 

ranking. Recently Annoni et al., 2011 presented a new approach. There is a technique to 
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get a priori information about the influence of attributes in the univariate cluster analysis; 

as more modes in the univariate density are taken into regard, the more differentiating will 

be the discretized attribute, and the greater the probability to induce incomparabilities. The 

interplay of the number of modes taken from the univariate cluster analysis, and the 

resulting sensitivity of a partial order with respect to attributes, is an important task for 

future work. 

 

Finally we draw the readers attention to the fact that partial order theory is able to provide 

a ranking of all objects (i.e. not only those in chains), without finding, for example, the 

weights of the attributes in weighted sums by means of some deeper theoretical 

considerations (see for instance Winkler, 1982 and an interesting application by Carlsen et 

al., 2002, Carlsen 2008). The inmediate application of Winkler’s concept of averaged ranks 

is computationally extremely hard, as the complexity of the needed calculation goes with 

|X|!.  Even if the elegant lattice theoretical approach (see De Loof et al., 2006, 2008) is 

applied,  the number of objects should not exceed 50 (see Bruggemann and Carlsen, 2011). 

Developments may include a) sampling techniques (see Bubley and Dyer, 1999, Lerche et 

al., 2003, Sørensen and Lerche, 2002,, and b) approximations (see Bruggemann et al., 

2004, 2005 and Bruggemann and Carlsen, 2011). A new approach for deriving rankings is 

based on the concept of probability of x > y or x < y (concept of mutual ranking 

probability, see Bruggemann and Voigt, 2006) given  x || y (De Loof et al., 2011). 

 

Even if composite indicators are constructed the ranking due to partial order may be useful 

for comparisons and to identify where weights play a crucial role (see for instance 

Bruggemann et al., 2008). So, the theory of partial order in its variant as HDT may become 

a valuable instrument in all those cases where ranking is of interest and where multi-

indicator systems are needed to deal with the inherent complexity of the objects to be 

ranked. Especially environmental pollution is highly complex as not only different 

chemicals are to be considered also different targets.      
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