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Abstract 
Often a ranking based on a multi-indicator system is performed by construction of a composite 
indicator, which is generally computed as a weighted average of the indicators. The set of weight-
tuples is introduced: the g-space. Each point of this space represents a tuple of weight values, which 
lead together with the indicators of an object to a certain value of the composite indicator.   
The composite indicator induces a weak or linear order, when the associated space of an object set 
together with a data matrix is available. Each hypercube in the g-space, corresponding to intervals of 
the weights, can be represented by a partial order which is not necessarily a weak or even a linear 
order. Changing from one point of the hypercube to another will often not change the partial order. We 
have a freedom of changing weights according to the dimensionality of the g-space -1 (because of 
normalization). When other hypercubes are selected, then other partial orders can be found. The 
boundary between two hypercubes with different partial orders is a lower dimensional sphere, with 
fewer degrees of freedom. In the current paper we treat these two points: (i) how to use weight 
intervals to determine the resulting partial orders and (ii) if the number of indicators is not too large 
and if the focus is on a pair of objects instead on the whole set, then equations are given which can be 
helpful. 
As example pesticides are taken, for which three attributes are available. These pesticides are a subset 
of a set of 50 Italian pesticides, whose leaching potential to groundwater is investigated in Galassi et 
al.,1996. 
  

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 69 (2013) 413-432 

                          
                                          ISSN 0340 - 6253  

 



1. Introduction 

In environmental sciences, and even more often in social economic sciences a ranking is 

needed, see for instance Bruggemann, Patil, 2010, Bruggemann, Patil, 2011, Annoni, 

Bruggemann, 2008, Annoni et al., 2011. The usual scientific method is to search for indicators 

which measure the properties of the objects to be ranked, and then to aggregate them (mostly 

by weighted sums) eventually to super-indicators, often called pillar scores. Composite 

indices (“composites”) are then computed by further aggregating the pillar scores to get a 

single, final score for each object. Composites are attractive because they always allow for a 

unique ranking of the objects. But they are also more and more criticized as linear aggregation 

always implies compensability between dimensions (see for example the vast literature on 

measuring well-being (Stiglitz et al., 2010). A good idea to overcome the drawback is to stop 

the aggregation at least at the level of pillars and see what conclusions can be drawn from the 

partial order resulting from the ordinal analysis of the pillar scores.  

The main issue when performing linear aggregations is the weighting scheme which is often 

the result of subjective choices and, as a consequence, can be easily criticized thus weakening 

the trust in the ranking from the composite. In the last years many efforts were directed 

towards the problem of how to determine the weights, see for example Nardo, 2008.  

In this context partial order theory can be of help. One of the recent extensions of the so-

called Hasse Diagram Technique (HDT) is the introduction of the concept of step-wise 

aggregation of indicators, to have a control about the role of the weight values. This concept, 

which has several realizations, is called METEOR (method of evaluation by order theory), see 

Simon et al., 2005, 2006, Voigt, Bruggemann, 2005. In the new software package PyHasse 

(Bruggemann, Voigt, 2009) there are actually six modules tackling the concept of step-wise 

aggregation. Unfortunately this kind of analysis is too complex to be realized in all practical 

cases, although many studies show the usefulness of the concept (Simon et al., 2005, 2006). 

Are there alternatives? Let us go back to the indicators, denoted by qj, j=1, …, m and compute 

the composite indicator I as the weighted sum: 

 I(x) = 2 gj*qj(x)  j=1,..,m, x 0 X, with X the object set and gj 0 [0,1] and 2 gj = 1, (1) 

 In the general case the weights gj are not known exactly but a range of variability can be 

assigned to each of them.  We assume that the values of the indicators are observable and 
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known, for a partial order analysis, if these property values are unknown, see Sørensen, et al, 

2000, Denouex et al., 2005.  

This paper shows how weight-intervals can be applied in terms of simple elements of partial 

order theory and is organized as follows: 

After a brief introduction to the basic material concerning partially ordered sets, we moot a 

convenient notation, then we show by a simple example how the analysis can be performed. 

The reader may see that there is some analogy between thermodynamics of phase equilibria 

and the concepts studied here.  

2. Material and Methods 

2.1 Basics of the theory of partially ordered sets 

Although there are many papers, from where basics of partially ordered sets are described 

(Bruggemann, Patil, 2010, Bruggemann,  Patil, 2011, Bruggemann, Voigt, 2008, Bruggemann 

et al., 2001), we give a brief overview for the convenience of the reader.  

Definition of component-wise order 

Let us assume that a finite “object set” X (in technical terms also called a “ground set”) is of 

interest. We wish to compare n objects x, y,... 0 X on the basis of m indicators, measured at 

least on an ordinal scale, characterizing them with respect to the ranking aim, i.e. an n 3 m 

data matrix is at hand. Therefore the comparison is performed by applying the special order 

relation called component - wise order: Let x, y be two different objects of the object set X. 

Let Q be the space of measurements that may be of different scaling levels. Let q(x) be the 

data row for x and q(y) that for y, i.e q(x), q(y) 0 Q:  
 

x < y if and only if q(x) < q(y), q(x) < q(y) if and only if for the components 

of q it is valid 

qj(x) ≤ qj(y) for all j, j = 1, 2, …,m 

and there is at least one attribute qi*, for which a strict inequality     (2) 

qi*(x) < qi*(y) is found.    
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Sets X equipped with a partial order, such as the specific one, defined in (2)  are called 

partially ordered sets (posets).  

Aim of ranking 

An analysis of the data matrix by partial order is meaningless without the information about 

the aim of ranking. When the aim of ranking is known, the indicators are to be checked for 

their common orientation with respect to the aim. If necessary, the columns of the data matrix 

must be appropriately transformed (for example by multiplication by -1). Thus, for example, 

if one is ranking chemicals according to two indicators, say bioconcentration (BC) and 

biodegradation (BD), then high BC values indicate a problematic chemical, while high BD 

values indicate a desirable chemical. In this case one need to orientate indicators in such a 

way that high scores of both indicate either problematic or desirable chemicals. 

 Equivalence 

If x, y are different objects but q(x) = q(y), i.e. qj(x) = qj(y) for all j, then the objects x and y 

are called equivalent under the equivalence relation ‘equality’. Equivalence is denoted as: x 4 

y. In empirical data matrices equivalence relations may appear, then we consider 

representatives of each equivalence class and add the information about the other equivalent 

elements, whenever needed.  

Further notations:  

(i) Posets based on a data matrix are indicated by (X, IB), whereby IB={q1,..,qm}is the set of 

indicators, also called the information base (Bruggemann et al., 1995). (ii) We speak of 

‘elements’ if their membership to a set is considered and of objects in a more general sense. 

(iii) If a partial order is to be denoted without reference to a set of indicators, we use the 

notation  

(X, 5). (iv) When a set A is a finite set, we denote by |A| the number of its elements. 

2.2 Hasse diagrams  

We first introduce the ‘cover-relation’: x is covered by y if there is no element z 0 X for 

which x < z and z < y. We write this as x ≤: y. With the cover-relation at hand, we can get a 

diagrammatic representation of the partially ordered set:  Let us consider x and y, and assume 

that x ≤: y. Then we draw x in a vertical plane below y and connect both with a straight line. 
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This is repeated for every ordered pair of the cover relation, i.e. for all pairs of two objects for 

which ≤: - relation holds. The resulting diagram is known as Hasse diagram. Example: X= {a, 

b, c, d, e} (Figure 1): 

 

(a)           (b) 

Figure 1. (a): Hasse diagram representing a poset (X, 5) (b)Hasse diagram after selecting an interval 
for the weights (see text below). 

 

2.3 Some additional concepts: 

1. Because of transitivity, couples such as  a ≤ e can easily be deduced from the Hasse 

diagram by finding strictly downward or upward paths of lines connecting a and e.  

2. Objects x,y which are incomparable are denoted as x || y. 

3. If there is no incomparability, then we speak of a complete, total or linear order. 

In the case of a complete order, the objects x 0 X can be arranged in a sequence  

x1 < x2 <… < xn,  i.e. a ranking is found. 

4. Chain: If a subset X’ 6 X can be found such that for all x 0 X’ , a complete order is 

obtained, then this subset, together with the partial order relation, is called a chain.  

5. Weak order: Representative elements of equivalence classes are in a chain, but there 

are equivalence classes. The equivalence classes can also be singletons, hence the 

weak order includes the linear or complete order as a specific case. 

6. Antichain: If a subset X’ 6 X can be found such that, for no (x, y) 0 X’ 3 X’, x 7 y, 

i.e. x ≤ y or y ≤ x holds, then this subset, equipped with the partial order relation, is 

called an antichain. 

7. Maximal, minimal and isolated elements: An element x, for which no element y can be 

found with y 1 x is called a maximal element. An element x, for which no element y 

can be found with y ≤ x is called a minimal element. An element, which is at the same 
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time a maximal and a minimal element is called an isolated element. In Figure 1a: the 

maximal element is e, and the minimal ones are a, c, d; there is no isolated element. 

8. Linear extension: A linear order derived from a partially ordered set, preserving all 

order relations, is called a linear extension. When a partially ordered set is not a linear 

order, then there exist a manifold of linear extensions. For example the partially 

ordered set, visualized in Figure 1a, has eight linear extensions. One of them is a < c < 

b < e < d, another: e < c < a < b < d. 

9. Order ideal: (Here we restrict ourselves to principal order ideals generated by just one 

element O(x). The definition is: O(x):= {y 0 X, y ≤ x}, for instance in Figure 1a: O(b) 

= ({a,b,c},≤).. 

 

2.4 Weak or linear orders 

There is a high interest to directly derive weak or linear orders from a partially ordered set. 

The basic idea is derived from the concept, published by Winkler, 1982: Identify all linear 

extensions and compute for each element x 0 X the average rank. By the average rank a weak 

order can be derived. This is an important concept, not because the theory of composite 

indicators is to be replaced, but because we have now the possibility of a cross-checking to 

find out, for example, great discrepancies between the position of an object in a ranking from 

a composite indicator and from average ranks indicate that the selection of weights may be 

crucial.   

There are, however, two pitfalls in the method of average ranks: 

1. As the number of linear extensions can increase with |X|! , we are faced with a 

computational problem. Consequently in the last years many research activities were focused 

on this point (De Loof et al., 2006, 2012, Bruggemann et al., 2004 and 2005, Bruggemann, 

Carlsen, 2011). 

2. Because of order theoretical symmetries very often a high degree of ties among the average 

ranks is observed. This causes different objects to be ranked in the same position with a 

resulting degeneracy, which is unwanted in decision making. 

Our proposal is to use weight intervals in order to improve the theory of composite indicators 

with respect to the choice of the weighting scheme.  
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2.5 Intervals of weights and their posetic consequences 

Let us assume that we have m [0,1]-normalized indicators, and n objects (n= |X|, m=|IB|.) 

Def. 1: G-space: G:={(g1,...,gm)=: 0 ≤ gi ≤ 1}. We speak of an m-tuple g 0 G, 

Def. 2:  Normalized G-space: Gn:={(g1,..,gm):  2gi=1, 0 ≤ gi ≤ 1} 

Def. 3: Composite indicator: I(g,x):= 2 gj*qj(x) , (g1,..,gm) 0 Gn 

 I(g,.) indicates the set of values of the composite indicator, without specifying the  

 object x. 

Def. 4: Hypercube: H(g):={(g1,...,gm) 0 Gn: gj 0 [gj(below), gj(above)] } 

The quantities gj(below) and gj(above) are the limiting values of the weight gj  and may come 

from experts’ knowledge or previous studies such as for example the Regional 

Competitiveness Index where weights are based upon the World Economic Forum weights.  

 The edges of the hypercube H(g) are defined by the weight intervals.   

Def. 5: g-point: An m-tuple g 0 Gn.  

Def. 6: g-poset:  Let Hi(g) be a hypercube, identified by the subscript i, then each single g-

point in Hi(g) identifies a weak order. The determination of all the common pairwise order 

relations leads to a g-poset. A g-poset is denoted by (X, IB, Hi(g)).   

Obviously to each g-point belongs exactly one and only one composite indicator. And each 

composite indicator obtained from the points in Hi(g) induces a weak order.  

In Bruggemann et al. 2008, Restrepo et al., 2008a, Bruggemann, Patil, 2010 we discussed 

two- or three-dimensional G-spaces and we introduced the concepts of hot spots and stability 

fields. In simple words: “hot spots” are the points in the Gn-space where a slight variation of g 

crossing the hot spot implies many changes in the order, due to I(g,.). “Stability field” 

(hypercube in one dimension) is the dual concept: here a slight variation of the weights in all 

dimensions of Gn has no consequence in the order of the objects. The concepts developed in 

the context with stability fields can be extended too, indeed Restrepo et al. , 2008b, showed 

how this extension into a three dimensional space Gn can be done. However, the mathematical 

procedures can be tedious and visualization will be difficult in higher dimensions of Gn. In 

this paper the more pragmatical point of view of a stakeholder is the focus: 
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1) What is the consequence of knowing only intervals for each weight in posetic terms? 

 and 

2) What can be done if the order relation between two objects is of interest?  

Def. 7: g-phase: The union of hypercubes for which a given order relation between two 

objects, say x > y holds: �
yx

H(g):y)gph(x
8

�8
 

Figure 2 shows, how hypercubes and g-phases are related. 

 

Figure 2. (a) Schematic presentation of Gn , the weights vary in the interval [0,1].  The effect 
of some more knowledge about weights is shown in (b) (see text). 

From a normalized G-space Gn a poset can be built which represents the common order 

relations deduced from all composite indicators computed from all g-points, i.e.: In Figure 2 a 

poset is obtained, whose Hasse diagram shows two 3-element chains. The order relations  

a > b, a > c, b > c, f > e, f > d and e > d are the only common order relations, when all 

possible composites are examined for their orders. Assuming some knowledge concerning the 

weights (b) four different scenarios for the weights (weight models) are supposed. 

Correspondingly four sets of g-intervals are selected. Each of the hypercube defined by its set 

of intervals has now only a restricted set of composites, therefore the partial order will be 

enriched. We assume now that the hatched areas (1) and (4) contain g-posets for which b>d is 

in common. The union of these two areas would be a g-phase. Area 3 may contain g-posets 

with b<d, whereas in (2) b || d may appear. 

The g-posets of certain g-phases can be seen as molecules in different physico-chemically 

defined phases. When we manipulate g by starting in a subset of Gn, where x<y and stop in a 

subset of Gn, where x>y, we have performed a “phase transition”.  Coexistence of phases 

implies a phase rule, quantifying the number of freedoms, coexistence of g-phases reduces the 

number of freedoms too.  
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3. Results 
3.1 Intervals 
Observation : Hi(g) = Gn 9 (X, IB, Hi(g)) = (X, IB). 

When we assume any interval for the weights, then Hi(g) : Gn. Let us consider an arbitrary 

proper subset Hi(g): Then there are two possibilities: 

(1): We can find a hypercube H1(g), where a variation of g does not change the linear (or 

weak) order among the objects, due to the composite indicator I. Any refinement (reducing 

the intervals for the weights) cannot have a consequence for the orders in H1(g).  

(2): There may be a hypercube H2(g) where not a weak order is found but a partial order. 

Depending on the kind of refinement, by which H3(g) : H2(g) is found, different enriched 

partial orders up to linear or weak orders (if the intervals are small enough) result.  

In the first case we have, what we called a stability field, in the second case, we know that the 

hypercube H3(g) includes hot spots.  

In H1(g) there is freedom to vary the g-tuples in all m-1 dimensions (we have one degree of 

freedom less because of the constraint 2 gi = 1). 

In H3(g) there are variations which change the order of objects. 

3.2 Coexistence of two g-phases 
Let us assume that in one g-point we find x<y and in another one we find x>y .Between these 

two g-points there may be a g-point where the two objects x and y are equivalent with respect 

to the value of the composite indicator. That is: 

I(g,x)-I(g,y) = 0  or        2 gi(qi(x)-qi(y) = 0  

Together with 2gi=1 a matrix equation can be formulated as follows: 

After introducing the abbreviations: 

j j j jΔ : q (x)-q (y) q ( ) [0,1]� ; 0          

i,j i jδ : Δ -Δ�            (4) 

we obtain: 
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Δ ... Δ 0
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1 ... 1 1
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 � 
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� �

         (5) 

If equation (5) can be solved, then we find g-points of coexistence. If m=2 (only two 

indicators), than (5) can be easily solved and the solution is unique. If m>2 infinite solutions 

in a space of dimension m-2, corresponding to the normalization and to the coexistence 

condition, can be found. Now let us assume, that m=3 and that  

1 1,20, δ 0/ < <           (6) 

In this simple case of three indicators, it is easy to show that the coexistence condition (3) and 

the constraint on the sum of weights imply 

3 23
1 2

13 13

3 13
2 1

23 23

3 1 2

δg g
δ δ

δg g
δ δ

g 1 g g

/
 � ! !.
.
. /

� ! !�
.
. � ! !
.
�

 

The coexistence condition is granted if 

232
1

12 12

131
2

12 12

3

δg t
δ δ

δg t
δ δ

g t

/
 � ! �.
.
. /

� !�
.
. �
.
�

          (7) 

for each t 0 [0,1]. Equation (7) describes a line as a coexistence condition for two g-phases  in 

the three-dimensional space of weights G, and in the twodimensional space of weights in Gn. 

Analogously it is possible to extend  (7) to the case m>3.  

For the general the following equation is valid: 

g = K + A*t           (8) 
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Therein is 

= g a vector of dimension m,  

= K is a vector of dimension m with the components (-/2/>1,2 , /1/>1,2 , 0....,0),  

= t is a vector of dimension m-2 and freely variable,and  

= A is an m*(m-2)-matrix. The A-matrix with is conveniently written as follows: 

 

m-2

A2
A=

I
� 

� �
� �

. 

 

A2 is the matrix where the first two rows are: 

k 1,2 2 1,k 2,k
1k 1,k

1,2 1 1,2

Δ ×δ -Δ ×δ δ1a =- × = =:Q
δ Δ δ

      (9) 

1,k
2,k 2,k

1,2:

δ
a =- =:Q

δ
         (10) 

Im-2 is the unit matrix with m-2 rows and columns, respectively.  

Varying the free parameters t influences the variations of the weight –values gj. The space 

spanned by equation (8) is called CoG, as it is the space of coexistence of two g-phases in G.  

Hypercubes which contains such a boundary sphere CoG are crucial ones, at least for those 

object pairs which are defining the boundary.  

Any variation following equation (8) keeps I(x,g)= I(y,g). Instead of varying m-1 weights 

freely (taking into account that 2 gi = 1) condition (3) further reduces the degrees of freedom. 

We see this as (pretty trivial) analogy between thermodynamical phases where the equilibrium 

conditions are expressed by equality of chemical potentials. 

3.3 Crossing the phase boundary 

Crossing the phase boundary means to find that subspace orthG  in G, which is orthogonal to 

that defined by equation (7). The dimensionality is 2 as both, the space of CoG and the space 

orthogonal to CoG must give the space G. If we denote with A2 the two first rows of  the 

matrix A, then the orthogonality condition leads to the equation for orthG. 
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1

2
1

3 1,1 2,1
2

1,2 2,2

m

g 1 0
g 0 1

t
= b + ×g -Q -Q

t
... -Q -Q
g ... ...

� 
 � 

� � � �
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� � � � � �
� � � �

� �� �
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         (12) 

There the vector b consists of values to assure the constraint that 2 gi =1. The third to mth 

rows of the matrix in eq. (12) is just the matrix A2, transposed (A2t) and  multiplied by (-1). 

Hence we can write equation (12) in a more elegant way as: 

1

2

3 12
t

2

m

g
g
g tI

= b + ×
... t-A2
...
g

� 

� �
� �
� � � 
� 

� � � �� �

� � � �� �
� �
� �� �
� �

 

I2 is the 2*2 unit matrix. 

 4. A real life example 

4.1 Data matrix 

In De Loof et al., 2012 a data set about pesticides is used  in order to show some new tools in 

partial order theory. Here the starting point is the same data set (Galassi et al., 1996) but 

restrict ourselves to those pesticides whose annual usage is over 1500 tons.  Six out of 50 

pesticides are then considered. For these pesticides the span of values of the vapour pressure 

is more than 108 which would need extra consideration as to how the vapour pressure values 

should be normalized in a meaningful manner, but this is not the main line of this paper. In 

Table 1 the data matrix of the six pesticides and the normalized indicator values for 

persistence (Tn), for the leaching tendency (Ln) and the usage (Usagen) are shown. 

Table 1. Subset of the data matrix of Galassi et al, [0,1]-normalized indicators (rounded after 
the third digit) 

name id Tn Ln Usagen 

alachlor a0 0.127 0.308 0 

mancozeb h2 1 0 0.545 

metham-Na i0 0 1 1 

methylbromide i5 0.762 0.643 0.692 

ziram n0 0.365 0.199 0.456 

zineb n1 0.365 0.043 0.232 
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4.2 Partial Order Analysis 

The Hasse diagram of the six pesticides shows a pattern which is typical in evaluation 

problems: There is not a long chain with only some few incomparabilities: In contrast, the 

partial order consists of three components where two components are isolated elements, see 

Figure 3. 

 

Figure 3. Hasse diagram derived from the data matrix in Table 1.(drawn with PyHasse 
software) 
 

The leaching potential may be proportional to Usagen, Tn and Ln (in Halfon et al. , 1996 the 

vapour pressure is additionally taken into regard). Hence, the leaching potential should follow 

the sequence n1<n0<i5, or a0<i5. The fact that two isolated elements appear indicates that the 

leaching potential may be pretty high, when at least one of the three attributes is high. This 

suggests that also special mechanisms may be possible for the transfer from the soil to 

groundwater.  

In former papers many techniques were developed to obtain more information out of this poor 

Hasse diagram (we called ‘poor’ for it does not show so many comparabilities). Beside the 

derivation of weak orders (see Bruggemann, Carlsen, 2011), one could apply the concept of 

tripartite graphs (Bruggemann, Voigt, 2011) to show which are the factors leading to 

separated subsets, or an antichain analysis could render more information about for instance 

the three maximal elements (Bruggemann, Voigt, 2012). Here, however we want to study the 
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weight intervals and their influence on the enrichment of the original partial order shown in 

Figure 3.  

4.3 Examples of enrichments 

The module HDCI6.py of the software package PyHasse allows for calculating the composite 

indicator. By choosing equal weights (g1=g2=g3= 0.3333), the composite indicator induces the 

following ranking: a0 < n1 < n0 < h2 < i0 < i5.  However, the problem is: Is the selection of 

equal weights for all three indicators really appropriate? Should have usage or persistence 

more influence on the composite indicator?  In Table 2 we discuss three weight models . In 

each of them one indicator is given a weight interval at the larger end of the weight scale, 

whereas the remaining two indicators get intervals at the lower end. The simulations are 

performed with 10000 Monte Carlo runs. 

Table 2. Three weight models 

Model input min max Volume of 

the 

hypercube 

number of 

incomparabilities 

a [0.5, 1.0] 

[0.0, 0.3] 

[0,0.3] 

0.471 

0 

0 

0.994 

0.358 

0.355 

0.066 4 

b [0,0.3] 

[0.5,1] 

[0,0.3] 

0 

0.466 

0 

0.368 

0.995 

0.349 

0.068 6 

c [0,0.3] 

[0,0.3] 

[0.5,1] 

0 

0 

0.466 

0.358 

0.356 

1.0 

0.068 3 

 

Note that due to the weight constraint (2gi=1) the actual interval limits are different from the 

assigned limits (compare the values in columns 2, 3 and 4 of Table 2).   

The Hasse diagrams of the corresponding partial orders are shown in Figure 4. 
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(a)   (b)   (c) 

Figure 4. Hasse diagrams following three weight-interval models. 

 

It can be observed that  

= there is an enrichment of the partial order, all comparabilities found in the original 

poset are reproduced, however, new order relations are added: The original poset 

includes 11, the g-posets (Figure 4) have at maximum 6 incomparabilities 

= Pesticide i5 is in all cases (including the original poset) a maximal element 

= There is a change in the order relation for the pesticides h2 and i0: In Figure 6a: h2>i0, 

in Figure 4b, however: i0>h2, in Figure 4c: i0 || h2.  

= Contextually the introduction of weight intervals leads to more chains, expressing the 

increase of the leaching potential and in two out of three models the chains are 

becoming longer. 

When we measure the uncertainty in giving weights by the volume of the space Gn, which is 

0.7, then the reduction in uncertainty, measured by the volumes of the hypercubes by almost 

factor 10 , reduces the incomparabilities by a factor of around 2. 

4.4 Boundary of the g-phases 

Let us discuss the g-phases where h2 > i0 and i0 > h2, respectively, as well as the g-phase 

boundary. According to equation (7) (or in many cases simply by directly manipulating the 

corresponding equations) the following results are obtained. 

g1 = 0.5 - 0.2725 * g3 

g2 = 0.5 - 0.7275 * g3 
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These two equations describe the CoG of those coexisting phases, where h2 > i0 and h2 < i0. 

In fact this 1- dimensional space is the set of all three dimensional g-points, where the 

composite indicator score for pesticide h2 equals that for i0. 

Knowing this pair of equation one can easily check points in Gn, so that h2 < i0 or h2 > i0.  

In Table 3 four g-points are selected, following the equations for CoG and the corresponding 

configuration of i0 versus h2 is shown. 

Table 3. Points in the Gn-space which are not on CoG. 

g-model g1 g2 g3 configuration*) 

1 0 0.3 0.7 h2 < i0 

2 0 0.7 0.3 h2 > i0 

3 0.466 0.2 0.334 h2 > i0 

4 0 0.4 0.6 h2 < i0 
*): The order relation is related to an enriched partial order, where the selected weights are taken from 
an interval which does not include the g-point, corresponding to the coexistence condition. 
 

When g-intervals are according to g-models 3 and 4 (see Table 4), then the partial orders are 

obtained, where h2 and i0 are in the order relation, as shown in Table 3.  

Table  4. g-intervals according to g-models 3 and 4, respectively. 

g-model input  

gbelow 

input 

gabove 

realized 

g-values: 

min 

realized 

g-values: 

max 

order 

relation 

h27i0 

3 0.5 

0.2 

0.0 

1 

0.3 

0.4 

0.429 

0.128 

0.0 

0.829 

0.363 

0.354 

h2>i0 

4 0 

0.2 

0.6 

0.1 

0.4 

1.0 

0.0 

0.157 

0.55 

0.107 

0.39 

0.829 

h2<i0 
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Then a partial order is obtained (Figure 5): 

 

(a)    (b) 

   Figure 5. (a) Partial order with intervals selected according to g-model 3.(b), according to 
g-model 4. 
 

5. Discussion 

Composite indicators play an enormous role, especially in political sciences, where for 

example nations of the European Union are to be measured with respect to educational level 

or innovation potential or as an actual example, economical power of nations (rating). After 

the absolutely not trivial selection of suitable properties the not trivial task begins to give 

weight values for the properties, so that from them the composite indicator can be calculated 

as a weighted sum. In decision support systems other procedures to obtain a ranking of objects 

are well known such as for example PROMETHEE  (Brans, Vincke, 1985) or other systems, 

as described in Munda, 2008. Although the construction of composite indicators by a 

weighted sum is transparent and does not need additional steering parameters as it is the case 

for example in PROMETHEE, where the preference functions need to be fixed. The weights 

are not always known precisely and in general intervals are to be defined for each of them. A 

hypercube in the Gn-space may be small enough so that the partial order is in reality a linear 

or weak order. Often however the hypercubes contain a partial order where incomparabilities 

appear. Then there are either possible refinements such that hypercubes included in the 

original one now contain the desired linear order, or the enrichment is powerful enough to 

find decisions.  

There are still open questions: The more direct approach would be to determine those 

hyperspaces of Gn which have all the same linear order. When n objects are to be analyzed, 

then n-1 equations can be found of the type I(g,x) = I(g,y). Then, however, we leave the 
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supposition of independent incomparabilities, i.e. have to take care for transitivity. This is not 

sufficiently investigated and remains for future work.  

Furthermore the approach shown here has some similarity with the reasoning in Paelinck 

1977, 1978 and it seems to be an interesting task to deepen the comparison between the 

approach shown here and the approach discussed back in the seventies of the last century. 
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