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Abstract

A new more informative and effective fuzzy discriminant analysis method based
on fuzzy regression with point prototypes has been developed and applied on two
relevant data sets (the classical Fisher’s Iris data set and a clinical data set concern-
ing different diseases). The proposed fuzzy method is consistent with the supervised
character of the original discriminant analysis method. The classification and pat-
terns obtained by membership degrees plot are in a very good agreement with the
structure of data and the initial assignment of samples, which indicate that the
new approach may be successfully employed in different fields. In addition, the
graphical representation of fuzzy membership degrees to different classes provides
a relevant way to visualize the relationships between the data items of the fuzzy
classes.

1 Introduction

Discriminant function analysis or simply, discriminant analysis (DA), is based on the

extraction of linear discriminant functions of the independent variables in a data set by
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means of qualitative dependent variables and several quantitative independent variables

[1, 2, 3, 4].

Discriminant analysis, in particular, has been extensively used in various fields of

natural science (chemometrics, environmental sciences, biology, geology, etc.) [5, 6, 7, 8,

9, 10], as well as economy and humanistics [11, 12]. A very important issue in statistical

analysis, fuzzy reasoning and similar theories is that their development goes hand in hand

with their use in various domains. Because of the need for better, robust methods of data

analysis coming from the application fields, often the theoretical developments are driven,

as well, by the applicative research.

The fuzzy sets [13] represent a mathematical theory suitable for modeling imprecision

and vagueness. Generally, vagueness is associated to the difficulty of making precise

statements with respect to a certain topic. On the other side, in the Fuzzy Sets Theory,

the hard alternative yes – no is indefinitely nuanceable. From this point of view, the

fuzzy sets theory is not only a theory dealing with ambiguity; it is also a theory of fuzzy

reasoning.

The fundamental fact that lies behind fuzzy logic is that any field and any theory

may be fuzzified by replacing the concept of crisp set with the concept of fuzzy set.

Thus, theoretic fields have appeared, such as fuzzy arithmetic, fuzzy topology, fuzzy

graph theory, fuzzy probability theory, ‘strict’ fuzzy logic, etc. Similarly, applied fields

that suffered generalizations are fuzzy neural network theory, fuzzy pattern recognition,

fuzzy mathematical programming, etc. What is gained through fuzzification is greater

generality, higher expressivity, an enhanced ability to model real-world problems, and a

methodology for exploiting the tolerance for imprecision [14].

The first fuzzy DA method has been introduced in [15]. The original data is first

fuzzified through a modified FCM method. Then, fuzzy within class and between class

scatter matrices are computed and the resulted eigenvalue problem is then solved.

The paper [16] describes fuzzy discriminant analysis with kernel methods. The FDA

approach is generalized by introducing kernel functions, in order to allow for nonlinear

problems. A similar approach, using a kernel-based maximum a posteriori classification

method, has been introduced in [17]. Robust methods are further proposed to estimate

the probability densities.

A different approach of a fuzzy discriminant analysis is described in [18]. First, a
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fourfold-objective model on the discriminant analysis is developed, by which a set of

integrated subspaces derived from within-class and between-class scatter matrices are

constructed, respectively. Second, an improved FDA algorithm based on the relaxed

normalized condition is proposed to achieve the distribution information of each sample

represented with fuzzy membership grade, which is incorporated into the rede?nition of

Fisher’s scatter matrices. A robust, non-fuzzy discriminant analysis method based on

kernel functions, through nonlinear mapping in the feature space is described in [19].

A few other approaches have also been devised. Thus, the paper [20] describes a

supervised iterative k-means like classification method using kernel functions. The paper

[21] presents a fuzzy inverse FDA. The fuzzymembership degrees and each class center are

obtained through Fuzzy k-Nearest Neighbor algorithm. Then, the membership degree of

each sample is considered and the corresponding fuzzy within-class scatter matrix, fuzzy

between-class scattermatrix and fuzzy total scattermatrix are computed. In case of small

sample size problems, PCA is used in advance. A partial supervision in fuzzy clustering

was also discussed [22] and the effect of various distance functions on the performance

of the clustering mechanisms has also been investigated. In addition to the standard

Euclidian distance being commonly exploited in fuzzy clustering, three more versatile

and adaptive distance measures have been considered, such as its weighted version, a full

adaptive distance, and a kernel-based distance.

In this paper a new fuzzy discriminant analysis method is developed and its efficient

application is demonstrated using two data sets (the classical Fisher’s Iris data set and a

clinical data set concerning different diseases).

This paper is organized as follows. A theoretical introduction to the discriminant

function analysis is given in Section 2. Section 3 follows with a description of our new

fuzzy discriminant analysis approach. Then Section 4 presents two case studies, the

former with the fuzzy discriminant analysis of the Fisher’s Iris data set, and the latter

with the analysis of a clinical data set.

2 Discriminant Function Analysis

DA can be formulated as follows: let X = {x1, . . . , xn} ⊂ Rs be a finite set of char-

acteristic vectors, where n is the number of items and sis the number of the original

variables (predictors), xi = [xi1, x
i
2, . . . , x

i
s]
T and y be a nominal characteristic (grouping
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variable), with k values, each of which characterizes exactly one of the k sets composing

the partition substructure of the given data set. The total variance/covariance matrix is

first calculated according to the following expression

V = XTMX, (1)

where X is the centered data matrix, XT is the transpose matrix, M is the diagonal

matrix (in most cases is the unity matrix).

Considering a new characteristic defined as c = Xu, one can calculate its variance by

applying the relation (2).

‖c‖2 = cTMc = uTXTMXu = uTVu, (2)

The total variance V may be decomposed into two components: the between-group

variance B and within-group variance W, namely

V = B+W, (3)

and, as a consequence, the variance of the characteristic c becomes

‖c‖2 = uTVu = uTBu+ uTWu. (4)

In this case, it is very easy to observe that eq. 4 can be rewritten in the following

form
uTBu

uTVu
+

uTWu

uTVu
= 1. (5)

In practice the first ratio in eq. 5 is maximized

λ =
uTBu

uTVu
(0 ≤ λ < 1) (6)

or, in a different form, of a generalized eigenvalue problem:

Bu = λVu, (7)

Since matrixV of the total variance is symmetrical and positive definite, this equation

may be rewritten to a matrix equation similar to that obtained in the case of principal

component analysis,
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V−1Bu = λu, (8)

where λ and u represent the eigenvalues (known, as well, as characteristic roots) and

eigenvectors of the matrix V−1B. The vector u1, named the first discriminant factor

corresponds to the highest value of λ; the higher this value the higher will be the discrim-

inant power of this factor. After obtaining the first discriminant characteristic c1 = Xu1,

in a similar way can be obtained the discriminant characteristic c2 = Xu2, uncorrelated

with the first and so on. It appears clearly that eigenvectors corresponding to the matrix

V−1B namely u1, u2, . . . , uk−1, ranked in decreasing order of the positive values λ1, . . . ,

λk−1, are successive solutions of the above matrix equation. The quality of discrimination

and the selection of the most discriminant independent variable is given by the value of

the largest eigenvalue, λ.

3 A New Fuzzy Discriminant Analysis Approach

Let us consider a data set X = {x1, . . . xn} ⊆ Rs, and the predetermined classification

matrix, denoted by A′. This matrix, produced by human experts, shows an a priori split

of the n data items in k different classes. In such a case, the matrix A′ is a Boolean

matrix indicating the membership of a data item to one of the k classes.

One of the major issue human experts have is that they think in crisp terms. This

means that the a-priori classes are defined in crisp terms. This is not a realistic decision,

since in almost all real situations data is of a fuzzy nature. The given data classes most

certainly have data items close to the central locations, but they have as well distant

data items, also called outliers. As such, a preprocessing step must be done: for the

crisp a-priory classes, suitable fuzzy regression sets will be determined. For each original

class, a fuzzy regression with point prototypes is applied and fuzzy membership degrees

are thus determined. We recall the main details here. The optimal fuzzy set A that best

describes the given crisp set, and the associated point prototype L ∈ Rs, are determined

by minimizing the following fuzzy objective function:

J(A,L) =
n∑

j=1

A(xj)m
∥∥∥xj − L

∥∥∥2+ n∑
j=1

(
1− A(xj)

)m ( α

1− α

)m−1

, (9)

where α is a positive subunit value set a-priory, identifying the fuzzy membership degree

of the farthest outlier and m >1 is the fuzziness index, set a-priori. The algorithm used
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to solve this problem has been called Fuzzy Regression [23] and iterates by computing the

prototype L that minimizes the function J(A, ·) and by computing the fuzzy set A that

minimizes the function J(·, L). As an improvement to this method, in order to ensure the
independence of scale, we usually work with the relative dissimilarity when determining

the fuzzy set above, i.e.

A(xj) =
α

1−α

α
1−α

+
( ‖xj−L‖
max‖xj−L‖

) 2
m−1

Complete details of this fuzzy regression procedure and other variants thereof are given

in [23, 24, 25].

Of course, this means that the result will be a sub-partition, i.e. the sum of mem-

bership degrees of a point to all classes is less than one. But, on the other side, this

preprocessing step allows us to show light on the input data and the quality data items

from each original cluster, as it has been a-priori proposed. As opposed to this, other

methods use either an unsupervised clustering scheme here (which we find it is in princi-

ple un-appropriate), or use different mechanisms to set the membership degrees without

any functional optimization.

The Fuzzy Discriminant Analysis problem is defined as follows: let X = {x1, . . . , xn}
⊂ Rs be a finite set of characteristic vectors, where nis the number of items and sis the

number of the original variables (predictors), xj = [xj1, x
j
2, . . . , x

j
s]
T and let Ai (with

i = 1, . . . , k) be fuzzy sets on X, corresponding to the k a-priori sets composing the

partition substructure of the given data set. A new vector (or characteristic) c is to be

determined, that maximizes the fuzzy between-class variance of the projected data items,

and minimizes the fuzzy within-class variance of the projected data items.

Considering this new characteristic defined as c = Xu, the fuzzy between-group vari-

ance B and fuzzy within-group variance W, are defined as:

W =
1

n− k

k∑
i=1

⎛⎝ n∑
j=1

Ai

(
xj
)m (

xj − Li
)T (

xj − Li
)⎞⎠, (10)

B =
1

k − 1

k∑
i=1

⎛⎝ n∑
j=1

Ai

(
xj
)⎞⎠m (

Li − L
)T (

Li − L
)
, (11)

where the class means Li are determined like the fuzzy point prototypes,

Li =

n∑
j=1

Ai (x
j)

m
xj

n∑
j=1

Ai (xj)
m

,
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and L is the central location for the whole data set.

As the fuzzy sets Ai form a sub-partition of the given data set, we formulate the

problem of determining the optimal direction u as maximizing the ratio

λ =
uT (V −W)u

uTVu
(0 ≤ λ < 1) (12)

or, in a different form, to solve the generalized eigenvalue problem

(V-W)u = λVu. (13)

Since matrixV of the total variance is symmetrical and positive definite, this equation

may be rewritten to a matrix equation similar to that obtained in the case of principal

component analysis,

V−1(V-W)u = λu, (14)

where λ and u represent the eigenvalues (known, as well, as characteristic roots) and

eigenvectors of the matrix V−1(V-W). The vector u1, named the first discriminant fac-

tor corresponds to the highest value of λ; the higher this value the higher will be the

discriminant power of this factor. After obtaining the first discriminant characteristic

c1 = Xu1, in a similar way can be obtained the discriminant characteristic c2 = Xu2,

uncorrelated with the first and so on. It appears clearly that eigenvectors corresponding

to the matrix V−1(V-W) namely u1, u2, . . . , uk−1, ranked in decreasing order of the

positive values λ1, . . . , λk−1, are successive solutions of the above matrix equation. The

quality of discrimination and the selection of the most discriminant independent variable

is given by the value of the largest eigenvalue, λ.

Finally, the original class means are projected in the new system of coordinates, and

the final fuzzy membership degrees are determined from square-distances to the class

means, using a relation similar to the Fuzzy C-Means case:

Ai

(
xj
)
=

1
k∑

l=1

(
‖xj−Li‖
‖xj−Ll‖

)1/(m−1)

The final fuzzy classification table is computed by counting cardinals of fuzzy sets: instead

of counting the number of data items classified in a particular class, we are actually
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computing an overall fuzzy membership degree. The fuzzy count of all items from the

i-th original fuzzy set A′
i classified in the l-th fuzzy setAl, denoted as Cil, is given by

Cil =
n∑

j=1

A′
i

(
xj
)
·Al

(
xj
)
.

A friendlier version of this fuzzy classification matrix may be computed by scaling the

fuzzy cardinal values and producing values representing the percentages of all items from

the i-th original fuzzy set classified in the l-th fuzzy set:

C
[%]
il =

n∑
j=1

A′
i (x

j) ·Al (x
j)

n∑
j=1

A′
i (x

j)
× 100.

A crisp classification matrix is as well determined by first defuzzifying the final fuzzy

partition and then using the cardinals of the crisp classes.

After this learning phase, testing follows in various ways, including use of separate

testing data, or by cross-validation.

The classical discriminant analysis method is known to provide maximum likelihood

estimations under certain assumption (normality of the class distributions etc.). As the

experiments will illustrate, and as previous research on data analysis methods based on

fuzzy sets have also shown, the fuzzy discriminant analysis method is robust with respect

to outliers and distribution of data.

We underline once again the robustness achieved by using fuzzy membership values.

The main advantage of fuzzy sets over crisp sets and of fuzzy logic over binary logic is

the availability of nuanced membership degrees. On one side, the classes input provided

by the human expert is fuzzified, allowing robust treatment of outliers. On the other

side, the output of the method is fuzzy as well, allowing a more detailed view of the

relationships between data items and classes. These fuzzy membership degrees are not

actually related to uncertainty, because there is nothing uncertain about the classification

of a certain data item, but have to be regarded as a measure of ‘typicality’.

The fuzzy discriminant analysis method presented here is a multiclass method by

design, as no restriction with respect to the number of classes is introduced. This is a

parameter to be set by the human experts as they establish the a-priori classes split.
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4 Data sets

4.1 Data set 1 (Iris flower data set)

The first illustrative example uses the Iris flower data set, also known as Fisher’s Iris data

set [26]. The dataset consists of 50 samples from each of three species of Iris flowers (Iris

setosa, Iris virginica and Iris versicolor). Four features were measured from each sample,

namely the length and the width of sepal and petal, in centimeters.

4.2 Data set 2 (clinical data)

Fuzzy Discriminant Analysis was also applied as a method of disease identification, using

data obtained from blood analysis of several patients. The compounds investigated by

photometricmethods in human blood samples were organic compounds of clinical interest

(glucose, triglycerides, cholesterol, creatinine and urea), inorganic compounds (Na, K,

Ca, Mg and Fe) and enzymes (Lactate Dehydrogenase (LDH), Alanine Transaminase

(ALT), Aspartate Aminotransferase (AST), Alkaline Phosphatase (ALP) and Gamma

Glutamyltransferase (GGT)). According to their concentration level the following diseases

have been selected for study: hydroelectric disorders, hepatic diseases, lipid disorders,

diabetes and renal disorders. Some patients resulted to be healthy. The training data

set consisted of 100 patients, diagnosed by clinical evaluation as follows: 20 are healthy

(marked ‘s’), 20 have lipid disorders (‘l’), 20 hepatic diseases (‘h’), 20 hydroelectric

disorders (‘d’), 10 diabetes (‘z’), 10 renal disorders (‘r’).

5 Results and discussions

5.1 Data set 1

Figure 1 shows the graphical display of standardized canonical scores obtained with the

classical DA algorithm for the Iris flower data set. Figure 2 shows the graphical display

of standardized canonical scores obtained with our fuzzy DA algorithm. Both score

values have been standardized in order to make any comparison possible. We remark a

mirroring effect of the two images. This problem occurs with many implementations of

multivariate analysis methods. PCA is another example. We are showing the graphics

without any further alignment to illustrate that different implementations may align the

variates differently, and that this is not an issue with the methods or their results.
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By a careful visual examination of the two figures it is possible to observe that the

three classes appear to be more compact and better separated in the fuzzy case. As well,

the class outliers are better isolated. The linear structure of each class is clearly pointed

out in the fuzzy representation.

Moreover, the graphical representation of fuzzymembership degrees to different classes

provides a relevant way to visualize the relationships between the data items of the fuzzy

classes. Figures 3, 4, and 5 show the graphical display of fuzzy membership degrees as

obtained with our fuzzy DA algorithm. Figure 3 represents the fuzzy classes A1 and A2,

Figure 4 represents the fuzzy classes A1 and A3, and Figure 5 represents the fuzzy classes

A3 and A3, respectively.

We remark here quite a significant proportion of flowers in A2 and A3 that are classi-

fied in the other set. This is not a weakness of the method, but, the available data, given

in terms of fuzzy membership degrees, show that there is actually an overlap between

the two classes, with a few samples presenting hybrid features to the two classes. The

overlap is very well seen in Figure 5. Figures 3, 4, 5 show a very clear separation between

the class A1, on one side, and classes A2 and A3 on the other side, while Figure 5 shows

three groups of samples for classes A2 and A3: a central group of A2, a central group of

A3 and a group with hybrid samples. The representation of fuzzy membership degrees

corresponding to the fuzzy partition leads to a clear discrimination of the three classes of

iris data. In addition, the class overlaps are better distinguished, and the few data items

with hybrid features are clearly isolated. The presence of hybrid data is not a weakness

of the method, but an advantage, since it illustrates the natural hybrid character of the

data items in question. An undisputable advantage of these fuzzy degrees representations

over crisp sets representations is that the fuzzy membership degrees are already by design

in the interval [0, 1], and, as such, all graphical representations are comparable without

any scaling.

The eigenvalues, as determined by the Fuzzy DA method, are 0.986 and 0.728. As

such, the discrimination quality is 0.986.

The classification matrix, produced using the classical DA method, is presented in

Table 1. Comparatively, the classification matrix, produced using the Fuzzy DA method

with maximum fuzzy membership defuzzification, is presented in Table 2. The extra data

items that appear to be classified by FDA in a different class are described in Table 3. As
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we see, excepting the three data items misclassified by the classical method (71, 78 and

107), all other data items have hybrid character, as they show membership degrees in the

range 0.30-0.50, with five of them having second largest fuzzy membership degrees under

0.15 lower than the largest fuzzy membership degrees, all these increasing the correct

classification rate for Fuzzy DA method.

Correct [%] A1 A2 A3
A1 100 50 0 0
A2 96 0 48 2
A3 98 0 1 49

Total 98 50 49 51

Table 1: The classification matrix produced using the classical DA method

Correct [%] A1 A2 A3
A1 100 50 0 0
A2 88 0 44 6
A3 80 0 10 40

Total 89.33 50 54 46

Table 2: The classification matrix produced using the Fuzzy DA method

A visual inspection of data clusters as depicted by the standardized canonical scores

representations given in Figures 1, 2 shows that the classes in both figures are compa-

rably compact and well separated and confirms the remark that the class switch for the

data items indicated in Table 3 is justified, as there are essentially data items of hybrid

membership degrees, situated closer to items of the class with slightly smaller member-

ship degrees. As well, the graphical representation of fuzzy membership degrees in the

data clusters obtained from the fuzzy discriminant analysis method clearly points out the

hybrid character of the said data items.

We have tested our method using the cross-validation technique. We have repeatedly

omitted one data item from the original set and we have determined the fuzzymembership

degrees to the fuzzy classes learned by the Fuzzy DA method applied using all the other

data items.

Figure 6 shows the cross-validation fuzzy membership degrees of the data items,

against the fuzzy membership degrees as normally obtained by the Fuzzy DA method.
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No. A1 A2 A3 Initial class Assigned class
51 0.0945 0.3926 0.5130 2 3
52 0.0789 0.4358 0.4853 2 3
71 0.0320 0.2191 0.7489 2 3
78 0.0226 0.2342 0.7432 2 3
86 0.1055 0.3465 0.5480 2 3
87 0.0568 0.4266 0.5166 2 3
102 0.0342 0.4945 0.4713 3 2
107 0.0687 0.6749 0.2565 3 2
114 0.0580 0.5599 0.3821 3 2
120 0.0951 0.6041 0.3008 3 2
124 0.0279 0.6307 0.3414 3 2
127 0.0235 0.6121 0.3644 3 2
134 0.0225 0.6121 0.3654 3 2
135 0.0353 0.5599 0.4048 3 2
143 0.0342 0.4945 0.4713 3 2
147 0.0490 0.5960 0.3550 3 2

Table 3: Membership degrees of the items classified by FDA in a different class

Figure 1: Standardized canonical scores obtained with the classical DA algorithm
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Figure 2: Standardized canonical scores obtained with the fuzzy DA algorithm

Figure 3: Representation of new fuzzy membership degrees to classes A1 and A2, as
obtained with our fuzzy DA algorithm
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Figure 4: Representation of new fuzzy membership degrees to classes A1 and A3, as
obtained with our fuzzy DA algorithm

Figure 5: Representation of new fuzzy membership degrees to classes A2 and A3, as
obtained with our fuzzy DA algorithm
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We notice an almost perfect alignment across the y=x line, confirming the quality of the

Fuzzy DA method.

Table 4 shows the cross-validation classification matrix for the classical DA method

as compared with the proposed fuzzy DA method. We remark here quite comparable

results.

Classic Correct
[%]

A1 A2 A3

A1 100 50 0 0
A2 96 0 48 2
A3 94 0 3 47

Total 96.67 50 51 49

Fuzzy Correct
[%]

A1 A2 A3

A1 100 50 0 0
A2 84 0 42 8
A3 78 0 11 39

Total 87.33 50 53 47

Table 4: The classification matrices produced using the classical and fuzzy DA method

Figure 6: Fuzzy membership of the cross-validated items against the fuzzy DA output

A question may be raised with respect to the usefulness of a fuzzy sets based method

for classification of crisp data. While the actual items of the Iris data set are flowers

of one of four crisp types, there is an issue whether the data items as represented using

the given four variables are indeed of a crisp nature. As any robust clustering method

used on the Iris data shows, some of these data items demonstrate a class overlap. These

lead to the conclusion that, while the actual items form crisp clusters, the data items, as

characterized by the four variables, naturally form fuzzy clusters.

5.2 Data set 2

The values of the eigenvalues, determined by the Fuzzy DA method for the clinical data

set, are 0.968, 0.955, 0.936, 0.895 and 0.877. As such, the discrimination quality is 0.968.

The classification matrix, produced using the classical DA method, is presented in

Table 5. Comparatively, the classification matrix, produced using the Fuzzy DA method

with maximum fuzzy membership defuzzification, is presented in Table 6. A direct ex-

amination shows slightly better results with the Fuzzy DA method against the classical
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method, with 88% correctly classified items against 85% for the crisp method. The extra

data items that appear to be classified by FDA in a different class are described in Table

7. As we see, excepting three data items (31, 38 and 47), all other data items have strong

hybrid character, as they show membership degrees to two or more classes very closed

to each other, with a difference of around 0.10, all these further increasing the correct

classification rate for Fuzzy DA method. These may correspond to individuals suffering

of more than one illness, even if one illness appears to be dominant.

Correct [%] A1 (s) A2 (l) A3 (h) A4 (d) A5 (z) A6 (r)
A1 (s) 90 18 2 0 0 0 0
A2 (l) 70 6 14 0 0 0 0
A3 (h) 80 3 1 16 0 0 0
A4 (d) 100 0 0 0 20 0 0
A5 (z) 80 1 1 0 0 8 0
A6 (r) 90 1 0 0 0 0 9
Total 85 29 18 16 20 8 9

Table 5: The classification matrix produced using the classical DA method

Correct [%] A1 (s) A2 (l) A3 (h) A4 (d) A5 (z) A6 (r)
A1 (s) 95 19 1 0 0 0 0
A2 (l) 65 7 13 0 0 0 0
A3 (h) 86 2 1 17 0 0 0
A4 (d) 100 0 0 0 20 0 0
A5 (z) 90 1 0 0 0 9 0
A6 (r) 100 0 0 0 0 0 10
Total 88 30 15 17 19 9 10

Table 6: The classification matrix produced using the fuzzy DA method

Figures 7, 8, and 9 show the graphical display of new fuzzy membership degrees as

obtained with our fuzzy DA algorithm. Figure 7 represents the fuzzy classes A1 and A2,

Figure 8 represents the fuzzy classes A3 and A4, and Figure 9 represents the fuzzy classes

A5 and A6, respectively.

We have to remark a hepatitis item placed together with the disordered items. We

assume this strange case is either a case of wrong human diagnosis, or a case of erroneous

data collection.

We remark again the very good discrimination power of the fuzzy degrees represen-

tations. In this example, even the lower fuzzy values are very well separated; the spaces
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No. A1 A2 A3 A4 A5 A6 Initial class Assigned class
6 0.3314 0.4254 0.0885 0.0477 0.0458 0.0612 1 2
27 0.2910 0.1525 0.0950 0.1501 0.2633 0.0481 2 1
28 0.2639 0.1158 0.1222 0.1829 0.1452 0.1711 2 1
29 0.2696 0.1168 0.1311 0.2684 0.0950 0.1192 2 1
32 0.5684 0.1740 0.0772 0.0638 0.0482 0.0685 2 1
38 0.2719 0.2245 0.1163 0.0848 0.1337 0.1688 2 1
39 0.4100 0.1795 0.0906 0.0675 0.2056 0.0468 2 1
40 0.3208 0.1699 0.1256 0.1576 0.1625 0.0636 2 1
47 0.1322 0.8162 0.0150 0.0124 0.0149 0.0093 3 2
50 0.2718 0.2563 0.2045 0.0785 0.1255 0.0634 3 1
51 0.3532 0.2432 0.2363 0.0661 0.0446 0.0567 3 1
81 0.4261 0.3173 0.0524 0.0638 0.1088 0.0315 5 1

Table 7: Membership degrees of the items classified by FDA in a different class

Figure 7: Representation of new fuzzy membership degrees to classes A1 and A2, as
obtained with our fuzzy DA algorithm
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Figure 8: Representation of new fuzzy membership degrees to classes A3 and A4, as
obtained with our fuzzy DA algorithm

Figure 9: Representation of new fuzzy membership degrees to classes A5 and A6, as
obtained with our fuzzy DA algorithm
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between the separated classes and the rest of the data items are in many cases very large

indeed.

On the other side, we observe that each graphic discriminates between two classes,

and between these classes and the rest of the data set.

We notice, as well, the strong linear trend of each of the fuzzy classes depicted in

Figures 7-9. As such, the fuzzy aspect is in good correlation with the status of the

disease.

A particular remark is needed when observing Figure 7. Here, a few individuals with

disorders are clustered with individuals marked healthy. This issue is real: such disorders

are common to healthy people as well, and marking those individuals as having this

disorder issue instead of being healthy is indeed the particular judgment of the medical

doctor issuing the diagnostic.

A quality analysis similar to that performed for the first experiment may be done as

well in this case. The studied data show hybrid character of some data items, situation

found in most experimental data sets obtained from natural sciences.

Table 8 shows the cross-validation classification matrix for the classical DA method

as compared with the proposed fuzzy DA method. We remark that the results in the

fuzzy case are consistently better than the results using the traditional method.

Classic Correct [%] A1 (s) A2 (l) A3 (h) A4 (d) A5 (z) A6 (r)
A1 (s) 80 16 4 0 0 0 0
A2 (l) 50 10 10 0 0 0 0
A3 (h) 70 4 2 14 0 0 0
A4 (d) 95 0 1 0 19 0 0
A5 (z) 80 1 1 0 0 8 0
A6 (r) 80 1 1 0 0 0 8
Total 75 32 19 14 19 8 8

Fuzzy Correct [%] A1 (s) A2 (l) A3 (h) A4 (d) A5 (z) A6 (r)
A1 (s) 95 19 1 0 0 0 0
A2 (l) 55 6 11 0 1 2 0
A3 (h) 75 3 2 15 0 0 0
A4 (d) 95 1 0 0 19 0 0
A5 (z) 80 2 0 0 0 8 0
A6 (r) 90 1 0 0 0 0 9
Total 81 32 14 15 20 10 9

Table 8: The classification matrices produced using the classical and fuzzy DA method

Figure 10 shows the cross-validation fuzzy membership degrees of the data items,
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against the fuzzy membership degrees as normally obtained by the Fuzzy DA method.

Figure 10: Fuzzy membership of the cross-validated items against the fuzzy DA output

The experiments have been run using our own software, called SADIC (System for

Automatic Data Investigation and Classification), developed in C++ using the wxWid-

gets library. The program implements classical and fuzzy clustering methods of all kinds,

classical and fuzzy linear and nonlinear regression, classical principal components analysis

and a few fuzzy methods, classical and fuzzy factorial analysis and discriminant analysis,

as well as other data analysis methods.

6 Concluding Remarks

The performances of a new fuzzy discriminant analysis method based on fuzzy regression

with point prototypes have been evaluated on two relevant data sets (the classical Fisher’s

iris data set and a clinical data set concerning different diseases. The classification and

patterns obtained by membership degrees plot were in a very good agreement with the

structure and origin of data and illustrated the higher discrimination power of the new

fuzzy discrimination approach.

We remark that both experiments show more or less similar numerical results, as

comparing the performance of the fuzzy discriminant analysis method to the classical

discriminant analysis method. This is actually expected, since it confirms that, on regular

data sets, the fuzzy discriminant analysis method works closely to the classical one. The

major issues to be noted here are the quality of results available for the fuzzy analysis.

Having fuzzy membership degrees as output consistent to the classical analysis is a major

information for the scientific analyst, since no two distinct items are the same, behave
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exactly the same, or have identical properties and characteristics. Thus, the different

fuzzy membership degrees of data items to the classes provided by human experts, allow

the human experts to better distinguish between the different, otherwise similar, data.

The cross-validation results confirm as well the quality of the fuzzy discriminant analysis

method introduced in this paper.
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