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Abstract

The restricted partial-cycle-index (RPCI) method has been developed by starting from

the partial-cycle-index (PCI) method of the unit-subduced-cycle-index (USCI) approach

(S. Fujita, “Symmetry and Combinatorial Enumeration in Chemistry”, Springer-Verlag

(1991)), where enumerated derivatives are generated by means of vertex substitution (mon-

odentate ligands) and/or edge substitution (bidentate ligands) under a restriction condition

that occupation of a common vertex (or occupation of adjacent edges) is avoided. Thus,

restricted partial cycle indices with chirality fittingness (PCI-CFs) are derived from unit

subduced cycle indices with chirality fittingness (USCI-CFs) via restricted subduced cycle

indices with chirality fittingness (SCI-CFs). The resulting restricted PCI-CFs enable us to

enumerate derivatives under the restricted condition in a symmetry-itemized fashion. The

restricted PCI-CFs are further transformed into restricted cycle indices with chirality fit-

tingness (restricted CI-CFs) for gross enumerations of total, achiral, chiral derivatives. A

maple program for the RPCI method is reported as an appendix.
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1 Introduction
The partial-cycle-index (PCI) method [1, 2] is one of the four methods supported by the unit-

subduced-cycle-index (USCI) approach [3, 4], where partial cycle indices without and with

chirality fittingness (PCIs and PCI-CFs) are derived from unit subduced cycle indices with-

out and with chirality fittingness (USCIs and USCI-CFs) via subduced cycle indices without

and with chirality fittingness (SCIs and SCI-CFs) and used to provide generating functions for

symmetry-itemized enumerations.

In Part II of this series, we have extended the fixed-point matrix (FPM) method [57], which

is another method of the USCI approach, so as to be capable of treating restricted cases in which

occupation of a common vertex (by a monodentate ligand and a bidentate ligand) or occupation

of adjacent edges (by two bidentate ligands) is avoided. In the model adopted by the restricted

FPM method (Part II), such restricted cases are considered to stem from interactions between

two or more orbits of vertices and/or edges. Then, superposed occupation at a vertex due to such

interactions is rejected by converting SCI-CFs (or SCIs) into restricted SCI-CFs (or restricted

SCIs), which are used to evaluate a fixed-point matrix (FPM), as formulated in Part II. As a

continuation of Part II, a parallel extension of the PCI method is desirable for the purpose of

expanding facilities of the USCI approach.

In the present paper, the restricted PCI (RPCI) method will be proposed on the basis of the

restricted SCI-CFs described in Part II, where symmetry-itemized enumerations under restricted

conditions can be conducted. Moreover, restricted cycle indices without and with chirality

fittingness (CIs and CI-CFs) are derived from the restricted PCIs and PCI-CFs, so as to conduct

gross enumerations of total, achiral, and chiral derivatives. Although we have discussed another

version of the RPCI method for treating restricted cases of a slightly different type in Part I of

this series, the consideration of restriction conditions has been based on factorizations of SCI-

CFs (or SCIs), which are not fully systematic from a practical point of view. Hence, the present

RPCI method aims at a more systematic consideration of restriction conditions as a continuation

of the methodology described in Part II.

2 Symmetry-Itemized Restricted Enumerations

2.1 Restricted Partial Cycle Indices With Chirality Fittingness
The subduced cycle index with chirality fittingness (SCI-CF) defined by Def. 19.3 of [3] has

been transformed into the corresponding restricted SCI-CF for the subgroup G j (⊂G) in terms

of Lemma 1 of Part II of this series, i.e., SCI-CF(G j;$
(iα)
d jk

). The restricted SCI-CF has been

used to evaluate the marks (the numbers of fixed points, ρθ j) for restricted enumerations, as

shown in Lemma 2 of Part II. The marks have been collected to form a restricted fixed-point

matrix (FPM), which is in turn multiplied by the inverse mark table of G to give the numbers of

derivatives, as formulated in the FPM method (Part II of this series).

Remember that usual SCI-CFs provide the basis of the FPM method as well as the basis of

the PCI method, as formulated in our monograph [3]. This implies that restricted SCI-CFs are

capable of providing a restricted version of the PCI method, because they have already been

demonstrated as the basis of the restricted FPM method in Part II of this series. As a result, just

as the usual SCI-CFs are transformed into partial cycle indices with chirality fittingness (PCI-

CFs) as shown in Def. 19.6 of [3], the restricted SCI-CFs can be transformed into restricted
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partial cycle indices with chirality fittingness (PCI-CF(Gi;$
(iα)
d jk

)):

Definition 1 (Restricted PCI-CFs) The restricted PCI-CFs are defined as follows:

PCI-CF(Gi;$
(iα)
d jk

) =
s

∑
j=1

m jiSCI-CF(G j;$
(iα)
d jk

) (1)

for i = 1,2, . . . ,s, where the restricted SCI-CF in the right-hand side has been given in Lemma

1 of Part II of this series.

Note that Gi is tentatively fixed in the right-hand side of Eq. 1 but covers all of the subgroups

selected from the non-redundant set of subgroups (SSGG) of the group G:

SSGG = {G1(= C1),G2, · · · ,Gi, . . . ,Gs(= G)}. (2)

The summation ∑s
j=1 in the right-hand side of Eq. 1 is concerned with G j, which also covers

all of the subgroups of the SSGG.

The usual PCI-CFs described in Theorem 19.6 of [3] are easily replaced by the restricted

PCI-CFs defined by Def. 1. Thus, the following derivation is traceable by starting from Theorem

1 of Part II:

∑
[θ ]

Bθ iWθ = ∑
[θ ]

s

∑
j=1

ρθ jm jiWθ =
s

∑
j=1

m ji ∑
[θ ]

ρθ jWθ

=
s

∑
j=1

m jiSCI-CF(G j;$
(iα)
d jk

) = PCI-CF(Gi;$
(iα)
d jk

), (3)

where Lemma 2 of Part II is used to evaluate marks implicitly, i.e., ∑[θ ]ρθ jWθ . The word

“implicitly” is used to show that the equations contained in Lemma 2 of Part II are not been

expanded during the derivation of Eq. 3 but afterward expanded at the step of the last equation.

This delayed expansion provides the same effect as the introduction of inventory functions into

the last equation of Eq. 3. As a result, we reach the following theorem.

Theorem 1 (Enumerations by Restricted PCI-CFs) Generating functions for obtaining the

numbers Bθ i of Gi-derivatives with weight Wθ under the restricted condition are calculated by

the following equations:

∑
[θ ]

Bθ iWθ = PCI-CF(Gi;$
(iα)
d jk

) (4)

for i = 1,2, . . . ,s, where the variables $
(iα)
d jk

($ = a,b,c) are substituted by

a(iα)
d jk

=
|X|
∑
�=1

wiα(X
(a)
�
)d jk (5)

b(iα)
d jk

=
|X|
∑
�=1

wiα(X�)
d jk (6)

c(iα)
d jk

=
|X|
∑
�=1

wiα(X
(a)
�
)d jk +2

|X|
∑
�=1

(
wiα(X

(c)
�
)wiα(X

(c)
� )
)d jk/2

, (7)
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where the notations succeed Part II and our monograph [3]. Hereafter, the enumeration based

on Theorem 1 is called the restricted PCI (RPCI) method.

To memorize Eq. 1 of Def. 1, let us define the vector of SCI-CFs (SCIV) and the vector of

PCI-CFs (PCIV) as follows:

SCIV =

(SCI-CF(G1;$
(iα)
d jk

),SCI-CF(G2;$
(iα)
d jk

), . . . ,SCI-CF(G j;$
(iα)
d jk

), . . . ,SCI-CF(Gs;$
(iα)
d jk

)) (8)

PCIV =

(PCI-CF(G1;$
(iα)
d jk

),PCI-CF(G2;$
(iα)
d jk

), . . . ,PCI-CF(Gi;$
(iα)
d jk

), . . . ,PCI-CF(Gs;$
(iα)
d jk

)). (9)

Then, Eq. 1 is transformed into the following vector-matrix representation:

PCIV = SCIV×M−1
G , (10)

where the symbol M−1
G denotes the inverse mark table of G.

2.2 Restricted Partial Cycle Indices (Without Chirality Fittingness)
Just as the usual PCI-CFs are transformed into PCIs (without chirality fittingness) [3], restricted

PCI-CFs defined by Def. 1 can be degenerated into restricted PCIs (without chirality fitting-

ness) by putting $
(iα)
d jk

= s(iα)
d jk

, i.e., a(iα)
d jk

= c(iα)
d jk

= c(iα)
d jk

= s(iα)
d jk

. This degeneration means that

the chiralilty/achirality of a (pro)ligand is neglected so that three-dimensional structures are de-

generated into graphs in one extreme. To do this degeneration, the restricted SCI-CFs given in

Lemma 1 of Part II of this series, i.e., SCI-CF(G j;$
(iα)
d jk

), is degenerated into the restricted SCIs,

i.e., SCI(G j;s(iα)
d jk

), which is used to the following definition in a parallel way to Def. 1:

Definition 2 (Restricted PCIs (without chirality fittingness)) The restricted PCIs are defined

as follows:

PCI(Gi;s(iα)
d jk

) =
s

∑
j=1

m jiSCI(G j;s(iα)
d jk

) (11)

for i = 1,2, . . . ,s, where the restricted SCI in the right-hand side, i.e., SCI(G j;s(iα)
d jk

), is derived

from the restricted SCI-CF given in Lemma 1 of Part II of this series by putting $
(iα)
d jk

= s(iα)
d jk

.

Obviously, PCI(Gi;s(iα)
d jk

) = PCI-CF(Gi;$
(iα)
d jk

), when we place $
(iα)
d jk

= s(iα)
d jk

. It follows that

Theorem 1 is degenerated into the following theorem by placing $
(iα)
d jk

= s(iα)
d jk

, i.e., a(iα)
d jk

=

c(iα)
d jk

= c(iα)
d jk

= s(iα)
d jk

.

Theorem 2 (Enumerations by Restricted PCIs) Generating functions for obtaining the num-

bers Bθ i of Gi-derivatives with weight Wθ under the restricted condition and without considering

the chirality/achirality of substituents are calculated by the following equations:

∑
[θ ]

Bθ iWθ = PCI(Gi;s(iα)
d jk

) (12)
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for i = 1,2, . . . ,s, where the variable s(iα)
d jk

is substituted by

s(iα)
d jk

=
|X|
∑
�=1

wiα(X
(a)
�
)d jk . (13)

The words “without considering the chirality/achirality of substituents” indicate that Theorem

2 is effective in graph enumerations. The enumeration based on Theorem 2 is also called the
restricted PCI (RPCI) method.

2.3 Illustrative Example
2.3.1 Restricted PCI-CFs for the Trigonal Prismatic Skeleton

The same problem of Part II on counting derivatives of a trigonal prismatic skeleton (1) under

the restricted condition is alternatively solved by using restricted PCI-CFs formulated above:

Consider the vertices and the edges of a trigonal prismatic skeleton (1) as substi-

tution sites. Monodentate ligands (X, p, and p), where X is an achiral ligand and

p/p represents an enantiomeric pair of chiral monodentate ligands, are placed on the

vertices and bidentate ligands (Z’s) are placed on the edges under the restricted con-

dition that no occupation of common vertices (or no occupation of adjacent edges)

occurs. Evaluate the numbers of such derivatives.

1

2

3

4

5

6

1

Figure 1: Trigonal prismatic skeleton

The point group D3h of the trigonal prismatic skeleton (1) is characterized by the following

non-redundant set of subgroups:

SSGD3h = {C1,C2,Cs,C′s,C3,C2v,C3v,C3h,D3,D3h}. (14)

The restricted SCI-CFs necessary to the present RPCI method (cf. Def. 1) are cited from the

Table 1 of Part II of this series as follows:

SCI-CF(C1;$d, $̃d, $̂d) = b6
1 +6b2

1b̃1b̂1 +3b2
1b̂2

1 +9b2
1b̃2

1 +3b4
1b̂1

+6b4
1b̃1 +3b̃2

1b̂1 + b̂3 (15)

SCI-CF(C2;$d, $̃d, $̂d) = b3
2 +b2

2b̂1 +3b2b̃2 +b2b̂2 + b̃2b̂1 + b̂1b̂2 (16)

SCI-CF(Cs;$d, $̃d, $̂d) = a2
1c2

2 +2c2ã1â1 +2a2
1c2ã1 +a2

1ã2
1 + c2

2â1

+ ã2
1â1 +a2

1ĉ2 + ã1ĉ2 (17)

SCI-CF(C′s;$d, $̃d, $̂d) = c3
2 + â3

1 +3c̃2â1 +3c2c̃2 +3c2
2â1 +3c2â2

1 (18)
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SCI-CF(C3;$d, $̃d, $̂d) = b2
3 + b̂3 (19)

SCI-CF(C2v;$d, $̃d, $̂d) = a2c4 +a2ã2 +a2â2 + â1â2 + ã2â1 + c4â1 (20)

SCI-CF(C3v;$d, $̃d, $̂d) = a2
3 + â3 (21)

SCI-CF(C3h;$d, $̃d, $̂d) = c6 + â3 (22)

SCI-CF(D3;$d, $̃d, $̂d) = b6 + b̂3 (23)

SCI-CF(D3h;$d, $̃d, $̂d) = a6 + â3 (24)

Note that the symbol $
(iα)
d jk

($ = a,b,c) in the right-hand side of Eq. 1 is replaced by $d ($ =

a,b,c) for suborbits generated from the orbit of vertices governed by D3h(/Cs), by $̃d ($̃ =
ã, b̃, c̃) for suborbits generated from the orbit of edges governed by D3h(/Cs), and by $̂d ($̂ =
â, b̂, ĉ) for suborbits generated from the orbit of edges governed by D3h(/C2v).

According to Eq. 1 of Def. 1, the restricted SCI-CFs (Eqs. 15–24) and the inverse mark table

of D3h [3, 8] give the following set of restricted PCI-CFs:

PCI-CF(C1;$d, $̃d, $̂d) =
1

12
SCI-CF(C1;$d, $̃d, $̂d)− 1

4
SCI-CF(C2;$d, $̃d, $̂d)

− 1

4
SCI-CF(Cs;$d, $̃d, $̂d)− 1

12
SCI-CF(C′s;$d, $̃d, $̂d)

− 1

12
SCI-CF(C3;$d, $̃d, $̂d)+

1

2
SCI-CF(C2v;$d, $̃d, $̂d)

+
1

4
SCI-CF(C3v;$d, $̃d, $̂d)+

1

12
SCI-CF(C3h;$d, $̃d, $̂d)

+
1

4
SCI-CF(D3;$d, $̃d, $̂d)− 1

2
SCI-CF(D3h;$d, $̃d, $̂d)

=
1

6
b̂3− 1

6
â3 +

1

12
c6 +

1

4
b6 +

1

4
b2

1b̂2
1 +

3

4
b2

1b̃2
1 +

1

4
b4

1b̂1

+
1

2
b4

1b̃1 +
1

4
b̃2

1b̂1− 1

4
b2

2b̂1− 1

4
b̃2b̂1− 1

4
b2b̂2− 1

4
b̂1b̂2

− 3

4
b2b̃2− 1

4
a2

1ã2
1−

1

4
a2

1c2
2−

1

2
c2

2â1− 1

4
ã2

1â1− 1

4
a2

1ĉ2

− 1

4
â1ĉ2− 1

4
c̃2â1− 1

4
c2c̃2− 1

4
c2â2

1 +
1

2
a2â2 +

1

2
a2c4

+
1

2
â1â2 +

1

2
a2ã2 +

1

2
ã2â1 +

1

2
c4â1 +

1

12
b6

1

+
1

12
b̂3

1−
1

4
b3

2−
1

12
c3

2−
1

12
â3

1−
1

12
b2

3 +
1

4
a2

3 +
1

2
b2

1b̃1b̂1

− 1

2
c2ã1â1− 1

2
a2

1c2ã1− 1

2
a6 (25)

PCI-CF(C2;$d, $̃d, $̂d) =
1

2
SCI-CF(C2;$d, $̃d, $̂d)− 1

2
SCI-CF(C2v;$d, $̃d, $̂d)

− 1

2
SCI-CF(D3;$d, $̃d, $̂d)+

1

2
SCI-CF(D3h;$d, $̃d, $̂d)

=
1

2
b3

2 +
1

2
b2

2b̂1 +
3

2
b2b̃2 +

1

2
b̃2b̂1 +

1

2
b2b̂2 +

1

2
b̂1b̂2− 1

2
a2â2

− 1

2
a2c4− 1

2
a2ã2− 1

2
â1â2− 1

2
ã2â1− 1

2
c4â1− 1

2
b̂3− 1

2
b6

+
1

2
â3 +

1

2
a6 (26)
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PCI-CF(Cs;$d, $̃d, $̂d) =
1

2
SCI-CF(Cs;$d, $̃d, $̂d)− 1

2
SCI-CF(C2v;$d, $̃d, $̂d)

− 1

2
SCI-CF(C3v;$d, $̃d, $̂d)+

1

2
SCI-CF(D3h;$d, $̃d, $̂d)

= c2ã1â1 +a12c2ã1 +
1

2
a2

1c2
2 +

1

2
a2

1ã2
1 +

1

2
c2

2â1 +
1

2
ã2

1â1

+
1

2
a2

1ĉ2 +
1

2
â1ĉ2− 1

2
a2â2− 1

2
a2c4− 1

2
a2ã2− 1

2
â1â2

− 1

2
ã2â1− 1

2
c4â1− 1

2
a2

3 +
1

2
a6 (27)

PCI-CF(C′s;$d, $̃d, $̂d) =
1

6
SCI-CF(C′s;$d, $̃d, $̂d)− 1

2
SCI-CF(C2v;$d, $̃d, $̂d)

− 1

6
SCI-CF(C3h;$d, $̃d, $̂d)+

1

2
SCI-CF(D3h;$d, $̃d, $̂d)

=
1

6
c3

2 +
1

6
â3

1 +
1

2
c̃2â1 +

1

2
c2c̃2 +

1

2
c2

2â1 +
1

2
c2â2

1

− 1

2
a2â2− 1

2
a2c4− 1

2
a2ã2− 1

2
â1â2− 1

2
ã2â1− 1

2
c4â1

+
1

3
â3− 1

6
c6 +

1

2
a6 (28)

PCI-CF(C3;$d, $̃d, $̂d) =
1

4
SCI-CF(C3;$d, $̃d, $̂d)− 1

4
SCI-CF(C3v;$d, $̃d, $̂d)

− 1

4
SCI-CF(C3h;$d, $̃d, $̂d)− 1

4
SCI-CF(D3;$d, $̃d, $̂d)

+
1

2
SCI-CF(D3h;$d, $̃d, $̂d)

=
1

4
b2

3−
1

4
a2

3−
1

4
c6− 1

4
b6 +

1

2
a6 (29)

PCI-CF(C2v;$d, $̃d, $̂d) = SCI-CF(C2v;$d, $̃d, $̂d)−SCI-CF(C2v;$d, $̃d, $̂d)

= a2â2 +a2c4 +a2ã2 + â1â2 + ã2â1 + c4â1− â3−a6 (30)

PCI-CF(C3v;$d, $̃d, $̂d) =
1

2
SCI-CF(C3v;$d, $̃d, $̂d)− 1

2
SCI-CF(D3h;$d, $̃d, $̂d)

=
1

2
a2

3−
1

2
a6 (31)

PCI-CF(C3h;$d, $̃d, $̂d) =
1

2
SCI-CF(C3h;$d, $̃d, $̂d)− 1

2
SCI-CF(D3h;$d, $̃d, $̂d)

=
1

2
c6− 1

2
a6 (32)

PCI-CF(D3;$d, $̃d, $̂d) =
1

2
SCI-CF(D3;$d, $̃d, $̂d)− 1

2
PCI-CF(D3h;$d, $̃d, $̂d)

=
1

2
b̂3 +

1

2
b6− 1

2
â3− 1

2
a6 (33)

PCI-CF(D3h;$d, $̃d, $̂d) = SCI-CF(D3h;$d, $̃d, $̂d)

= â3 +a6 (34)
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The inventory functions for vertex substitution is obtained by applying Eqs. 5–7 of Theorem

1 to the present case. Thereby, the following inventory functions are obtained:

ad = 1+Xd (35)

bd = 1+Xd +pd +pd (36)

cd = 1+Xd +2pd/2pd/2 (37)

On the other hand, the inventory function for edge substitution is obtained by applying Eqs. 5–7

of Theorem 1 to the present case.

ãd = b̃d = c̃d = Zd (38)

âd = b̂d = ĉd = Zd (39)

The inventory functions for vertex substitution (Eqs. 35–37) as well as the inventory func-

tions for edge substitution (Eqs. 38 and 39) are introduced into the restricted PCI-CFs (Eqs.

25–34). The resulting equations are expanded to give the following generating functions of

respective subsymmetries (cf. SSGD3h of Eq. 14) for counting derivatives under the restricted

condition:

f (C1) = X3 +
1

2
(p+p)+

1

2
(p2 +p2)+

3

2
(p3 +p3)+pp+5p2p2 +p3p3 +

5

2
(Xp+Xp)

+5(X2p+X2p)+5(Xp2 +Xp2)+5(p2p+pp2)+8Xpp+12X2pp

+15(Xp2p+Xpp2)+
1

2
(p4 +p4)+5(Xp3 +Xp3)+5(X3p+X3p)

+6(X2p2 +X2p2)+5(pp3 +p3p)+8X3pp+X4pp+5X2p2p2 +13Xp2p2

+15(X2p2p+X2pp2)+10(Xpp3 +Xp3p)+
5

2
(Xp4 +Xp4)+5(X2p3 +X2p3)

+
5

2
(X4p+X4p)+5(X3p2 +X3p2)+5(p3p2 +p2p3)+

1

2
(p5 +p5)

+
5

2
(pp4 +p4p)+

1

2
(X2p4 +X2p4)+

3

2
(X3p3 +X3p3)+

1

2
(X5p+X5p)

+
1

2
(X4p2 +X4p2)+

1

2
(Xp5 +Xp5)+5(X3p2p+X3pp2)+5(X2pp3 +X2p3p)

+5(Xp3p2 +Xp2p3)+
5

2
(Xpp4 +Xp4p)+

1

2
(p4p2 +p2p4)+

1

2
(pp5 +p5p)

+{2X+2X2 +2X3 +3(p+p)+4(p2 +p2)+3(p3 +p3)+6pp+3p2p2

+9(Xp+Xp)+9(X2p+X2p)+9X(p2 +Xp2)+9(p2p+pp2)+16Xpp

+6X2pp+9(Xp2p+Xpp2)+
1

2
(p4 +p4)+3(Xp3 +Xp3)+3(X3p+X3p)

+4(X2p2 +X2p2)+3(pp3 +p3p)}Z
+{2X+3(Xp+Xp)+

1

2
(p2 +p2)+pp+3(p+p)}Z2 (40)

f (C2) = X2 +X4 +3(X2p2 +X2p2)+
3

2
(p2p4 +p4p2)+

3

2
(p2 +p2)

+
3

2
(X4p2 +X4p2)+

3

2
(X2p4 +X2p4)+

3

2
(p4 +p4)+2p2p2 +2X2p2p2

+{X2 +(X2p2 +X2p2)+(p2 +p2)+
1

2
(p4 +p4)}Z
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+{1+X2 +2(p2 +p2)}Z2 (41)

f (Cs) = X+X2 +X3 +X4 +4Xp2p2 +X2p2p2 +4X3pp+4Xpp

+4X2pp+2pp+X5 +2X4pp+p2p2

+{1+2X+3X2 +2X3 +X4 +4Xpp+4X2pp+4pp+p2p2}Z
+{1+2X+X2 +2pp}Z2 (42)

f (C′s) = p2p2 +X2p2p2 +2X2pp+pp+X4pp+p3p3

+(X2 +p2p2 +2pp+2X2pp)Z+2ppZ2 (43)

f (C3) =
1

2
(p3 +p3)+

1

2
(X3p3 +X3p3) (44)

f (C2v) = X2 +X4 +2X2p2p2 +2p2p2 +{1+X4 +2p2p2}Z+(2+2X2)Z2 +Z3 (45)

f (C3v) = X3 (46)

f (C3h) = p3p3 (47)

f (D3) =
1

2
(p6 +p6) (48)

f (D3h) = 1+X6 +Z3 (49)

The processes of calculating generating functions by the RPCI method are programmed by

using the Maple programming language [9]. The source list of a sample program for obtaining

Eqs. 40–49 (named “prismPCI2-2-1BR.mpl”) is attached as an Appendix.

The coefficient of the term XkplpmZn appearing in the generating function for each subgroup

Gi of D3h (Eqs. 40–49) represents the number of Gi-derivatives with the formula XkplpmZn.

Such terms as containing p and p (chiral ligands) should be commented to explain the features

of the present enumeration, where each enantiomeric pair of chiral ligands is counted once.

The coefficient 2 of the term p2p2 in Eq. 41 shows the presence of two enantiomeric pairs

of C2-derivatives (2/2 and 3/3), as shown in Fig. 2, where p is represented by a black solid

circle and p is represented by a gray solid circle. Note that the two-fold axis of the subgroup C2

runs through the midpoint of the edge {1,4} and the center of the face {2,3,5,6}. Because the

term p2p2 is converted into itself (p2p2) by a mirror-image operation, the term 2p2p2 is formally

interpreted as 2× 1
2(p

2p2 +p2p2) = 2p2p2. Thus, an enantiomeric pair as a unit corresponds to
1
2(p

2p2 +p2p2) = p2p2.

On the other hand, the term 3
2(p

2 +p2) in Eq. 41 should be interpreted to be 3× 1
2(p

2 +p2),

so that there are three enantiomeric pairs of C2-derivatives (4/4, 5/5, and 6/6), as shown in

Fig. 2. Thus, an enantiomeric pair as a unit corresponds to 1
2(p

2 + p2) in terms of the present

formulation, because the term p2 is converted into p2 by a mirror-image operation vice versa.

On a similar line, the term (p2 +p2)Z in Eq. 41 should be interpreted to be 2× 1
2(p

2 +p2)Z, so

that there are two enantiomeric pairs of C2-derivatives (7/7 and 8/8) as shown in Fig. 2.

When the term p2p2 or p2p2Z corresponds to achiral derivatives, its coefficient represents

the number of such achiral derivatives. For example, the term p2p2 or p2p2Z in Eq. 42 shows

the presence of one achiral derivative (9 or 10), as shown in Fig. 3. Note that the mirror plane

of the subgroup Cs contains the edge {1,4} and bisects the edges {2,3} and {5,6}. Similarly,

the term p2p2 or p2p2Z in Eq. 43 shows the presence of one achiral derivative (11 or 12), as

shown in Fig. 3. Note that the mirror plane of the subgroup C′s bisects the edges {1,4}, {2,5},
and {3,6}.

In several cases, there appear phenomena akin to pseudoasymmetric cases. Thus, the term

2p2p2 in Eq. 45 shows the presence of two achiral C2v-derivatives (13 and 14), which are dia-
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Figure 2: C2-Derivatives with chiral ligands, where a chiral ligand p is represented by a black

solid circle and its enantiomeric ligand p is represented by a gray solid circle. A bidentate ligand

(Z) is represented by a boldfaced straight line. Two structures linked by an underbrace indicate

an enantiomeric pair, which is counted once in the present methodology of enumerations.
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Figure 3: Cs-, C′s-, and C2v-Derivatives with chiral ligands, where a chiral ligand p is repre-

sented by a black solid circle and its enantiomeric ligand p is represented by a gray solid circle.

A bidentate ligand (Z) is represented by a boldfaced straight line.

stereomeric to each other so as to be regarded as an extended pseudoasymmetric case. Note

that the two-fold axis of the subgroup C2v runs through the midpoint of the edge {1,4} and the

center of the face {2,3,5,6} and that one mirror plane of the subgroup C2v contains the edge

{1,4} and bisects the edges {2,3} and {5,6} and the other mirror plane is a horizontal one

bisecting the thee edges {1,4}, {2,5}, and {3,6}. Similarly, the term 2p2p2Z in Eq. 45 shows

the presence of two achiral C2v-derivatives (15 and 16), which are also diastereomeric to each

other so as to be regarded as an extended pseudoasymmetric case.

As a matter of course, the results reported in Part II of this series (by the fixed-point matrix

(FPM) method) are contained in Eqs. 40–49 as the coefficients of the terms 1, Z, Z2, Z3, pp,

Xpp, ppZ, and XppZ. For example, the coefficients of the term Z3 are 1 for C2v (Eq. 45), 1 for

D3h (Eq. 49), and equal to zero for the other subgroups. This is identical with the result (the

[θ ]1-row) of the isomer-counting matrix (ICM) shown in Eq. 42 of Part II.
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3 Gross Enumerations under the Restricted Condition

3.1 Total Numbers Under the Restricted Condition
According to Eq. 43 of Part II, the total number Bθ can be calculated by summing up Bθ i over

all of the subgroups Gi (i = 1,2, . . . ,s) contained in the SSGG (Eq. 2):

Bθ =
s

∑
i=1

Bθ i =
s

∑
i=1

s

∑
j=1

ρθ jm ji =
s

∑
j=1

ρθ j

(
s

∑
i=1

m ji

)
. (50)

On a similar line to Eq. 3, Eq. 50 can be converted into an expression for giving generating

functions concerned with the weight (formula) Wθ :

∑
[θ ]

BθWθ = ∑
[θ ]

s

∑
j=1

ρθ j

(
s

∑
i=1

m ji

)
Wθ =

s

∑
j=1

(
s

∑
i=1

m ji

)
∑
[θ ]

ρθ jWθ

=
s

∑
j=1

(
s

∑
i=1

m ji

)
SCI-CF(G j;$

(iα)
d jk

)
def.≡ CI-CF(G;$

(iα)
d jk

) (51)

The last part of Eq. 51 shows a definition of the restricted cycle index with chirality fitting-

ness (CI-CF), which is proved easily to be equal to the sum of the restricted PCI-CFs shown

in Def. 1, because the sum concerning i and the sum concerning j are interchangeable in their

order of summing up. Then, we have the following definition:

Definition 3 (Restricted CI-CF for Counting Total Derivatives) The restricted CI-CF is de-

fined as follows:

CI-CF(G;$
(iα)
d jk

) =
s

∑
i=1

PCI-CF(Gi;$
(iα)
d jk

) =
s

∑
j=1

(
s

∑
i=1

m ji

)
SCI-CF(G j;$

(iα)
d jk

), (52)

where the restricted SCI-CF in the right-hand side has been given in Lemma 1 of Part II of this

series.

The delayed expansion described in Eq. 3 to give Theorem 1 can be also applied to Eq. 51.

Thereby, we obtain a theorem for enumerations by the restricted CI-CF:

Theorem 3 (Gross Enumeration of Total Numbers by the Restricted CI-CF) Generating

functions for obtaining the total numbers Bθ of derivatives with weight Wθ under the restricted

condition are calculated by the following equations:

∑
[θ ]

BθWθ = CI-CF(G;$
(iα)
d jk

), (53)

where the variables $
(iα)
d jk

($ = a,b,c) are substituted by Eqs. 5–7.

It should be noted that the sum ∑s
i=1 m ji for G j vanishes to zero when G j is a non-cyclic sub-

group [10, 11]. This means that the restricted CI-CF (Def. 3) is concerned with cyclic subgroups

only. To exemplify the disappearance of non-cyclic subgroups, we continue the enumeration of

trigonal prismatic derivatives as follows.

-322-



The values of ∑s
i=1 m ji for the group D3h have already been reported in the “total”-column

of the matrix for gross enumeration (Eq. 49 of Part II of this series). According to Def. 3, the

restricted SCI-CFs for cyclic subgroups are selected from the restricted SCI-CFs (Eqs. 15–24)

so as to give the following restricted CI-CF:

CI-CF(D3h;$d, $̃d, $̂d) =
1

12
SCI-CF(C1;$d, $̃d, $̂d)+

1

4
SCI-CF(C2;$d, $̃d, $̂d)

+
1

4
SCI-CF(Cs;$d, $̃d, $̂d)+

1

12
SCI-CF(C′s;$d, $̃d, $̂d)

+
1

6
SCI-CF(C3;$d, $̃d, $̂d)+

1

6
SCI-CF(C3h;$d, $̃d, $̂d)

=
1

12
b6

1 +
1

4
b3

2 +
1

6
b2

3 +
3

4
b2b̃2 +

3

4
b2

1b̃2
1 +

1

2
b4

1b̃1

+
1

4
b2

1b̂2
1 +

1

4
b4

1b̂1 +
1

4
b2b̂2 +

1

4
b2

2b̂1

+
1

4
b̃2

1b̂1 +
1

4
b̃2b̂1 +

1

2
b2

1b̃1b̂1 +
1

4
b̂1b̂2 +

1

6
b̂3 +

1

12
b̂3

1

+
1

4
a2

1c2
2 +

1

12
c3

2 +
1

6
c6 +

1

4
a2

1ã2
1 +

1

2
a2

1c2ã1 +
1

4
c2c̃2

+
1

4
a2

1ĉ2 +
1

4
c2â2

1 +
1

2
c2

2â1 +
1

4
ã2

1â1 +
1

4
c̃2â1 +

1

2
c2ã1â1

+
1

4
â1ĉ2 +

1

6
â3 +

1

12
â3

1. (54)

As a matter of course, Eq. 54 is alternatively obtained by summing up Eqs. 25–34, as for-

mulated generally in Def. 3. Note that Eq. 54 contains only monomials due to cyclic subgroups

because monomials for non-cyclic subgroups vanish to zero during this summation. These fea-

tures of Def. 3 and Theorem 3 succeed to the general features of unrestricted enumerations

[2].

The inventory functions for vertex substitution (Eqs. 35–37) as well as the inventory func-

tions for edge substitution (Eqs. 38 and 39) are introduced to the restricted CI-CF (Eq. 54). The

resulting equation is expanded to give the following generating function for obtaining the total

numbers of derivatives under the restricted condition:

f (g) = 1+X+3X2 +3X3 +3X4 +X5 +X6 +4pp+11p2p2 +3p3p3

+
1

2
(p+p)+2(p2 +p2)+2(p3 +p3)+

1

2
(p6 +p6)+5(X3p2 +X3p2)

+18X2pp+12Xpp+
5

2
(Xp+Xp)+5(X2p+X2p)+5(Xp2 +Xp2)

+5(p2p+pp2)+15(Xp2p+Xpp2)+12X3pp+15(X2p2p+X2pp2)

+17Xp2p2 +10(Xpp3 +Xp3p)+5(Xp3 +Xp3)+5(X3p+X3p)

+2(p4 +p4)+
1

2
(p5 +p5)+

1

2
(Xp5 +Xp5)+

5

2
(pp4 +p4p)+5(p3p2 +p2p3)

+9(X2p2 +X2p2)+5(pp3 +p3p)+5(X2p3 +X2p3)+
5

2
(X4p+X4p)

+
5

2
(Xp4 +Xp4)+

1

2
(X5p+X5p)+2(p2p4 +p4p2)+

1

2
(p5p+pp5)

+2(X3p3 +X3p3)+2(X2p4 +X2p4)+
5

2
(Xp4p+Xpp4)+2(X4p2 +X4p2)
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+4X4pp+5(X3p2p+X3pp2)+11X2p2p2 +5(X2pp3 +X2p3p)

+5(Xp2p3 +Xp3p2)

+{2+4X+7X2 +4X3 +2X4 +12pp+7p2p2 +3(p+p)+5(p2 +p2)

+3(p3 +p3)+12X2pp+20Xpp+9(Xp+Xp)+9(X2p+X2p)+9(Xp2 +Xp2)

+9(p2p+pp2)+9(Xp2p+Xpp2)+3(Xp3 +Xp3)+3(X3p+X3p)

+(p4 +p4)+5(X2p2 +X2p2)+3pp3 +3p3p}Z
+{4+4X+4X2 +5pp+3(p+p)+3(Xp+Xp)+

5

2
(p2 +p2)}Z2 +2Z3. (55)

Obviously, Eq. 55 is also obtained by summing up Eqs. 40–49.

3.2 Enumeration of Achiral Derivatives Under the Restricted Condition
According to Eq. 45 of Part II of this series, the number B(a)

θ of achiral derivatives can be

calculated by summing up Bθ i over all of the achiral subgroups Gia selected from the SSGG
(Eq. 2), i.e.,

B(a)
θ = ∑

∀ia

Bθ ia = ∑
∀ia

s

∑
j=1

ρθ jm jia =
s

∑
j=1

ρθ j

(
∑
∀ia

m jia

)
, (56)

where the summation represented by ∑∀ia covers all the achiral subgroups.

On a similar line to Eq. 3, Eq. 56 can be converted into an expression for giving generating

functions concerned with the weight (formula) Wθ :

∑
[θ ]

B(a)
θ Wθ = ∑

[θ ]

s

∑
j=1

ρθ j

(
∑
∀ia

m jia

)
Wθ =

s

∑
j=1

(
∑
∀ia

m jia

)
∑
[θ ]

ρθ jWθ

=
s

∑
j=1

(
∑
∀ia

m jia

)
SCI-CF(G j;$

(iα)
d jk

)
def.≡ CI-CF

(a)
(G;$

(iα)
d jk

). (57)

The last part of Eq. 57 shows a definition of the restricted CI-CF for enumerating achi-

ral derivatives. The restricted CI-CF is proved easily to be equal to the sum of the restricted

PCI-CFs for achiral subgroups shown in Def. 1, because the sum concerning i and the sum

concerning j are interchangeable in their order of summing up. Then, we have the following

definition:

Definition 4 (Restricted CI-CF for Counting Achiral Derivative) The restricted CI-CF for

counting achiral derivatives is defined as follows:

CI-CF
(a)
(G;$

(iα)
d jk

) = ∑
∀ia

PCI-CF(Gi;$
(iα)
d jk

) =
s

∑
j=1

(
∑
∀ia

m jia

)
SCI-CF(G j;$

(iα)
d jk

), (58)

where the restricted SCI-CF in the right-hand side has been given in Lemma 1 of Part II of this

series.

The delayed expansion described in Eq. 3 to give Theorem 1 can be also applied to Eq. 57.

Thereby, we obtain a theorem for enumerating achiral derivatives by the restricted CI-CF:
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Theorem 4 (Enumeration of Achiral Derivatives by the Restricted CI-CF) Generating

functions for obtaining the numbers B(a)
θ of achiral derivatives with weight Wθ under the re-

stricted condition are calculated by the following equations:

∑
[θ ]

B(a)
θ Wθ = CI-CF

(a)
(G;$

(iα)
d jk

), (59)

where the variables $
(iα)
d jk

($ = a,b,c) are substituted by Eqs. 5–7.

The values of ∑∀ia m jia for the group D3h have already been reported in the “achiral”-column

of the matrix for gross enumeration (Eq. 49 of Part II of this series). According to Def. 4, the

restricted SCI-CFs for achiral cyclic subgroups are selected from the restricted SCI-CFs (Eqs.

15–24) so as to give the following restricted CI-CF:

CI-CF
(a)
(D3h;$d, $̃d, $̂d) =

1

2
SCI-CF(Cs;$d, $̃d, $̂d)+

1

6
SCI-CF(C′s;$d, $̃d, $̂d)

+
1

3
SCI-CF(C3h;$d, $̃d, $̂d)

=
1

2
a2

1c2
2 +

1

6
c3

2 +
1

3
c6 +

1

2
a2

1ã2
1 +a2

1c2ã1 +
1

2
c2c̃2

+
1

2
a2

1ĉ2 +
1

2
c2â2

1 + c2
2â1 +

1

2
ã2

1â1 +
1

2
c̃2â1 + c2ã1â1

+
1

2
â1ĉ2 +

1

3
â3 +

1

6
â3

1. (60)

It is to be noted that the monomials appearing in the right-hand side of Eq. 60 contain ad
and cd but no bd , where their coefficients are twice of the counterparts appearing in Eq. 54.

The inventory functions for vertex substitution (Eqs. 35–37) as well as the inventory func-

tions for edge substitution (Eqs. 38 and 39) are introduced to the restricted CI-CF (Eq. 60). The

resulting equations are expanded to give the following generating function for obtaining the

numbers of achiral derivatives under the restricted condition:

f (a) = 1+X+2X2 +2X3 +2X4 +X5 +X6 +3X4pp+4X2p2p2 +3pp

+2p3p3 +4X3pp+4Xp2p2 +4Xpp+6X2pp+4p2p2

+(2+2X+4X2 +2X3 +2X4 +6pp+4p2p2 +6X2pp+4Xpp)Z

+(3+2X+3X2 +4pp)Z2 +2Z3. (61)

Obviously, Eq. 61 is also obtained by summing up the results for achiral subgroups selected

from Eqs. 40–49.

The term 4p2p2 in Eq. 61 shows the presence of four achiral derivatives of the formula p2p2,

which have been already depicted in Fig. 3, i.e., 9 (Cs), 11 (C′s), 13 (C2v), and 14 (C2v). Sim-

ilarly, the term 4p2p2Z in Eq. 61 shows the presence of four achiral derivatives of the formula

p2p2Z, which have been already depicted in Fig. 3, i.e., 10 (Cs), 12 (C′s), 15 (C2v), and 16 (C2v).

3.3 Enumeration of Enantiomeric Pairs Under the Restricted Condition
According to Eq. 46 of Part II, the number B(e)

θ of enantiomeric pairs of chiral derivatives

can be calculated by summing up Bθ i over all of the achiral subgroups Gie selected from Gi
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(i = 1,2, . . . ,s):

B(e)
θ = ∑

∀ie

Bθ ie = ∑
∀ie

s

∑
j=1

ρθ jm jie =
s

∑
j=1

ρθ j

(
∑
∀ie

m jie

)
, (62)

where the summation represented by ∑∀ie covers all the chiral subgroups.

On a similar line to Eq. 3, Eq. 62 can be converted into an expression for giving generating

functions concerned with the weight (formula) Wθ :

∑
[θ ]

B(e)
θ Wθ = ∑

[θ ]

s

∑
j=1

ρθ j

(
∑
∀ie

m jie

)
Wθ =

s

∑
j=1

(
∑
∀ie

m jie

)
∑
[θ ]

ρθ jWθ

=
s

∑
j=1

(
∑
∀ie

m jie

)
SCI-CF(G j;$

(iα)
d jk

)
def.≡ CI-CF

(e)
(G;$

(iα)
d jk

) (63)

The last part of Eq. 63 shows a definition of the restricted CI-CF for counting enantiomeric

pairs of chiral derivatives. The restricted CI-CF is proved easily to be equal to the sum of the

restricted PCI-CFs for chiral subgroups shown in Def. 1, because the sum concerning i and

the sum concerning j are interchangeable in their order of summing up. Then, we have the

following definition:

Definition 5 (Restricted CI-CF for Counting Enantiomeric Pairs) The restricted CI-CF for

counting enantiomeric pairs of chiral derivatives is defined as follows:

CI-CF
(e)
(G;$

(iα)
d jk

) = ∑
∀ie

PCI-CF(Gi;$
(iα)
d jk

) =
s

∑
j=1

(
∑
∀ie

m jie

)
SCI-CF(G j;$

(iα)
d jk

), (64)

where the restricted SCI-CF in the right-hand side has been given in Lemma 1 of Part II of this

series.

The delayed expansion described in Eq. 3 to give Theorem 1 can be also applied to Eq. 63.

Thereby, we obtain a theorem for enumerating enantiomeric pairs of chiral derivatives by the

restricted CI-CF:

Theorem 5 (Counting Enantiomeric Pairs by the Restricted CI-CF) Generating functions

for obtaining the numbers B(e)
θ of enantiomeric pairs of chiral derivatives with weight Wθ under

the restricted condition are calculated by the following equations:

∑
[θ ]

B(e)
θ Wθ = CI-CF

(e)
(G;$

(iα)
d jk

) (65)

where the variables $
(iα)
d jk

($ = a,b,c) are substituted by Eqs. 5–7.

The values of ∑∀ie m jie for the group D3h have already been reported in the “chiral”-column

of the matrix for gross enumeration (Eq. 49 of Part II of this series). According to Def. 4, the

restricted SCI-CFs for cyclic subgroups are selected from the restricted SCI-CFs (Eqs. 15–24)

so as to give the following restricted CI-CF:

CI-CF
(e)
(D3h;$d, $̃d, $̂d) =

1

12
SCI-CF(C1;$d, $̃d, $̂d)+

1

4
SCI-CF(C2;$d, $̃d, $̂d)
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− 1

4
SCI-CF(Cs;$d, $̃d, $̂d)− 1

12
SCI-CF(C′s;$d, $̃d, $̂d)

+
1

6
SCI-CF(C3;$d, $̃d, $̂d)− 1

6
SCI-CF(C3h;$d, $̃d, $̂d)

=
1

12
b6

1 +
1

4
b3

2 +
1

6
b2

3 +
3

4
b2b̃2 +

3

4
b2

1b̃2
1 +

1

2
b4

1b̃1

+
1

4
b2

1b̂2
1 +

1

4
b4

1b̂1 +
1

4
b2b̂2 +

1

4
b2

2b̂1

+
1

4
b̃2

1b̂1 +
1

4
b̃2b̂1 +

1

2
b2

1b̃1b̂1 +
1

4
b̂1b̂2 +

1

6
b̂3 +

1

12
b̂3

1

− 1

4
a2

1c2
2−

1

12
c3

2−
1

6
c6− 1

4
a2

1ã2
1−

1

2
a2

1c2ã1− 1

4
c2c̃2

− 1

4
a2

1ĉ2− 1

4
c2â2

1−
1

2
c2

2â1− 1

4
ã2

1â1− 1

4
c̃2â1− 1

2
c2ã1â1

− 1

4
â1ĉ2− 1

6
â3− 1

12
â3

1 (66)

It is to be noted that the monomials contained in Eq. 66 are the same as those of Eq. 54

although plus signs are changed into minus for the monomials containing ad and cd . Obviously,

the sum of Eq. 60 and Eq. 66 provides Eq. 54.

The inventory functions for vertex substitution (Eqs. 35–37) as well as the inventory func-

tions for edge substitution (Eqs. 38 and 39) are introduced into the restricted CI-CF (Eq. 66).

The resulting equations are expanded to give the following generating function for obtaining

the numbers of enantiomeric pairs of chiral derivatives under the restricted condition:

f (e) = X2 +X3 +X4 +pp+7p2p2 +p3p3 +
1

2
(p+p)+2(p2 +p2)+2(p3 +p3)

+
1

2
(p6 +p6)+12X2pp+8Xpp+

5

2
(Xp+Xp)+5(X2p+X2p)+5(Xp2 +Xp2)

+5(p2p+pp2)+15(Xp2p+Xpp2)+8X3pp+15(X2p2p+X2pp2)+13Xp2p2

+10(Xpp3 +Xp3p)+5(Xp3 +Xp3)+5(X3p+X3p)+2(p4 +p4)+
1

2
(p5 +p5)

+
5

2
(pp4 +p4p)+5(p2p3 +p3p2)+9(X2p2 +X2p2)+5(pp3 +p3p)

+5(X2p3 +X2p3)+
5

2
(X4p+X4p)+

5

2
(Xp4 +Xp4)+5(X3p2 +X3p2)

+2(p2p4 +p4p2)+
1

2
(p5p+pp5)+

1

2
(Xp5 +Xp5)+2(X3p3 +X3p3)

+
1

2
(X5p+X5p)+2(X2p4 +X2p4)+2(X4p2 +X4p2)+X4pp

+5(X3p2p+X3pp2)+7X2p2p2 +5(X2pp3 +X2p3p)

+
5

2
(Xpp4 +Xp4p)+5(Xp2p3 +Xp3p2)

+{2X+3X2 +2X3 +6pp+3p2p2 +3(p+p)+5(p2 +p2)+3(p3 +p3)

+6X2pp+16Xpp+9(Xp+Xp)+9(X2p+X2p)+9(Xp2 +Xp2)

+9(p2p+pp2)+9(Xp2p+Xpp2)+3(Xp3 +Xp3)+3(X3p+X3p)

+(p4 +p4)+5(X2p2 +X2p2)+3(pp3 +p3p)}Z
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Figure 4: Enantiomeric pairs of chiral derivatives, each corresponding to 1
2(p

2+p2)Z2, where a

chiral ligand p is represented by a black solid circle and its enantiomeric ligand p is represented

by a gray solid circle.

+{1+2X+X2 +3(p+p)+3(Xp+Xp)+
5

2
(p2 +p2)+pp}Z2 (67)

Obviously, Eq. 67 is also obtained by summing up the results for chiral subgroups selected

from Eqs. 40–49.

To exemplify the validity of the results shown in Eq. 67, Fig. 4 shows five enantiomeric pairs

corresponding to the term 5
2(p

2 + p2)Z2, which is interpreted to be 5× 1
2(p

2 + p2)Z2. Among

them, the pair of 17/17 belongs to C1, which corresponds to the term 1
2(p

2+p2)Z2 appearing in

Eq. 40. On the other hand, the four pairs of 18/18, 19/19, 20/20, and 21/21 belong to C2, which

corresponds to the term 2(p2 +p2)Z2 (= 4× 1
2(p

2 +p2)Z2) appearing in Eq. 41.

3.4 Restricted CIs for Degenerate Cases
On a similar line to the derivation of Def. 2 from Def. 1, restricted CIs (without chirality fit-

tingness) are derived from the corresponding CI-CFs (Defs. 3, 4, and 5). The derivation simply

stems from the replacement of $
(iα)
d jk

by s(iα)
d jk

.
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Definition 6 (Restricted CIs for Gross Enumerations) Three definitions for gross enumera-

tions of degenerate cases (without considering the chirality/achirality of substituents) are item-

ized below, where the restricted SCI in each right-hand side, i.e., SCI(G j;s(iα)
d jk

), is derived from

the restricted SCI-CF given in Lemma 1 of Part II of this series by putting $
(iα)
d jk

= s(iα)
d jk

.

1. The restricted CI for counting total derivatives is defined as follows:

CI(G;s(iα)
d jk

) =
s

∑
i=1

PCI(Gi;s(iα)
d jk

) =
s

∑
j=1

(
s

∑
i=1

m ji

)
SCI(G j;s(iα)

d jk
). (68)

2. The restricted CI for counting achiral derivatives is defined as follows:

CI
(a)
(G;s(iα)

d jk
) = ∑

∀ia

PCI(Gi;s(iα)
d jk

) =
s

∑
j=1

(
∑
∀ia

m jia

)
SCI(G j;s(iα)

d jk
). (69)

3. The restricted CI for counting enantiomeric pairs of chiral derivatives is defined as fol-

lows:

CI
(e)
(G;s(iα)

d jk
) = ∑

∀ie

PCI(Gi;s(iα)
d jk

) =
s

∑
j=1

(
∑
∀ie

m jie

)
SCI(G j;s(iα)

d jk
). (70)

Theorems 3, 4, 5 are degenerated into the following set of theorems by using the definitions

collected in Def. 6.

Theorem 6 (Gross Enumeration by the Restricted CIs) Three theorems for gross enumera-

tions of degenerate cases (without considering the chirality/achirality of substituents) are item-

ized below, where the variables s(iα)
d jk

are substituted by Eq. 13.

1. Generating functions for obtaining the total numbers Bθ of derivatives with weight Wθ
under the restricted condition are calculated by the following equations:

∑
[θ ]

BθWθ = CI(G;s(iα)
d jk

). (71)

2. Generating functions for obtaining the numbers B(a)
θ of achiral derivatives with weight

Wθ under the restricted condition are calculated by the following equations:

∑
[θ ]

B(a)
θ Wθ = CI

(a)
(G;s(iα)

d jk
). (72)

3. Generating functions for obtaining the numbers B(e)
θ of enantiomeric pairs of chiral deri-

vatives with weight Wθ under the restricted condition are calculated by the following

equations:

∑
[θ ]

B(e)
θ Wθ = CI

(e)
(G;s(iα)

d jk
), (73)
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To exemplify enumerations of degenerate cases, let us consider achiral monodentate ligands

of a single kind (X) and bidentate ligand of a single kind (Z) as a continuation of the enumeration

of trigonal prismatic derivatives. According to Eq. 68 of Def. 6, Eq. 54 is degenerated into the

following CI by placing ad = bd = cd = sd , ãd = b̃d = c̃d = s̃d , and âd = b̂d = ĉd = ŝd .

CI(D3h;sd, s̃d, ŝd) =
1

12
SCI(C1;sd, s̃d, ŝd)+

1

4
SCI(C2;sd, s̃d, ŝd)

+
1

4
SCI(Cs;sd, s̃d, ŝd)+

1

12
SCI(C′s;sd, s̃d, ŝd)

+
1

6
SCI(C3;sd, s̃d, ŝd)+

1

6
SCI(C3h;sd, s̃d, ŝd)

=
1

12
s6

1 +
1

3
s3

2 +
1

6
s2

3 +
1

4
s2

1s2
2 +

1

6
s6 + s2s̃2 + s2

1s̃2
1 +

1

2
s4

1s̃1

+
1

4
s2

1ŝ2
1 +

1

4
s4

1ŝ1 +
1

4
s2ŝ2 +

3

4
s2

2ŝ1 +
1

4
s2

1ŝ2 +
1

4
s2ŝ2

1

+
1

2
s̃2

1ŝ1 +
1

2
s̃2ŝ1 +

1

2
s2

1s̃1ŝ1 +
1

2
ŝ1ŝ2 +

1

3
ŝ3 +

1

6
ŝ3

1

+
1

2
s2

1s2s̃1 +
1

2
s2s̃1ŝ1. (74)

The inventory functions of this degenerate case is obtained as follows:

sd = 1+Xd (75)

s̃d = ŝd = Z. (76)

These are introduced into Eq. 74. The resulting equation is expanded to give the following

generating function:

f (g)
′

= 1+X+3X2 +3X3 +3X4 +X5 +X6

+(2+4X+7X2 +4X3 +2X4)Z+(4+4X+4X2)Z2 +2Z3. (77)

As a matter of course, Eq. 77 is contained in Eq. 55, where all of the terms containing p

and/or p are deleted to give Eq. 77. The same result is alternatively obtained by introducing

degenerate inventory functions, i.e., ad = bd = cd = 1+Xd , ãd = b̃d = c̃d = Zd , and âd = b̂d =
ĉd = Zd , into the restricted CI-CF (Eq. 54).

4 Conclusion
The restricted partial-cycle-index (PCI) method is proposed to enumerate derivatives by means

of vertex substitution (monodentate ligands) and/or edge substitution (bidentate ligands) under

a restriction condition that occupation of a common vertex (or occupation of adjacent edges)

is avoided. Restricted subduced cycle indices without and with chirality fittingness (SCIs and

SCI-CFs) are derived from unit subduced cycle indices without and with chirality fittingness

(USCIs and USCI-CFs). The restricted SCI-CFs (and also the restricted SCIs as degenerate

cases) are transformed into restricted PCI-CFs, which enable us to enumerate derivatives under

the restricted condition in a symmetry-itemized fashion. The restricted PCI-CFs are further

transformed into restricted cycle indices with chirality fittingness (restricted CI-CFs) for gross

enumerations of total, achiral, chiral derivatives.
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Appendix

Maple Program for Calculation by the Restricted PCI Method
The following program is based on the restricted SCI-CFs shown in Eqs. 15–24, where the

symbol a1, b1, c2, etc. are replaced by a1, b1, c2, etc.; the symbol ã1, b̃1, c̃2, etc. are replaced

by A1, B1, C2, etc.; and the symbol â1, b̂1, ĉ2, etc. are replaced by AA1, BB1, CC2, and

so on. The restricted PCI-CFs (Eqs. 25–34) are calculated by using the restricted SCI-CFs.

Then, the inventory functions for vertex substitution (Eqs. 35–37) and the inventory functions

for edge substitution (Eqs. 38 and 39) are introduced into the resulting restricted PCI-CFs to

give generating functions.

#prismPCI2-2-1BR.mpl for Trigonal Prisms
restart;
#read "c:/fujita0/calc3/prismPCI2-2-1BR.mpl";

#Restricted SCI-CFs
MC1:= 6*b1ˆ2*B1*BB1 +3*b1ˆ2*BB1ˆ2 + 9*b1ˆ2*B1ˆ2 + 3*b1ˆ4 *BB1
+ 6*b1ˆ4*B1 + b1ˆ6 + 3*B1ˆ2*BB1 + BB1ˆ3;
MC2:= b2ˆ3+b2ˆ2*BB1+3*b2*B2+B2*BB1+b2*BB2+BB1*BB2;
MCs:= 2*c2*A1*AA1+2*a1ˆ2*c2*A1+a1ˆ2*c2ˆ2+a1ˆ2*A1ˆ2+c2ˆ2*AA1
+A1ˆ2*AA1+a1ˆ2*CC2+AA1*CC2;
MCsp:= c2ˆ3+AA1ˆ3+3*C2*AA1+3*c2*C2+3*c2ˆ2*AA1+3*c2*AA1ˆ2;
MC3 := BB3+b3ˆ2;
MC2v := a2*AA2+a2*c4+a2*A2+AA1*AA2+A2*AA1+c4*AA1;
MC3v := AA3+a3ˆ2;
MC3h := AA3+c6;
MD3 := BB3+b6;
MD3h := AA3+a6;

#Resricted PCI-CFs
MFMC1 := (1/12)*MC1-(1/4)*MC2-(1/4)*MCs-(1/12)*MCsp-(1/12)*MC3
+(1/2)*MC2v+(1/4)*MC3v+(1/12)*MC3h+(1/4)*MD3-(1/2)*MD3h;
MFMC2 := (1/2)*MC2-(1/2)*MC2v-(1/2)*MD3+(1/2)*MD3h;
MFMCs := (1/2)*MCs-(1/2)*MC2v-(1/2)*MC3v+(1/2)*MD3h;
MFMCsp := (1/6)*MCsp-(1/2)*MC2v-(1/6)*MC3h+(1/2)*MD3h;
MFMC3 := (1/4)*MC3-(1/4)*MC3v-(1/4)*MC3h-(1/4)*MD3+(1/2)*MD3h;
MFMC2v := MC2v-MD3h;
MFMC3v := (1/2)*MC3v-(1/2)*MD3h;
MFMC3h := (1/2)*MC3h-(1/2)*MD3h;
MFMD3 := (1/2)*MD3-(1/2)*MD3h;
MFMD3h := MD3h;

#Inventory Functions for Vertex Substitution
a1 := 1+X; a2 := 1+Xˆ2; a3 := 1+Xˆ3; a6 := 1+Xˆ6;
b1 := 1+X + p + P; b2 := 1+Xˆ2 + pˆ2 + Pˆ2;
b3 := 1+Xˆ3 + pˆ3 + Pˆ3; b6 := 1+Xˆ6 + pˆ6 + Pˆ6;
c2 := 1+Xˆ2 + 2*p*P; c4 := 1+Xˆ4 + 2*pˆ2*Pˆ2;
c6 := 1+Xˆ6 + 2*pˆ3*Pˆ3;

#Inventory Functions for Edge Substitution
A1 := Z; A2 := Zˆ2; A3 := Zˆ3; A6 := Zˆ6;
B1 := Z; B2 := Zˆ2; B3 := Zˆ3; B6 := Zˆ6;
C2 := Zˆ2; C4 := Zˆ4; C6 := Zˆ6;

AA1 := Z; AA2 := Zˆ2; AA3 := Zˆ3;
BB1 := Z; BB2 := Zˆ2; BB3 := Zˆ3;
CC2 := Zˆ2;
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#Expansion into Generating Functions
GFC1 := collect(expand(MFMC1),Z);
GFC2 := collect(expand(MFMC2),Z);
GFCs := collect(expand(MFMCs),Z);
GFCsp := collect(expand(MFMCsp),Z);
GFC3 := collect(expand(MFMC3),Z);
GFC2v := collect(expand(MFMC2v),Z);
GFC3v := collect(expand(MFMC3v),Z);
GFC3h := collect(expand(MFMC3h),Z);
GFD3 := collect(expand(MFMD3),Z);
GFD3h := collect(expand(MFMD3h),Z);
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