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Abstract
The restricted-fixed-point-matrix (RFPM) method is developed as an extension of the

fixed-point-matrix (FPM) method, which is one of the four methods of the unit-subduced-

cycle-index (USCI) approach (S. Fujita, “Symmetry and Combinatorial Enumeration in

Chemistry”, Springer-Verlag (1991)). The RFPM method is capable of combinatorial enu-

merations of 3D structures or graphs under a restricted condition, where orbits of vertices

and edges interact each other. Subduced cycle indices with chirality fittingness (SCI-CFs),

which are calculated for an unrestricted condition by starting from unit subduced cycle in-

dices with chirality fittingness (USCI-CFs), are converted into restricted SCI-CFs by means

of newly-defined territory indicators (TIs) of vertices and edges. Such restricted SCI-CFs

as calculated for respective subgroups are effective to evaluate the numbers of fixed points

(promolecules) on the action of the subgroups under the restricted condition, where the

occupation of a common vertex or the occupation of adjacent edges is avoided.

1 Introduction
Among the four methods supported by the unit-subduced-cycle-index (USCI) approach [1, 2],

the fixed-point matrix (FPM) method [3–5] is based on generating functions derived from sub-
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duced cycle indices (SCIs) and mark tables, where each subduced cycle index (SCI) is defined

as a product of unit subduced cycle indices (USCIs). These USCIs (without chirality fitting-

ness), or unit subduced cycle indices with chirality fittingness (USCI-CFs) as more sophisticated

forms, are beforehand calculated on the basis of the concepts of subduction of coset represen-
tations and sphericities.

The FPM method has been applied to enumerations of various types, where vertices of a

given skeleton (a graph or a three-dimensional structure) are considered to be main sites of sub-

stitutions [3, 6, 7]. Edges of a given skeleton have also been considered to be substitution sites

[8–13]. In these enumerations, equivalent classes (orbits) of vertices or edges as substitution

sites are presupposed to exhibit independent behaviors. This means the presupposition of an

unrestricted condition in which substituents are considered to be able to occupy a common ver-

tex (by a monodentate ligand and a bidentate ligand) or adjacent edges (by bidentate ligands)

freely. However, the occupation of a common vertex or adjacent edges should be carefully ex-

amined according to models adopted for enumerations. For example, the occupation of adjacent

edges is theoretically permissible in the numeration of organic reactions by counting substruc-

tures of imaginary transition structures [11, 14]. On the other hand, the occupation of adjacent

edges occurs in counting edge configurations on a regular octahedron under the unrestricted

condition [13], where the occupied adjacent edges are tentatively interpreted to be tridentate or

higher ligands of various types in place of bidentate ligands. Rigorously speaking, however, the

occupation of adjacent edges by bidentate ligands are not permitted.

The next task is to extend the USCI approach, which becomes capable of restricted enumer-

ations, where orbits of vertices and edges would interact each other so as to exhibit dependent

behaviors [15]. Hence, the purpose of the present article is to develop such an extended version

of the USCI approach, which allows us to enumerate restricted cases of chemical compounds as

three-dimensional (3D) structures as well as graphs. In particular, the FPM method is extended

to develop the restricted FPM (RFPM) method, which is applicable to such restricted cases by

calculating restricted SCI-CFs, where the concepts of proligands and promolecules are coupled

with the concept of chirality fittingness.

2 Preliminaries. Unrestricted Enumerations
Before we start the formulation of restricted enumerations, we begin with SCI-CFs for unre-

stricted enumerations. The (unrestricted) SCI-CFs will be converted into restricted SCI-CFs in

the next section, so as to formulate restricted enumerations.

2.1 SCI-CFs for Unrestricted Enumerations
In the USCI approach [1], the substitution sites (vertices, edges, etc.) of a given skeleton are

divided into equivalence classes (orbits). The scheme and the symbols represented by Fig. 9.1

of [1] are adopted here. Thus, let us consider a given skeleton of a point group G containing

an assembly of such orbits, which are denoted by the symbol Δiα , where the every orbits, each

governed by a coset representation G(/Gi), are differentiated from each other by an added

symbol α (α = 1,2, . . . ,αi if αi �= 0). When there are no orbits of G(/Gi), we place αi = 0.

When the skeleton is fixed by a subgroup G j, each orbit Δiα is subdivided in accord with

the subduction of the coset representation denoted by G(/Gi) ↓ G j so as to generate a set of

suborbits Δ
(iα)
jkβ , which are differentiated from each other by an added symbol β and the coset
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representation G j(/G( j)
k ) assigned to each suborbit. The resulting suborbit is characterized by a

sphericity index (SI) collectively represented by the symbol $
(iα)
d jk

, which is assigned to the coset

representation G j(/G( j)
k ), where the symbol $

(iα)
d jk

represents an SI a(iα)
d jk

for a homospheric orbit

(G j: achiral; and G( j)
k : achiral), an SI b(iα)

d jk
for a hemispheric orbit (G j: chiral; and G( j)

k : chiral),

and an SI c(iα)
d jk

for a enantiospheric orbit (G j: achiral; and G( j)
k : chiral), as well as we place

d jk = |G j|/|G( j)
k |. Note that the same $

(iα)
d jk

is assigned to the suborbits Δ
(iα)
jkβ although these

orbits are differentiated by means of β so long as they are contained in the orbit Δiα .

In accord with Eq. 19.4 due to Def. 9.3 of [1], a unit subduced cycle index with chirality

fittingness (USCI-CF), which is represented by the symbol ZC(G(/Gi) ↓ G j;$
(iα)
d jk

), is defined

as a product of such sphericity indices (SIs) of the suborbits Δ
(iα)
jkβ which are contained in the

orbit Δiα . The USCI approach precedently calculates USCI-CFs and the corresponding degen-

erate monomials (unit subduced cycle indices without chirality fittingness, USCIs), which are

collected in a tabular form to generate a USCI-CF table for each point group, e.g., Appendices

D and E of [1].

To evaluate the number of fixed derivatives under the action of a subgroup G j (G j ⊂ G)

by starting from the skeleton of G-symmetry, a product of USCI-CFs for each subgroup G j is

calculated with respect to the above-mentioned assembly of orbits (Δiα ) according to Def. 19.3

of Ref. [1], so as to generate the corresponding SCI-CF for the assembly of orbits at issue:

SCI-CF(G j;$
(iα)
d jk

) =
s

∏
i=1

αi

∏
α=1
αi �=0

ZC(G(/Gi) ↓G j;$
(iα)
d jk

). (1)

Such an SCI-CF as shown in Eq. 1 is capable of evaluating the number of fixed promolecules,

where an appropriate set of inventory functions (cf. Lemma 19.2 of [1]) is introduced into

the right-hand side of Eq. 1 to give generating functions for the subgroups G j. Because the

formulation of obtaining such generating functions has been already described in Chapter 19

of [1], it is not repeated here, but its applications are illustrated by examples suitable for the

purpose of this article.

2.2 Problem Setting Due to Unrestricted Enumerations
Let us consider a trigonal prismatic skeleton (1), which, for example, appears in the trigonal

prismatic structure of tris(cis-1,2-diphenylethene-1,2-dithiolato)rhenium ([Re(S2C2Ph2)3]) as

cited in a textbook [16, page 1074]. To treat such rhenium complexes as a target of combi-

natorial enumeration, edge substitutions by bidentate ligands should be taken into considera-

tion in addition to vertex substitutions by monodentate ligands. Thus the rhenium complex

[Re(S2C2Ph2)3] is schematically represented by the formula 2, where the three edges {1,4},
{2,5}, and {3,6} are occupied by three bidentate ligands (boldfaced straight lines).

Let us consider the six vertices of 1 (for monodentate ligands) and the nine edges (for

bidentate ligands) as substitution sites for combinatorial enumeration. The six vertices of 1 are

equivalent to construct a six-membered orbit {1,2,3,4,5,6} governed by the coset representa-

tion D3h(/Cs). Among the nine edges, the six edges contained in the top and the bottom face

are equivalent to construct a six-membered orbit {{1,2},{2,3},{3,1},{4,5},{5,6},{6,4}},
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Figure 1: Trigonal prismatic skeleton and an example of its edge substitution

Table 1: SCI-CFs and Restricted SCI-CFs for a trigonal prismatic skeleton

subgroup (Unrestricted) SCI-CF Restricted SCI-CF

G j Vertices × Edges × Edges (SCI-CF)

C1 b6
1 b̃6

1 b̂3
1 b6

1 +6b2
1b̃1b̂1 +3b2

1b̂2
1 +9b2

1b̃2
1 +3b4

1b̂1

+6b4
1b̃1 +3b̃2

1b̂1 + b̂3

C2 b3
2 b̃3

2 b̂1b̂2 b3
2 +b2

2b̂1 +3b2b̃2 +b2b̂2 + b̃2b̂1 + b̂1b̂2

Cs a2
1c2

2 ã2
1c̃2

2 â1ĉ2 a2
1c2

2 +2c2ã1â1 +2a2
1c2ã1 +a2

1ã2
1 + c2

2â1

+ ã2
1â1 +a2

1ĉ2 + ã1ĉ2

C′s c3
2 c̃3

2 â3
1 c3

2 + â3
1 +3c̃2â1 +3c2c̃2 +3c2

2â1 +3c2â2
1

C3 b2
3 b̃2

3 b̂3 b2
3 + b̂3

C2v a2c4 ã2c̃4 â1â2 a2c4 +a2ã2 +a2â2 + â1â2 + ã2â1 + c4â1

C3v a2
3 ã2

3 â3 a2
3 + â3

C3h c6 c̃6 â3 c6 + â3

D3 b6 b̃6 b̂3 b6 + b̂3

D3h a6 ã6 â3 a6 + â3

which is governed by the coset representation D3h(/Cs). The remaining three edges are equiva-

lent to construct a three-membered orbit {{1,4},{2,5},{3,6}}, which is governed by the coset

representation D3h(/C2v).
The USCI-CFs for D3h have been already precalculated and reported in Table E.13 of [1].

Related enumerations based on several D3h-skeletons (a trigonal bipyramid, an iceane skeleton,

and a prismane skeleton) have been reported as well as the data of the point group D3h [10].

From the USCI-CF table [1, 10], the D3h(/Cs)-row for the vertices and the six edges and the

D3h(/C2v)-row for the three edges are cited and listed in the Vertices-column (USCI-CF as a

product of SIs without accents), the Edges-column (USCI-CF as a product of SIs with tilde

accents), and the other Edges-column (USCI-CF as a product of SIs with hat accents) of Table

1. The three types of USCI-CFs for each subgroup are multiplied to give the corresponding

(unrestricted) SCI-CF. Note that the superscript (iα) of $
(iα)
d jk

in Eq. 1 is replaced by accent

symbols for the simplicity’s sake.

Suppose that monodentate ligands for vertex substitution are selected from the following

inventory:

L = {X,p,p}, (2)
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which corresponds to inventory functions:

ad = 1+Xd (3)

bd = 1+Xd +pd +pd (4)

cd = 1+Xd +2pd/2pd/2 (5)

where X represents an achiral monodentate ligand and p/p represents a pair of enantiomeric

monodentate ligands in isolation. It should be noted that the power d/2 appearing in Eq. 5 is

an integer because the subscript d of cd is always even in the light of the enantiosphericity of

the corresponding orbit. The term 1 in the right-hand sides of Eqs. 3–5 represents an implicit

substituent (H or no substitution).

And suppose that bidentate ligands for edge substitution are selected following inventory:

L′ = {Z}, (6)

which corresponds to inventory functions:

ãd = b̃d = c̃d = 1+Zd (7)

âd = b̂d = ĉd = 1+Zd (8)

where we here only one type of bidentate ligands (Z) with no chirality and no direction. The

term 1 in the right-hand sides represents no substitution on edges.

These inventory functions for vertices (Eqs. 3–5) and for edges (Eqs. 7 and 8) are introduced

into an SCI-CF to give a generating function, in which the coefficient of the term Xkp�pmZn

indicates the number of fixed promolecules to be counted. The term can be represented by the

following partition:

[θ ] = [k;�,m;n]. (9)

For example, let us examine the SCI-CF for the subgroup Cs, i.e., (a2
1c2

2)(ã
2
1c̃2

2)(â1ĉ2),
among the SCI-CFs of 1 listed in Table 1. The inventory functions for vertices (Eqs. 3–5) and

for edges (Eqs. 7 and 8) are introduced into this SCI-CF and the resulting equation is expanded

to give the following generating function:

gCs
= 1+4pp+2X+8X2pp+4p2p2 +4X3 +8Xpp+2X5 +8X3pp+ · · ·

+(3+6X+12p2p2 +24Xpp+12pp+9X4 +24X2pp+9X2 +12X3 + · · ·)Z
+(6+12X+48Xp2p2 +48Xpp+24X2p2p2 +24X3 +18X2 +24pp+ · · ·)Z2

+(10+20X+30X2 +40p2p2 +80X2pp+80X3pp+ · · ·)Z3 + · · · (10)

According to Lemma 19.2 of [1], the coefficient of each term appearing in the right-hand side

of Eq. 10, which is denoted by the symbol ρ[θ ]Cs (ρ[θ ]G j in general), represents the number of

fixed promolecules of Cs (G j in general), where the symbol [θ ] is shown in Eq. 9. Among them,

we here focus on the term Z3, which corresponds to the partition:

[θ ]1 = [0;0,0;3]. (11)

Thereby, the coefficient 10 of 10Z3 in the right-hand side of Eq. 10 indicates the number

(ρ[θ ]1Cs) of fixed promolecules of the term Z3 or the partition [θ ]1 under the action of the sub-

group Cs, i.e.,

ρ[θ ]1Cs = 10. (12)
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This process for obtaining ρ[θ ]1Cs is repeated to cover all of the subgroup G j to give ρ[θ ]1G j
(G j ⊂ D3h), which are collected to form a fixed-point vector (FPV) as follows:

FPV1 = (ρ[θ ]1C1
,ρ[θ ]1C2

,ρ[θ ]1Cs , . . . ,ρ[θ ]D3h
) = (84,4,10,10,3,2,3,1,1,1). (13)

Note that the elements in Eq. 13 are aligned in accord with the appearance order of the respective

subgroups shown in the first column of Table 1, which are collectively called by a name “the

non-redundant set of subgroups of D3h” and denoted by the symbol SSGD3h . FPVs for other

partitions, e.g.,

[θ ]2 = [0;0,0;0] (for 1) (14)

[θ ]3 = [0;0,0;1] (for Z) (15)

[θ ]4 = [0;0,0;2] (for Z2) (16)

[θ ]5 = [0;1,1;0] (for pp) (17)

[θ ]6 = [1;1,1;0] (for Xpp) (18)

[θ ]7 = [0;1,1;1] (for ppZ) (19)

[θ ]8 = [1;1,1;1] (for XppZ), (20)

are similarly obtained and collected to form a fixed-point matrix (FPM), in which each FPV is
contained as a row vector as follows:

FPM1 =

[θ ]2
[θ ]3
[θ ]4
[θ ]1
[θ ]5
[θ ]6
[θ ]7
[θ ]8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1 1 1 1 1

9 1 3 3 0 1 0 0 0 0

36 4 6 6 0 2 0 0 0 0

84 4 10 10 3 2 3 1 1 1

30 0 4 6 0 0 0 0 0 0

120 0 8 0 0 0 0 0 0 0

270 0 12 18 0 0 0 0 0 0

1080 0 24 0 0 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (21)

Note the FPV1 for the partition [θ ]1 (Eq. 13) appears at the 4th row of the FPM1 (Eq. 21). The

values appearing at the third column (the Cs-column) of FPM1 (Eq. 21) are collected from the

generating function for Cs (Eq. 10), e.g., the term 3Z of Eq. 10 corresponds to the value 3 at the

intersection of the [θ ]3-row and the Cs-column.
Because the FPM (Eq. 21) contains FPVs as its row vectors, Theorem 19.2 (or Theorem

15.4) can be applied. Thus, the FPM is multiplied by the inverse mark table M−1
D3h

(Table B.13

of [1]) so as to give an isomer-counting matrix (ICM):

ICM1 = FPM1×M−1
D3h

= FPM1×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
12 0 0 0 0 0 0 0 0 0

− 1
4

1
2 0 0 0 0 0 0 0 0

− 1
4 0 1

2 0 0 0 0 0 0 0

− 1
12 0 0 1

6 0 0 0 0 0 0

− 1
12 0 0 0 1

4 0 0 0 0 0
1
2 − 1

2 − 1
2 − 1

2 0 1 0 0 0 0
1
4 0 − 1

2 0 − 1
4 0 1

2 0 0 0
1
12 0 0 − 1

6 − 1
4 0 0 1

2 0 0
1
4 − 1

2 0 0 − 1
4 0 0 0 1

2 0

− 1
2

1
2

1
2

1
2

1
2 −1 − 1

2 − 1
2 − 1

2 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

[θ ]2
[θ ]3
[θ ]4
[θ ]1
[θ ]5
[θ ]6
[θ ]7
[θ ]8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0

1 1 2 0 0 2 0 0 0 0

4 1 3 1 0 1 1 0 0 1

1 0 2 1 0 0 0 0 0 0

8 0 4 0 0 0 0 0 0 0

18 0 6 3 0 0 0 0 0 0

84 0 12 0 0 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (22)
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where each pair of enantiomers is counted once just as each achiral derivative is counted once.

As a mater of course, additional rows of other partitions can be freely inserted to such an FPM

as Eq. 21 in accord with targets of enumerations.

As an exemplified verification of the results shown in the ICM1 (Eq. 22), let us examine the

[θ ]1-row, which indicates the presence of four enantiomeric pairs of C1-derivatives (3/3, 4/4,

5/5, and 6/6), one enantiomeric pair of C2-derivatives (7/7), three Cs-derivatives (8, 9, and 10),

one C′s-derivative (11), one C2v-derivative (12), one C3v-derivative (13), and one D3h-derivative

(14). These derivatives are illustrated in Fig. 2.

It should noted that the derivatives shown in Fig. 2 (except 12 (C2v) and 14 (= 2, D3h)) have

one or more vertices which accommodate two or more terminals of bidentate ligands. Chem-

ically speaking, these derivatives may be interpreted as accommodating tridentate or higher

ligands of various types. When substituents are restricted to monodentate or bidentate ligands,

however, only 12 (C2v) and 14 (= 2, D3h) should be adopted to treat resulting metal complexes

properly. This type of restricted enumeration is the target of the following part of the present

article.

3 Restricted Enumeration

3.1 Territory Indicators
To take a hint to conduct such restricted enumeration, let us examine the derivatives of Z3

([θ ]1) shown in Fig. 2 in detail. The C1-derivative 3 has edge substitutions at the edges {1,2},
{4,6}, and {2,5}, where the edges {1,2} and {2,5} have a common vertices {2}. Dummy

variables x1x2, x4x6, and x2x5 are assigned to the respective edges, where the subscripts represent

their terminal vertices. Because the product of them, i.e., (x1x2)(x4x6)(x2x5) = x1x2
2x4x5x6,

characterizes the mode of edge substitution, it is called a territory indicator (TI). Thus, the

second power of x2 of the TI indicates the overlap of two edge substituents at the vertex {2},
which is determined to suffer from multiple occupation. The TIs of the derivatives shown in

Fig. 2 are collected also in Fig. 2. By examining them, the derivatives except 12 (C2v) and 14 (=

2, D3h) are characterized by territory indicators having the second power of at least one dummy

variable. On the other hand, 12 (C2v) and 14 (= 2, D3h) have a TI, x1x2x3x4x5x6, in which

each dummy variable xi appears only once so as to assure the absence of vertices of multiple

occupation.

The C2v-derivative 12 is characterized by the SCI-CF (a2c4)(ã2c̃4)(â1â2) in the C2v-row

of Table 1, where a one-membered orbit of one edge {1,4} is ascribed to the SI â1, while a

two-membered orbit of two edges {{2,3},{5,6}} is ascribed to the SI ã2. Hence, we are able

to defined combined monomials, â1x1x4 and ã2x2x3x5x6, where the part x1x4 or x2x3x5x6 is here

called a territory indicator for the orbit at issue. The remaining orbits concerned with the SCI-

CF are not used to generate the C2v-derivative 12, so that we place a2 = 1, c4 = 1, c̃4 = 1, and

â2 = 1. Thereby, the SCI-CF (a2c4)(ã2c̃4)(â1â2) is restricted to a restricted SCI-CF â1ã2 via

â1x1x4× ã2x2x3x5x6 = â1ã2x1x2x3x4x5x6, the TI part of which has already appeared below the

formula 12 in Fig. 2 and afterward omitted for the purpose of generating the restricted SCI-CF

â1ã2.

In a similar way, the D3h-derivative 14 is characterized by the SCI-CF (a6)(ã6)(â3) in the

D3h-row of Table 1, where a three-membered orbit of edges {{1,4},{2,5},{3,6}} is ascribed to
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Figure 2: Derivatives of Z3 ([θ ]1) by unrestricted edge substitutions and their territory indicators
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the SI â3. Hence, we are able to defined a combined monomial, â3x1x4x2x5x3x6. The remaining

orbits concerned with the SCI-CF are not used to generate the D3h-derivative 14, so that we

place a6 = 1 and ã6 = 1. Thereby, the SCI-CF (a6)(ã6)(â3) is converted into a restricted SCI-

CF â3 via â3x1x4x2x5x3x6, the TI part of which has already appeared below the formula 14 in

Fig. 2 and afterward omitted for the purpose of generating the restricted SCI-CF â3.

3.2 Discriminants of SCI-CFs and Restricted SCI-CFs
The discussions in the preceding paragraphs are generalized after a dummy variable for showing

the territory of an object (vertex, edge, etc.) contained in a given suborbit Δ
(iα)
jkβ is defined as

xi for a vertex {i}, xix j for an edge {i, j}, and so on. A territory indicator for the suborbit is

defined as a product of such dummy variables as follows:

t(iα)
jk (x1, . . . ,xv), (23)

which consists of x1, x2, . . ., xv in accord with the objects of the suborbit Δ
(iα)
jkβ . Then, we

assign $
(iα)
d jk

t(iα)
jk (x1, . . . ,xv) to the suborbit Δ

(iα)
jkβ . For judging whether or not the suborbit is

used for enumeration, the term 1+ $
(iα)
d jk

t(iα)
jk (x1, . . . ,xv) is introduced into the original $

(iα)
d jk

of

the SCI-CF (Eq. 1) so as to give a discriminant of SCI-CF denoted by the symbol DSCI-CF.

Definition 1 The discriminant of the SCI-CF (Eq. 1) is defined as follows:

DSCI-CF(G j;$
(iα)
d jk

,x1,x2, . . . ,xv) =
s

∏
i=1

αi

∏
α=1
αi �=0

ZC(G(/Gi) ↓G j;$
(iα)
d jk

)

∣∣∣∣∣
$
(iα)
d jk

=1+$
(iα)
d jk

t(iα)
jk (x1,...,xv)

(24)

Note that the replacement of $
(iα)
d jk

by 1+$
(iα)
d jk

t(iα)
jk (x1, . . . ,xv) means that the corresponding

suborbit Δ
(iα)
jkβ is taken into no consideration (the former term 1) or into consideration (the latter

term) during the process of enumeration. Hence, the expansion of the right-hand side of Eq.

24 generates a polynomial, where each component monomial indicates a product of SIs ($
(iα)
d jk

)

as well as the corresponding product of territory indicators. Among such monomials, only

monomials with x1x2 · · ·xv (in which each xi appears only once) are necessary to the process of

enumeration. A monomial lacking any xi should be rejected, because all of the vertices should

be taken into consideration. Moreover, a monomial with the second or more power of xi shows

the duplication of the i-th vertex and should be rejected. After the selection of such necessary

monomials is completed, the territory-indicator part of each monomial is omitted. The process

described above can be conducted by the following lemma:

Lemma 1 (Restricted SCI-CFs) Among the monomials contained in the discriminant gener-

ated by Def. 1, monomials signified by the TI x1x2 · · ·xv (in which each xi appears only once)

are selected by means of the following equation:

SCI-CF(G j;$
(iα)
d jk

) =
∂v

∂x1∂x2 · · ·∂xv
DSCI-CF(G j;$

(iα)
d jk

,x1,x2, . . . ,xv)

∣∣∣∣∣
x1=x2=···=xv=0

, (25)

where the TI part of each selected monomial is replaced by 1 (no appearance).
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The proof is rather obvious. For example, the multiple partial differential according to Eq. 25

is applied to a resulting term of Eq. 24:

($
(iα)
d jk
· · ·)(x1x2 · · ·xv) (26)

so as to leave ($
(iα)
d jk
· · ·), which remains even by putting x1 = x2 = · · · = xv = 0. The remain-

ing term is adopted during the restricted enumeration. On the other hand, the multiple partial

differential applied to another term:

($
(iα)
d jk
· · ·)(x2

1x2 · · ·xv) (27)

leaves 2($
(iα)
d jk
· · ·)x1, which vanishes to zero by putting x1 = x2 = · · · = xv = 0. Thus, the term

at issue is discarded during the restricted enumeration. Thereby, the duplicated consideration of

the vertex 1 is avoided. The resulting polynomial (Eq. 25) is here called a restricted SCI-CF.

The restricted SCI-CF (Eq. 25) is used to evaluate the numbers of fixed points (marks) in

place of the SCI-CF (Eq. 1). Lemma 19.2 of [1] for obtaining the number of fixed points (marks)

ρθ j is modified to meet the present case.

Lemma 2 (Marks for Restricted Enumerations) The marks (ρθ j’s) with weight Wθ ’s are

given by the following generation functions:

∑
[θ ]

ρθ jWθ = SCI-CF(G j;$
(iα)
d jk

) (28)

for j = 1,2, . . . ,s, where the variables $
(iα)
d jk

($ = a,b,c) are substituted by

a(iα)
d jk

=
|X|
∑
�=1

wiα(X
(a)
�
)d jk (29)

b(iα)
d jk

=
|X|
∑
�=1

wiα(X�)
d jk (30)

c(iα)
d jk

=
|X|
∑
�=1

wiα(X
(a)
�
)d jk +2

|X|
∑
�=1

(
wiα(X

(c)
�
)wiα(X

(c)
� )
)d jk/2

. (31)

For the notations, see Lemma 19.2 of [1]. The proof is almost the same as Lemma 19.2 of [1],

because the SCI-CF(G j;$
(iα)
d jk

) (Eq. 25) is a definite restriction of the original SCI-CF(G j;$
(iα)
d jk

)

(Eq. 1), which has been used in Lemma 19.2 of [1]. It is to be noted that the marks (the numbers

of fixed points) obtained by Lemma 2 can be regarded as the numbers of fixed (pro)molecules,

chemically speaking, where the term points is abstractly used to denote molecules or pro-

molecules (or other objects in general).

The marks calculated by Eq. 28 (Lemma 2) are applied to the equations of Theorem 19.4

of [1] so as to give the number (Bθ i) of non-equivalent derivatives of symmetry Gi under the

restricted condition (Gi ⊂ G). The following theorem is described without a proof, because it

can be proved on the same line as Theorem 19.4 of [1].
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Theorem 1 (Numbers of Derivatives by Restricted Enumerations) The number Bθ i of Gi-

derivatives of the formula [θ ] under restricted enumerations is calculated by:

Bθ i =
s

∑
j=1

ρθ jm ji (32)

for i= 1,2, . . . ,s, where the ρθ j values are calculated by Lemma 2 and the symbol m ji represents

an element of the inverse mark table of the group G.

When the formula [θ ] is tentatively fixed, Eq. 32 of Theorem 1 is transformed into a vector

calculation:

(Bθ1,Bθ2, . . . ,Bθ i, . . . ,Bθs) = (ρθ1,ρθ2, . . . ,ρθ j, . . . ,ρθs)M−1
G (33)

where the symbol M−1
G represents the inverse of the mark table MG for the group G, where the

elements of M−1
G are represented by m ji. The row vector in the left-hand side of Eq. 33 is called

a restricted isomer-counting vector (RICV), while the row vector in the right-hand side of Eq.

33 is called a restricted fixed-point vector (RFPV). Then, Eq. 33 is symbolically represented as

RICV = RFPV×M−1
G . When various formulas for [θ ] are considered, the RICV and the RFPV

in Eq. 33 can be transformed into a restricted isomer-counting matrix (RICM) and a restricted

fixed-point matrix (RFPM) respectively, where each RICV and each RFPV are row vectors of

the respective matrices. Then, the resulting matrix calculation is symbolically represented as

RICM = RFPM×M−1
G .

The enumeration based on Theorem 1 is called the restricted fixed-point-matrix (RFPM)
method, because it is an extension of the FPM method. The terms FPV, FPM, ICM, etc. used

in the FPM method are converted into RFPV (restricted FPV), RFPM (restricted FPM), RICM

(restricted ICM) etc. for the purpose of discriminating between the original FPV method and the

expended version. It should noted, however, that these two sets of terms are regarded as being

conceptually equivalent after marks (the numbers of fixed points) are evaluated by Lemma 2.

Hence, we may sometimes adopt conventions that the terms FPV, FPM, ICM, etc. are used

in place of RFPV (restricted FPV), RFPM (restricted FPM) so long as such usage causes no

confusion.

3.3 Illustrative Examples
3.3.1 Restricted SCI-CFs for the Trigonal Prismatic Skeleton

By starting from the trigonal prismatic skeleton 1, let us consider a restricted enumeration,

where any set of monodentate and bidentate ligands as substituents does not occupy a common

vertex. Under this restriction condition, for example, only 12 (C2v) and 14 (= 2, D3h) should be

adopted from the list shown in Fig. 2.

The Cs-row of Table 1 shows that the unrestricted SCI-CF for the subgroup Cs is calculated

to be (a2
1c2

2)(ã
2
1c̃2

2)(â1ĉ2). Each SI contained in the unrestricted SCI-CF corresponds to the

suborbits generated by the subduction of the D3h-skeleton (1) into the subgroup Cs. Let us

consider the mirror plane of the Cs-group which contains the edge {1,3} and bisects the edges

{2,3} and {5,6}. Then, the respective sphericity indices and the corresponding suborbits are

listed as follows:

(vertices):

a2
1 : two one-membered orbits {1},{4}
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c2
2 : two two-membered orbits {2,3},{5,6}

(edges):

ã2
1 : two one-membered orbits {{2,3}},{{5,6}}

c̃2
2 : two two-membered orbits {{1,2},{1,3}},{{4,5},{4,6}}

(edges):

â1 : one one-membered orbit {{1,4}}
ĉ2 : one two-membered orbits {{2,5},{3,6}}

Thereby, a TI can be easily assigned to each sphericity index. According to Eq. 24 of Def. 1,

the corresponding discriminant is calculated as follows:

DSCI-CF(Cs,$d, $̃d, $̂d,x1, . . . ,x6)

= (1+a1x1)(1+a1x4)(1+ c2x2x3)(1+ c2x5x6)

× (1+ ã1x2x3)(1+ ã1x5x6)(1+ c̃2x1x2x1x3)(1+ c̃2x4x5x4x6)

× (1+ â1x1x4)(1+ ĉ2x2x5x3x6)

= (1+a1x1)(1+a1x4)(1+ c2x2x3)(1+ c2x5x6)

× (1+ ã1x2x3)(1+ ã1x5x6)

× (1+ â1x1x4)(1+ ĉ2x2x5x3x6), (34)

where we place (1+ c̃2x1x2x1x3) = 1 (the presence of x2
1) and (1+ c̃2x4x5x4x6) = 1 (the presence

of x2
4) because they are concerned with overlapped vertices and can be removed beforehand. The

discriminant (Eq. 34) is treated according to Lemma 2 to give the following restricted SCI-CF:

SCI-CF(Cs;$d, $̃d, $̂d) =
∂6

∂x1∂x2 · · ·∂x6
DSCI-CF(Cs,$d, $̃d, $̂d,x1, . . . ,x6)

∣∣∣∣∣ xi=0

(i=1,...,6)

= a2
1c2

2 +2c2ã1â1 +2a2
1c2ã1 +a2

1ã2
1 + c2

2â1 + ã2
1â1 +a2

1ĉ2 + ã1ĉ2 (35)

The expansion and the subsequent partial differential is conducted by means of the following

Maple program:

#prismCsA.mpl
DSCICFCs :=
(1+a1*x1)*(1+a1*x4)*(1+c2*x2*x3)*(1+c2*x5*x6)
*(1+A1*x2*x3)*(1+A1*x5*x6)*(1+AA1*x1*x4)*(1+CC2*x2*x5*x3*x6);

tempCsA := expand(DSCICFCs);
tempCsB := diff(tempCsA, x1,x2,x3,x4,x5,x6);

x1 :=0; x2 :=0; x3 :=0;
x4 :=0; x5 :=0; x6 :=0;

resSCICs := expand(tempCsB);

In this and related programs for calculating restricted SCI-CFs of respective subgroups, the

symbol a1, b1, c2, etc. are replaced by a1, b1, c2, etc.; the symbol ã1, b̃1, c̃2, etc. are replaced

by A1, B1, C2, etc.; and the symbol â1, b̂1, ĉ2, etc. are replaced by AA1, BB1, CC2, and so on.

Lemma 2 means that the restricted SCI-CF (Eq. 35) is used to evaluate the number of fixed

points (promolecules) on the action of the subgroup Cs in place of the unrestricted (usual)
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Figure 3: Possible fixed promolecules for the monomials appearing in the restricted SCI-CF

(Eq. 35). These structures are fixed under the action of Cs.

SCI-CF (a2
1c2

2)(ã
2
1c̃2

2)(â1ĉ2). As a result, each monomial in the restricted SCI-CF (Eq. 35)

participates in the calculation of the number of fixed points (promolecules), as shown in Fig.

3, where the circles of various types denote achiral monodentate ligands, while the boldfaced

straight line denotes a bidentate ligand. For example, the monomial 2c2ã1â1 appearing in Eq. 35

corresponds to 17 and 18, where a two-membered orbit of vertices {5,6} (or {2,3}) is assigned

to c2, a one-membered orbit of an edge {{2,3}} (or {{5,6}} to ã1, and a one-membered orbit

of an edge {{1,4}} to â1. It should be emphasized that all of the fixed promolecules shown in

Fig. 3 are characterized by the absence of vertices of multiple occupation.

The process of calculating the restricted SCI-CF is repeated to cover all of the SCI-CFs

listed in Table 1. The restricted SCI-CFs for every subgroups are thus calculated and collected

in the rightmost column of Table 1.

While the inventory functions (Eqs. 3–5) for vertex substitution are used, the following

inventory functions for edge substitutions:

ãd = b̃d = c̃d = Zd (36)

âd = b̂d = ĉd = Zd (37)

are used in place of Eqs. 7 and 8, because implicit edge substitutions (the term 1 deleted) are

not taken into consideration. Thus, Eqs. 3–5 for vertex substitution as well as Eqs. 36 and 37
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for edge substitution are introduced into Eq. 35 to give the following generating function:

g′Cs
= 1+2X+3X2 +4X3 +3X4 +2X5 +X6

+4pp+8Xpp+8X2pp+8X3pp+4X4pp+4p2p2 +8Xp2p2 +4X2p2p2

+(3+6X2 +8pp+4p2p2 +3X4 +8Xpp+8X2pp+4X3 +4X)Z

+(4pp+4X+4X2 +4)Z2 +2Z3 (38)

According to Lemma 2, the coefficient of each term appearing in the right-hand side of Eq.

38 represents the number of fixed promolecules of Cs, where the symbol [θ ] is shown in Eq. 9.

Let us consider the term Z3 ([θ ]1 = [0;0,0;3], cf. Eq. 11), the coefficient of which is equal 2,

i.e.,

ρ[θ ]1Cs = 2. (39)

This process for obtaining ρ[θ ]1Cs is repeated to cover all of the subgroup G j to give ρ[θ ]1G j
(G j ⊂ D3h), which are collected to form a restricted fixed-point vector (RFPV) as follows:

FPV2 = (ρ[θ ]1C1
,ρ[θ ]1C2

,ρ[θ ]1Cs , . . . ,ρ[θ ]D3h
) = (4,2,2,4,1,2,1,1,1,1). (40)

Similarly, RFPVs for the partitions [θ ]2 (Eq. 14) to [θ ]8 (Eq. 20) are calculated by introducing

Eqs. 3–5, Eq. 36, and Eq. 37 into Eq. 35. They are collected to form a restricted fixed-point

matrix (RFPM) as follows:

FPM2 =

[θ ]2
[θ ]3
[θ ]4
[θ ]1
[θ ]5
[θ ]6
[θ ]7
[θ ]8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1 1 1 1 1

9 1 3 3 0 1 0 0 0 0

18 4 4 6 0 2 0 0 0 0

4 2 2 4 1 2 1 1 1 1

30 0 4 6 0 0 0 0 0 0

120 0 8 0 0 0 0 0 0 0

108 0 8 12 0 0 0 0 0 0

216 0 8 0 0 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (41)

In a parallel way to Eq. 21, note again that the FPV2 for the partition [θ ]1 (Eq. 40) appears

at the 4th row of the FPM2 (Eq. 41). The values appearing at the third column (the Cs-column)

of FPM2 (Eq. 41) are collected from the generating function for Cs (Eq. 38).

According to Theorem 1, the RFPM is multiplied by the inverse mark table M−1
D3h

(see Eq.

41) so as to give a restricted isomer-counting matrix (RICM):

ICM2 = FPM2×M−1
D3h

=

[θ ]2
[θ ]3
[θ ]4
[θ ]1
[θ ]5
[θ ]6
[θ ]7
[θ ]8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0

0 1 1 0 0 2 0 0 0 0

0 0 0 0 0 1 0 0 0 1

1 0 2 1 0 0 0 0 0 0

8 0 4 0 0 0 0 0 0 0

6 0 4 2 0 0 0 0 0 0

16 0 4 0 0 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (42)

Note that each pair of enantiomers is counted once just as each achiral derivative is counted

once.
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3.3.2 Comparison Between Unrestricted and Restricted Enumerations

Let us compare between the results of the unrestricted enumeration (Eq. 22) and those of the

restricted one (Eq. 42). As a matter of course, the [θ ]2-rows, the [θ ]5-rows, or the [θ ]6-rows

of both the ICMs are equal to each other, because they do not contain edge substitutions. The

[θ ]3-row (Z) is concerned with substitution of one edge, so that there appears no effect of the

restriction condition. Thus, one Cs-derivative or one C2v-derivative is generated by selecting a

substitution site from either the D3h(/Cs)-orbit or the D3h(/C2v)-orbit. Hence, the [θ ]2-row of

Eq. 22 is identical with the counterpart of Eq. 42.

Derivatives of Z2 ([θ ]4) are depicted in Fig. 4, which compare the restricted edge substitution

(Eq. 42) with the corresponding unrestricted one (Eq. 22). Under the restricted condition, the

[θ ]4-rows of Eq. 42 shows that there are one C2-derivative (26/26), one Cs-derivative (28),

and two C2v-derivatives (29 and 29), which are depicted in the right-hand part of Fig. 4. On

the other hand, under the unrestricted condition, the [θ ]4-rows of Eq. 22 shows the presence

of additional derivatives, i.e., one C1-derivative (25/25) and one additional Cs-derivative (27),

which are depicted in the left-hand part of Fig. 4. Note that the C1-derivative (25/25) and the

Cs-derivative (27) have a vertex (vertex 4) at which two edge substitutions overlap, so that they

are discarded under the restricted condition.

The derivatives of Z3 ([θ ]1) enumerated under the unrestricted condition (the [θ ]1-rows of

Eq. 22) have been already depicted in Fig. 2. In contrast, the [θ ]1-rows of Eq. 42 indicates

the presence of one C2v-derivative (12) and one D3h-derivative (14 (= 2)), where the other

derivatives collected in Fig. 2 are discarded under the restricted condition.

To evaluate the effects of chiral monodentate ligands, let us examine the numbers of Cs-

derivatives, each of which appears at the intersection between the Cs-column (the third col-

umn) and the [θ ]5- (corresponding to 2pp), [θ ]6- (4Xpp), [θ ]7- (4ppZ), or [θ ]8-row (4XppZ)

of the ICM2 (Eq. 42). These Cs-derivatives are illustrated in Fig. 5, where each pair of p/p

is represented by a pair of a black solid circle and a gray one, while each achiral ligand (X)

is represented by an open circle. Each edge substitution by a bidentate ligand is represented

by a boldfaced straight line. The substituents (monodentate and bidentate ligands) in such a

Cs-derivative have no common vertices under the restricted condition. Free vertices represent

implicit substitutions of appropriate monodentate ligands of the same kind.

The Cs-derivatives of [θ ]5 (pp), 31 and 32, are in a diastereomeric relationship, which is

regarded as an extended pseudoasymmetric case, because the exchange of p and p transforms

31 to 32, vice versa.

The addition of an achiral monodentate ligand X (open circle) without destroying the Cs-

symmetry of 31 and 32 produces the four Cs-derivatives of [θ ]6 (Xpp), 33–36. On the other

hand, the addition of a bidentate ligand Z (boldfaced straight line) without destroying the Cs-

symmetry of 31 and 32 produces the four Cs-derivatives of [θ ]7 (ppZ), 37–40.

The addition of a bidentate ligand Z (boldfaced straight line) to the four Cs-derivatives of

[θ ]6 (Xpp), (33–36) without destroying the Cs-symmetry produces the four Cs-derivatives of

[θ ]8 (XppZ). These Cs-derivatives of [θ ]8 (XppZ), i.e., 41–42, can be alternatively generated

from the four Cs-derivatives of [θ ]7 (ppZ), 39 and 40, by adding an achiral ligand X (open

circle) without destroying the Cs-symmetry, while the Cs-derivatives of [θ ]7 (ppZ), 37 and 38,

are incapable of accommodating an achiral ligand X without destroying the Cs-symmetry.
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Figure 4: Derivatives of Z2 ([θ ]4). Comparison between unrestricted and restricted edge substi-

tutions.

4 Gross Enumerations under the Restricted Condition
The value Bθ i calculated by Theorem 1 (Eq. 32) is itemized with respect to the subgroup Gi
(⊂G). The total number Bθ can be calculated by summing up Bθ i over all Gi (i = 1,2, . . . ,s) as

follows:

Bθ =
s

∑
i=1

Bθ i =
s

∑
i=1

s

∑
j=1

ρθ jm ji =
s

∑
j=1

ρθ j

(
s

∑
i=1

m ji

)
. (43)

When the subscript j for the subgroup G j runs to cover j = 1,2, . . . ,s, the elements ∑s
i=1 m ji

( j = 1,2, . . . ,s) construct a column vector, where each element ∑s
i=1 m ji for j is the sum of the

j-th row appearing in the corresponding inverse mark table of G. Thereby, Eq. 43 is regarded

as a multiplication of the row vector (RFPV):

(ρθ1,ρθ2, . . . ,ρθ j, . . . ,ρθs) (44)

by the column vector (∑s
i=1 m ji).

The number B(a)
θ of achiral derivatives can be calculated by summing up Bθ i over all of the

achiral subgroups Gia selected from Gi (i = 1,2, . . . ,s) as follows:

B(a)
θ = ∑

∀ia

Bθ ia = ∑
∀ia

s

∑
j=1

ρθ jm jia =
s

∑
j=1

ρθ j

(
∑
∀ia

m jia

)
. (45)
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Figure 5: Cs-Derivatives of the formulas, [θ ]5–[θ ]8, which are characterized by an enantiomeric

pair of chiral monodentate ligands, p (black solid circle) and p (gray solid circle). Each open

circle represents an achiral monodentate ligand and each boldfaced straight line represents a

bidentate ligand. These substituents (monodentate and bidentate ligands) in such a Cs-derivative

have no common vertices under the restricted condition (Eq. 42).
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When the subscript j for the subgroup G j runs to cover j = 1,2, . . . ,s, the elements ∑∀ia m jia
( j = 1,2, . . . ,s) construct a column vector, where each element ∑∀ia m jia for j is the sum of the

j-th row (only achiral subgroups) appearing in the corresponding inverse mark table of G.

The number B(e)
θ of enantiomeric pairs of chiral derivatives can be calculated by summing

up Bθ i over all of the chiral subgroups Gie selected from Gi (i = 1,2, . . . ,s) as follows:

B(e)
θ = ∑

∀ie

Bθ ie = ∑
∀ie

s

∑
j=1

ρθ jm jie =
s

∑
j=1

ρθ j

(
∑
∀ie

m jie

)
. (46)

When the subscript j for the subgroup G j runs to cover j = 1,2, . . . ,s, the elements ∑∀ie m jie
( j = 1,2, . . . ,s) construct a column vector, where each element ∑∀ie m jie for j is the sum of the

j-th row (only chiral subgroups) appearing in the corresponding inverse mark table of G.

To conduct practical calculations, the above-mentioned column vectors generated by Eqs.

43, 45, and 46 are collected to form an s×3 matrix (M(g)
G ) for gross enumerations, i.e.,

M(g)
G =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

achiral chiral total

G1 ∑∀ia m1ia ∑∀ie m1ie ∑s
i=1 m1i

G2 ∑∀ia m2ia ∑∀ie m2ie ∑s
i=1 m2i

... · · · · · · · · ·
G j ∑∀ia m jia ∑∀ie m jie ∑s

i=1 m ji
... · · · · · · · · ·
Gs ∑∀ia msia ∑∀ie msie ∑s

i=1 m ji

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(47)

Thereby, Eqs. 43, 45, and 46 are summarized into a single vector-matrix formulation:(
B(a)

θ ,B(e)
θ ,Bθ

)
= (ρθ1,ρθ2, . . . ,ρθ j, . . . ,ρθs)×M(g)

G (48)

This equation corresponds to Eq. 33, where the inverse matrix M−1
G is replaced by the gross-

enumeration matrix M(g)
G . Note that M(g)

G is derived from M−1
G .

The row vector in the left-hand side of Eq. 48 is called a gross restricted isomer-counting
vector (GRICV) represented by RICV(g) (= (B(a)

θ ,B(e)
θ ,Bθ )). The row vector in the right-hand

side of Eq. 48 is called a restricted fixed-point vector (RFPV), which is equal to the counter-

part of Eq. 33. Then, Eq. 48 is symbolically represented as RICV(g) = RFPV×M(g)
G . When

various formulas for [θ ] are considered, the GRICV (RICV(g)) and the RFPV in Eq. 48 can be

transformed into a gross restricted isomer-counting matrix (GRICM) represented by the sym-

bol RICM(g) and a restricted fixed-point matrix (RFPM) respectively, where each GRICV and

each RFPV are row vectors of the respective matrices. Then, the resulting matrix calculation is

symbolically represented as RICM(g) = RFPM×M(g)
G .

It should be noted that Eq. 48 holds true even if the RFPV (=(ρθ1,ρθ2, . . . ,ρθ j, . . . ,ρθs)) and

the RICV(g) are changed into an unrestricted (usual) FPV and an unrestricted counterpart (i.e.,

ICV) respectively, because the gross-enumeration matrix M(g)
G (Eq. 47) can be used commonly.

The data of M−1
D3h

in Eq. 22 are converted into the corresponding matrix M(g)
D3h

for gross

enumerations as follows:
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M(g)
D3h

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

achiral chiral total

C1 0 1
12

1
12

C2 0 1
4

1
4

Cs
1
2 − 1

4
1
4

C′s 1
6 − 1

12
1

12

C3 0 1
6

1
6

C2v 0 0 0

C3v 0 0 0

C3h
1
3 − 1

6
1
6

D3 0 0 0

D3h 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(49)

Note that the four subgroups, C1, C2, C3, and D3, are chiral, while the six subgroups, Cs, C′s,
C2v, C3v, C3h, and D3h, are achiral.

By using the fixed-point matrix shown in Eq. 41, the gross enumeration corresponding to

the itemized enumeration shown in Eq. 42 can be conducted so as to give the following gross

restricted isomer-counting matrix (ICM
(g)
2 ):

ICM
(g)
2 = FPM2×M(g)

D3h
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

achiral chiral total

[θ ]2 1 0 1

[θ ]3 2 0 2

[θ ]4 3 1 4

[θ ]1 2 0 2

[θ ]5 3 1 4

[θ ]6 4 8 12

[θ ]7 6 6 12

[θ ]8 4 16 20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(50)

For example, the right part of Fig. 4 verifies the [θ ]4-row of the ICM shown in Eq. 50. Thus,

there are three achiral derivatives (28, 29, and 30), one enantiomeric pair of 26/26, and totally

four derivatives.

5 Conclusion
The USCI approach is extended to be capable of combinatorial enumerations of 3D structures

or graphs under a restricted condition, where orbits of vertices and edges interact each other.

Territory indicators of vertices or edges are defined to convert SCI-CFs (for an unrestricted

condition) into restricted SCI-CFs, by which the interaction of adjacent edges or the interaction

between a vertex and its incident edge is avoided. The extension of the FPM method among the

four methods of the USCI approach is mainly discussed in this paper.
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Birkhäuser, Boston (1983).
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