
Restricted Enumerations by the
Unit-Subduced-Cycle-Index (USCI) Approach. I.

Factorization of Subduced Cycle Indices

Shinsaku Fujita

Shonan Institute of Chemoinformatics and Mathematical Chemistry,

Kaneko 479-7 Ooimachi, Ashigara-Kami-Gun, Kanagawa-Ken,

258-0019 Japan

E-mail: shinsaku fujita@nifty.com

(Received September 1, 2011)

Abstract

In order to treat steric hindrance due to monodentate and bidentate ligands in iso-

mer enumeration, the partial-cycle-index (PCI) method of the unit-subduced-cycle-index

(USCI) approach is extended to enumerate derivatives by taking restricted modes of vertex

and/or edge substitutions into consideration. Factorization of subduced cycle indices with

chirality fittingness (SCI-CFs), which are calculated by starting from unit subduced cycle

indices with chirality fittingness (USCI-CFs) assigned to respective subgroups of the group

of a given skeleton, is discussed to generate restricted SCI-CFs. The restricted SCI-CF

for each subgroup is effective to evaluate the numbers of fixed points (promolecules) on

the action of the subgroup under the restricted conditions of enumeration. The set of the

restricted SCI-CFs is multiplied by the inverse mark table to generate partial cycle indices

with chirality fittingness (PCI-CFs), by which itemized enumerations for every subgroups

are conducted under the restricted conditions. Several results starting from an icosahedral

skeleton are discussed to examine differences between unrestricted and restricted enumer-

ations.
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1 Introduction
As found in our monographs [1, 2], we are investigating the developments and applications of

the unit-subduced-cycle-index (USCI) approach, where the concepts of subduction of coset rep-
resentations and sphericities are integrated to develop the concept of unit subduced cycle indices
without and with chirality fittingness (USCIs and USCI-CFs). Thereby, the USCI approach

mainly supports four methods of symmetry-itemized enumeration of chemical compounds:

1. the fixed-point matrix (FPM) method [3–5] based on generating functions derived from

subduced cycle indices (SCIs) and mark tables,

2. the partial-cycle-index (PCI) method [6, 7] based on generating functions derived from

partial cycle indices (PCIs),

3. the elementary superposition method [8], and

4. the partial superposition method [6, 8].

These methods regard substitution sites (positions, bonds, etc.) in a skeleton as an assembly

of orbits which exhibit independent behaviors, where SCIs (or SCI-CFs) are derived to be a

product of USCIs (or USCI-CFs) assigned to the respective orbits. Such independent behaviors,

however, are not always assured because substitution sites can interact one another (e.g., the

interaction between positions and bonds). Hence, it is desirable to develop new methodology

for examining restricted cases caused by such interactions.

Recently, Rosenfeld and Klein have developed a versatile method for investigating such

restricted cases [9], where Pólya’s cycle indices [10, 11] are refined [12] and integrated with the

inclusion-exclusion procedure [13]. The articles on this method [9] have prompted us to report

an extended version of the USCI approach for examining restricted cases.

Hence, the purpose of the present article is to develop such an extended version of the

USCI approach, where ligands and derivative are considered to have three-dimensional (3D)

structures. The concepts of proligands and promolecules have been coupled with the concept

of chirality fittingness to permit us to enumerate restricted cases of chemical compounds as 3D

structures. In particular, the PCI method is extended to be applicable to such restricted cases by

calculating restricted SCI-CFs.

2 Partial Cycle Indices with Chirality Fittingness

2.1 Enumeration Without Restrictions
The USCI approach precedently calculates USCI-CFs, i.e. ZC(G(/Gi) ↓ G j;$

(iα)
d jk

), in accord

with Eq. 19.4 due to Def. 9.3 of [1]. Such precalculated USCI-CFs (or USCIs) are collected in

a tabular form to generate a USCI-CF table for each point group, e.g., Appendices D and E of

[1]. To enumerate derivatives by starting from a given skeleton, its substitution sites (vertices,

edges, etc.) to be considered are categorized into an assembly of orbits, which are assigned to

coset representations G(/Gi) distinguished by the superscript (iα). According to Def. 19.3 of

[1], A product of USCI-CFs for each subgroup G j is calculated with respect to an assembly of
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Figure 1: An icosahedral skeleton for B12H−2
12 and alkyl substituents

orbits, so as to generate the corresponding SCI-CF for the assembly of orbits at issue:

SCI-CF(G j;$
(iα)
d jk

) =
s

∏
i=1

αi

∏
α=1
αi �=0

ZC(G(/Gi) ↓G j;$
(iα)
d jk

). (1)

The PCI method of the USCI approach uses PCI-CFs for respective subgroups Gi, which

are calculated by virtue of Def. 19.6 of [1], as follows:

PCI-CF(Gi;$
(iα)
d jk

) =
s

∑
j=1

m jiSCI-CF(G j;$
(iα)
d jk

), (2)

where the symbol m ji represents the j-th element of the Gi-column of the inverse mark table of

G group. The symbol $
(iα)
d jk

denotes a(iα)
d jk

for a homospheric orbit, c(iα)
d jk

for an enantiospheric

orbit, or b(iα)
d jk

for an hemispheric orbit, which decides a mode of substitution in terms of chirality

fittingness [1].

For example, let us enumerate derivatives by starting from an icosahedral skeleton (1), which

corresponds to a dodecahydro-close-dodecaborate(2-) ion ([B12H12]−2). The numbering of the

12 vertices of 1 is adopted in accord with Section I-2.14 of the IUPAC Recommendations 1990

[14]. Suppose that hydrogen atoms selected from the 12 vertices are replaced by an appropriate

set of ligands.

The basic data of Ih, i.e., the mark table, its inverse, and the USCI-CF table, have already

been reported in [15] for the purpose of enumerating by starting from skeletons of Ih. Several

coset representations of Ih have been already used for combinatorial enumeration, e.g., Ih(/C3v)
for the 20 vertices of dodecahedrane [15], Ih(/Cs) for the 60 vertices [16] and for the 60 [6:5]-

edges of the fullerene C60 (saccerane), and Ih(/C2v) for the 30 [6:6]-edges of fullerene C60

[17].

The 12 vertices of 1 are equivalent to generate an orbit governed by the coset representation

Ih(/C5v), where the point group Ih represents the global symmetry of 1 and the subgroup C5v
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Table 1: USCI-CFs and Restricted SCI-CFs for Ih(/C5v)

subgroup subduction SCI-CF
SCI-CF

G j Ih(/C5v) ↓G j (USCI-CF)

C1 12C1(/C1) b12
1 1 + 12b1 + 36b2

1 + 20b3
1

C2 6C2(/C1) b6
2 1 + 4b2

Cs 4Cs(/C1)+ 4Cs(/Cs) a4
1c4

2 1 + 4a1 + 4a2
1 + 2c2 + 4a1c2

Ci 6Ci(/C1) c6
2 1 + 6c2

C3 4C3(/C1) b4
3 1 + 2b3

D2 3D2(/C1) b3
4 1

C2v C2v(/C1)+ 2C2v(/Cs)+ 2C2v(/C′s) a4
2c4 1 + 2a2

C2h 2C2h(/C1)+ 2C2h(/Cs) a2
2c2

4 1 + 2a2

C5 2C5(/C1)+ 2C5(/C5) b2
1b2

5 1 + 2b1 + b2
1

D3 2D3(/C1) b2
6 1

C3v 4C3v(/Cs) a4
3* 1 + 2a3

C3i 2C3i(/C1) c2
6 1

D2h D2h(/Cs)+ D2h(/C′s)+ D2h(/C′′s ) a3
4 1

D5 D5(/C1)+ D5(/C5) b2b10 1 + b2

C5v 2C5v(/Cs)+ 2C5v(/C5v) a2
1a2

5 1 + 2a1 + a2
1

C5i C5i(/C1)+ C5i(/C5) c2c10 1 + c2

T T(/C1) b12 1

D3d 2D3d(/Cs) a2
6 1

D5d D5d(/Cs)+ D5d(/C5v) a2a10* 1 + a2

Th Th(/Cs) a12 1

I I(/C5) b12 1

Ih Ih(/C5v) a12 1

* Corrected data for Table 3 of [15].

represents the local symmetry of each vertex (|Ih|/|C5v|= 120/10 = 12). The Ih(/C5v)-row of

the USCI-CF table of Ih (Table 3 of [15]) is cited at the SCI-CF-column of Table 1, because the

presence of a single orbit in 1 permits us to adopt USCI-CFs as SCI-CFs.

The Ih(/C5v)-row of the USCI-CF table as a hypothetical vector (i.e., a transposed vector of

the SCI-CF-column of Table 1) is multiplied by each column of the inverse mark table (Table 2

of [15]). Thereby, the following PCI-CFs for every subgroups are generated as follows:

PCI-CF1(C1,$d) =
1

120
b12

1 −
1

8
b6

2−
1

8
a4

1c24− 1

120
c6

2−
1

12
b4

3 +
1

12
b3

4 +
1

4
a4

2c4 +
1

4
a2

2c2
4

− 1

20
b2

1b2
5 +

1

4
b2

6 +
1

4
a4

3 +
1

12
c2

6−
1

3
a3

4 +
1

4
b2b10 +

1

4
a2

1a2
5 +

1

20
c2c10

+
1

6
b12− 1

2
a2

6−
1

2
a2a10− 1

6
a12− 1

2
b12 +

1

2
a12 (3)

PCI-CF1(C2,$d) =
1

4
b6

2−
1

4
b3

4−
1

4
a4

2c4− 1

4
a2

2c2
4−

1

2
b2

6 +
1

2
a3

4−
1

2
b2b10

+
1

2
a2

6 +
1

2
a2a10 + b12−a12 (4)

PCI-CF1(Cs,$d) =
1

4
a4

1c24− 1

2
a4

2c4− 1

4
a2

2c2
4−

1

2
a4

3 +
1

2
a3

4−
1

2
a2

1a2
5
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+
1

2
a2

6 +
1

2
a2a10 (5)

PCI-CF1(Ci,$d) =
1

60
c6

2−
1

4
a2

2c2
4−

1

6
c2

6 +
1

6
a3

4−
1

10
c2c10

+
1

2
a2

6 +
1

2
a2a10 +

1

3
a12−a12 (6)

PCI-CF1(C3,$d) =
1

4
b4

3−
1

4
b2

6−
1

4
a4

3−
1

4
c2

6−
1

2
b12 +

1

2
a2

6 +
1

2
a12 +

1

2
b12− 1

2
a12 (7)

PCI-CF1(D2,$d) =
1

6
b3

4−
1

6
a3

4−
1

6
b12 +

1

6
a12 (8)

PCI-CF1(C2v,$d) =
1

2
a4

2c4− 1

2
a3

4 (9)

PCI-CF1(C2h,$d) =
1

2
a2

2c2
4−

1

2
a3

4−a2
6−a2a10 + 2a12 (10)

PCI-CF1(C5,$d) =
1

4
b2

1b2
5−

1

4
b2b10− 1

4
a2

1a2
5−

1

4
c2c10 +

1

2
a2a10 (11)

PCI-CF1(D3,$d) =
1

2
b2

6−
1

2
a2

6−
1

2
b12 +

1

2
a12 (12)

PCI-CF1(C3v,$d) =
1

2
a4

3−
1

2
a2

6 (13)

PCI-CF1(C3i,$d) =
1

2
c2

6−
1

2
a2

6−a12 + a12 =
1

2
c2

6−
1

2
a2

6 (14)

PCI-CF1(D2h,$d) =
1

3
a3

4−
1

3
a12 (15)

PCI-CF1(D5,$d) =
1

2
b2b10− 1

2
a2a10− 1

2
b12 +

1

2
a12 (16)

PCI-CF1(C5v,$d) =
1

2
a2

1a2
5−

1

2
a2a10 (17)

PCI-CF1(C5i,$d) =
1

2
c2c10− 1

2
a2a10 (18)

PCI-CF1(T,$d) =
1

2
b12− 1

2
a12− 1

2
b12 +

1

2
a12 = 0 (19)

PCI-CF1(D3d,$d) = a2
6−a12 (20)

PCI-CF1(D5d,$d) = a2a10−a12 (21)

PCI-CF1(Th,$d) = a12−a12 = 0 (22)

PCI-CF1(I,$d) =
1

2
b12− 1

2
a12 (23)

PCI-CF1(Ih,$d) = a12 (24)

Let us now consider a ligand inventory L:

L = {H,X,p,p} (25)

where the symbol X denotes a tert-butyl ligand (2) as an achiral ligand and a pair of p and p

represents an enantiomeric pair of sec-butyl ligands (3 and 3). Then, suppose that these ligands

can be freely attached to the 12 vertices of 1 without considering steric hindrance. The following

inventory functions are derived in accord with Theorem 19.6 of [1]:

ad = 1 + Xd (26)
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bd = 1 + Xd + pd + pd (27)

cd = 1 + Xd + 2pd/2pd/2 (28)

Note that the designation of a hydrogen atom contained in the ligand inventory L (Eq. 25) is

omitted according to chemical conventions, where the term (1) in the right-hand side of each

inventory function corresponds to 1d (i.e., H = 1 for Hd).

These inventory functions (Eqs. 26–28) are introduced into the PCI-CFs (Eqs. 3–24). The

resulting equations are expanded to provide generating functions for giving isomer numbers

of respective subgroups. Although the full list of the generation functions is omitted, only the

generating functions of the point groups Cs (Eqs. 26–28 into Eq. 5), C3v (Eqs. 26–28 into Eq.

13), and D2h (Eqs. 26–28 into Eq. 15) as typical examples of such expansions are shown for the

sake of below-mentioned discussions:

f1(Cs) = 2pp + 8Xpp + 3X3 + 4p2p2 + 18X2pp + 5X4 + 24Xp2p2 + 32X3pp

+ 9X5 + 8p3p3 + 42X2p2p2 + 44X4pp + 2X6 + 32Xp3p3

+ 72X3p2p2 + 48X5pp + 9X7 + 3p4p4 + 56X2p3p3

+ 76X4p2p2 + 44X6pp + 5X8 + 16Xp4p4 + 64X3p3p3

+ 72X5p2p2 + 32X7pp + 3X9 + 22X2p4p4 + 56X4p3p3

+ 42X6p2p2 + 18X8pp + 16X3p4p4 + 32X5p3p3 + 24X7p2p2

+ 8X9pp + 3X4p4p4 + 8X6p3p3 + 4X8p2p2 + 2X10pp (29)

f1(C3v) = 2X3 + 2X6 + 2X9 (30)

f1(D2h) = X4 + X8 (31)

To illustrate the results shown in Eqs. 29–31, Fig. 2 shows three Cs-derivatives (4–6 for

the term 3X3), two C3v-derivatives (7 and 8 for the term 2X3), and one D2h-derivative (9 for

the term X4), where we do not take account of steric hindrance due to branching in tert-butyl

groups (X’s represented by open circles). In other words, two tert-butyl groups are presumed to

be able to occupy two adjacent positions of the icosahedral skeleton (1).

2.2 Enumeration With Restrictions
2.2.1 SCI-CFs and PCI-CFs for Restricted Cases

Let us next consider restricted cases, in which the adjacency of bulky tert-butyl ligands is not

permitted. For example, 4–6 (Cs), 8 (C3v), and 9 (D2h) are rejected, not to be counted under

the condition of the restriction. To investigate such restricted cases, the SCI-CF shown by Eq.

1 should be restricted to give a restricted subduced cycle index with chirality fittingness, i.e.,

SCI-CF. To obtain a restricted SCI-CF (SCI-CF), the corresponding SCI-CF is factorized into

several monomials which match the restriction to be considered. Before a general formula-

tion for representing such factorization is shown, practical procedures are illustrated below to

formulate restricted SCI-CFs concretely.

Each SCI-CF (based on USCI-CFs) for a subgroup Gi works as a tool to evaluate the number

of fixed points (or objects, e.g., promolecules in the USCI approach) under unrestricted cases.

On the same line, each restricted SCI-CF for a subgroup Gi can be used to evaluate the number

of fixed points (or objects) under restricted cases. This means that, in a similar way to the
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Figure 2: Three Cs- and two C3v-derivatives of X3 as well as a D2h-derivative of X4, where

substitution modes of achiral ligands (X’s denoted by open circles) are examined without con-

sidering steric hindrance.

PCI-CF, Eq. 2 can be rewritten to give the corresponding restricted PCI-CF (PCI-CF):

PCI-CF(Gi;$
(iα)
d jk

) =
s

∑
j=1

m jiSCI-CF(G j;$
(iα)
d jk

) (32)

The restricted PCI-CF (Eq. 32) can be used in place of the PCI-CF of Theorem 19.6 [1], where

inventory functions for introducing into $
(iα)
d jk

should be adopted to match such restricted cases.

2.2.2 Factorization of SCI-CFs into Restricted SCI-CFs

Let us continue the enumeration problem by starting the icosahedral skeleton (1). The unre-

stricted SCI-CFs listed in the SCI-CF-column of Table 1 are factorized into a set of monomials

which match the restriction due to steric hindrance. For example, Fig. 3 illustrates the pro-

cedure for factorizing the SCI-CF of Cs (a4
1c4

2), where a4
1 corresponds to four one-membered

homospheric orbits, i.e., {1}, {2}, {9}, and {12}, while c4
2 corresponds to four two-membered

enantiospheric orbits, i.e., {3,6}, {4,5}, {7,11}, and {8,10}. These orbits are fixed under the

action of the point group Cs, because the mirror plane of the Cs is selected to contain vertices

1, 2, 9 and 12.

Let us consider the number (n) of ligands for substitution, where the remaining 12−n posi-

tions accommodate hydrogens to be characterized by 1. For the case of n = 0, the factorization

of a4
1c4

2 results in 1 (= 14× (12)4), which corresponds to 10. Note that 10 is fixed under Cs.
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For the case of n = 1, the SCI-CF a4
1c4

2 is factorized into a monomial a1 (= a1× 13× (12)4),

which corresponds to four derivatives (11–14) fixed under Cs. For the case of n = 2, the SCI-CF

a4
1c4

2 is factorized into a2
1 (= a2

1×12× (12)4) or c2 (=14×c2× (12)3). The former monomial a2
1

corresponds to four derivatives (15–18) fixed under Cs, where the adjacency of bulky tert-butyl

ligands or sec-butyl ligands is rejected because of steric hindrance. On a similar line, the latter

monomial c2 corresponds to two derivatives (19 and 20) fixed under Cs. For the case of n = 3,

the factorization of a4
1c4

2 results in a3
1 (= a3

1×11× (12)4) or a1c2 (= a1×13× c2× (12)3). The

former monomial a3
1 is rejected because of steric hindrance. The latter monomial a1c2 corre-

sponds to four derivatives (21–24) which are allowed and fixed under Cs. Obviously, there are

no cases of n≥ 4, because any derivatives of n≥ 4 are not free from the adjacency of bulky lig-

ands. Finally, the sum of these monomials (1+4a1 +4a2
1 +2c2 +4a1c2) represents the restricted

SCI-CF of the subgroup Cs.

Similar procedures for testing factorization and matching are repeated to cover all cases of

respective subgroups. The resulting restricted SCI-CFs of respective subgroups are collected in

the SCI-CF-column of Table 1.

2.2.3 Systematic Factorization of SCI-CFs into Restricted SCI-CFs

The above-mentioned procedure for the factorization of SCI-CFs into restricted SCI-CFs is

rather empirical because it is based on a trial-error inspection of fixed molecules, as exemplified

by Fig. 3. To pursue a systematic method for the factorization of SCI-CFs, let us examine the

unrestricted (usual) SCI of Cs, a4
1c4

2, from an alternative point of view by referring to Fig. 3.

Each orbit characterized by a sphericity index (SI), i.e., a1 and c2, is linked to a set of equivalent

vertices:

a4
1: four one-membered orbits {1}, {2}, {9}, {12}

c4
2: four two-membered orbits {3,6}, {4,5}, {7,11}, {8,10}

In order to correspond the one-membered orbits (a1) to the vertices {1}, {2}, {9}, and {12}
as substitution sites, let us introduce a dummy variable xi for indicating the occupation of the

vertex {i}. Thereby, the correspondence of the orbits to substitution sites are represented by

a1x1, a1x2, a1x9, and a1x12. On a similar line, the two-membered orbits (c2) are expressed by

c2x3x6, c2x4x5, c2x7x11, and c2x8x10. These expressions are applied to characterize 4 (as a fixed

promolecule to be rejected) and 11 (as a fixed promolecule to be accepted) as follows:

4 (a1x1)(c2x7x11) = a1c2 · x1x7x11 (to be rejected)

11 (a1x12)(c2x3x6) = a1c2 · x3x6x12 (to be accepted)

where the SIs and their correspondence to vertices (substitution sites) are specified. Because the

parts of dummy variables, x1x7x11 and x3x6x12, indicate substituted vertices as territories of the

remaining parts of SIs (both a1c2), the former are called territory indicator (TI) and the whole

are called restricted SCI-CFs with a territory indicator. The rejection of 4 is decided by means

of the territory indicator x1x7x11, because of the coexistence of x7 and x11, where vertices 7 and

11 are adjacent. On the other hand, the acceptance of 11 is decided by the territory indicator

x3x6x12 because vertices 3, 6, and 12 are not adjacent to one another.

Such monomials with TIs (e.g., (a1x1)(c2x7x11) and (a1x12)(c2x3x6)) can be generated ex-

haustively by considering

DSCI-CFCs = (1 + a1x1)(1 + a1x2)(1 + a1x9)(1 + a1x12)
× (1 + c2x3x6)(1 + c2x4x5)(1 + c2x7x11)(1 + c2x8x10), (33)
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Figure 3: Fixed promolecules on the action of Cs, the mirror plane of which contains vertices

1, 2, 9, and 12. Their restricted monomials are shown in the leftmost columns, where the sum

(1 + 4a1 + 4a2
1 + 2c2 + 4a1c2) represents the restricted SCI-CF of the subgroup Cs.
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which stems from the unrestricted (usual) SCI of Cs, a4
1c4

2. Note that 1 in each pair of paren-

theses represents no selection of the SI at issue (among four a1’s and four c2’s). For ex-

ample, (a1x1)(c2x7x11) is generated by putting 1 + a1x2 = 1, 1 + a1x9 = 1, 1 + a1x12 = 1,

1 + c2x3x6 = 1, 1 + c2x4x5 = 1, and 1 + c2x8x10 = 1, where these replacements mean that the

orbits at issue are not taken into consideration. Each monomial generated by the expansion of

Eq. 33 (e.g., (a1x1)(c2x7x11) or (a1x12)(c2x3x6)) is examined whether or not its TI part exhibits

the coexistence of adjacent vertices. If the coexistence of adjacent vertices is detected (e.g.,

(a1x1)(c2x7x11)), the monomial at issue is discarded.

The discussions in the preceding paragraphs are generalized to characterize a given suborbit

Δ
(iα)
jkβ , where a dummy variable is assigned to show the territory of each participating vertex,

i.e., xi for a vertex {i}. The number of the vertices at issue is presumed to be v. Then, a territory

indicator for the suborbit is defined as a product of such dummy variables as follows:

t(iα)
jk (x1, . . . ,xv), (34)

which consists of x1, x2, . . ., xv in accord with the objects of the suborbit Δ
(iα)
jkβ . We assign

$
(iα)
d jk

t(iα)
jk (x1, . . . ,xv) to the suborbit Δ

(iα)
jkβ . For the purpose of judging whether or not the suborbit

is used for enumeration, the term 1 + $
(iα)
d jk

t(iα)
jk (x1, . . . ,xv) is introduced into the original $

(iα)
d jk

of the SCI-CF (Eq. 1), where the replacement of $
(iα)
d jk

by 1 + $
(iα)
d jk

t(iα)
jk (x1, . . . ,xv) means that

the corresponding suborbit Δ
(iα)
jkβ is taken into no consideration (the former term 1) or into

consideration (the latter term) during the process of enumeration. Thereby, a discriminant of

SCI-CF denoted by the symbol DSCI-CF is defined as follows:

Definition 1 The discriminant of the SCI-CF (Eq. 1) is defined as follows:

DSCI-CF(G j;$
(iα)
d jk

,x1,x2, . . . ,xv) =
s

∏
i=1

αi

∏
α=1
αi �=0

ZC(G(/Gi) ↓G j;$
(iα)
d jk

)

∣∣∣∣∣
$

(iα)
d jk

=1+$
(iα)
d jk

t(iα)
jk (x1,...,xv)

(35)

As an example, the discriminant of the SCI-CF for Cs has already shown in Eq. 33. The expan-

sion of the right-hand side of Eq. 35 generates a polynomial, where each component monomial

indicates a product of SIs ($
(iα)
d jk

) as well as the corresponding product of territory indicators.

An adjacency set (AS) of vertices is defined as follows:

AS = {{k, l} | for all adjacent vertices k and l}, (36)

which is a set of all edges in most cases. The process described above can be conducted by the

following lemma:

Lemma 1 (Restricted SCI-CFs) Among the monomials contained in the discriminant gener-

ated by Def. 1, monomials signified by a TI which contains no adjacent vertices are selected by

means of the following equation:

SCI-CF(G j;$
(iα)
d jk

) = DSCI-CF(G j;$
(iα)
d jk

,x1,x2, . . . ,xv)

∣∣∣∣∣ xkxl=0 | ∀{k,l}∈AS
then xi=1(i=1,...v)

(37)

where the TI part of each selected monomial is replaced by 1 (no appearance) in the last opera-

tion (i.e., “then xi = 1(i = 1, . . .v)”).
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The proof is obvious by the above-described example. The restricted SCI-CF (Eq. 37) is

used to define the corresponding PCI-CF by virtue of Eq. 32.

As for the unrestricted (usual) SCI of Cs, a4
1c4

2, its discriminant according to Def. 1 (Eq. 35)

has been already shown in Eq. 33. The AS for the present case contains all the pairs of vertices

corresponding to the 30 edges of the icosahedral skeleton (1):

AS = {{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,6},{2,7},{2,11},
{3,4},{3,7},{3,8},{4,5},{4,8},{4,9},{5,6},{5,9},{5,10},
{6,10},{6,11},{7,8},{7,11},{7,12},{8,9},{8,12},
{9,10},{9,12},{10,11},{10,12},{11,12}}. (38)

The discriminant shown in Eq. 33 is expanded and treated by the operation represented by

xkxl = 0 | ∀{k, l} ∈ AS in Eq. 37. For practical purposes, all of the monomials containing xkxl
(∀{k, l} ∈AS) are detected and removed from the original discriminant (cf. the Maple program

shown in the Appendix), so as to leave the following polynomial:

1 +{a1x1 + a1x2 + a1x9 + a1x12}+{a2
1x1x12 + a2

1x2x9 + a2
1x1x9 + a2

1x2x12}
+{c2x3x6 + c2x8x10}+{a1c2x12x3x6 + a1c2x9x3x6 + a1c2x1x8x10 + a1c2x2x8x10}. (39)

When we examine the TI parts of Eq. 39, a set of monomials in each pair of braces of Eq.

39 corresponds to the set of fixed promolecules shown in each row of Fig. 3. Subsequently,

according to Eq. 37, we place xi = 1(i = 1,2, . . . ,12) in Eq. 39 so as to give

SCI-CF(Cs;$d) = 1 + 4a1 + 4a2
1 + 2c2 + 4a1c2, (40)

which is identical with the restricted SCI-CF for Cs listed in Table 1. Similarly, the procedure

based on Lemma 1 is repeated to cover all cases of respective subgroups. The resulting restricted

SCI-CFs of respective subgroups are collected in the SCI-CF-column of Table 1.

The above-mentioned procedures of the systematic factorization of SCI-CFs into restricted

SCI-CFs are programmed by using the Maple programming language [18]. The source list of a

sample program (named “isocaResA.mpl”) for obtaining the restricted SCI-CFs (the SCI-CF-

column of Table 1) is attached below as an Appendix.

2.2.4 Restricted PCI-CFs Derived From Restricted SCI-CFs

According to Eq. 32, restricted PCI-CFs (PCI-CF) for respective subgroups are calculated by

starting from the restricted SCI-CFs collected in the SCI-CF-column of Table 1:

PCI-CF1(C1,$d) =
1

120
(1 + 12b1 + 36b2

1 + 20b3
1)− 1

8
(1 + 4b2)

− 1

8
(1 + 4a1 + 4a2

1 + 2c2 + 4a1c2)− 1

120
(1 + 6c2)− 1

12
(1 + 2b3)

+
1

12
(1)+

1

4
(1 + 2a2)+

1

4
(1 + 2a2)− 1

20
(1 + 2b1 + b2

1)+
1

4
(1)

+
1

4
(1 + 2a3)+

1

12
(1)− 1

3
(1)+

1

4
(1 + b2)+

1

4
(1 + 2a1 + a2

1)

+
1

20
(1 + c2)+

1

6
(1)− 1

2
(1)− 1

2
(1 + a2)− 1

6
(1)− 1

2
(1)+

1

2
(1)
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=
1

4
b2

1 +
1

6
b3

1−
1

2
a1c2− 1

4
b2− 1

4
a2

1−
1

4
c2− 1

6
b3 +

1

2
a2 +

1

2
a3 (41)

PCI-CF1(C2,$d) =
1

4
(1 + 4b2)− 1

4
(1)− 1

4
(1 + 2a2)− 1

4
(1 + 2a2)− 1

2
(1)+

1

2
(1)

− 1

2
(1 + b2)+

1

2
(1)+

1

2
(1 + a2)+(1)− (1)

=
1

2
b2− 1

2
a2 (42)

PCI-CF1(Cs,$d) =
1

4
(1 + 4a1 + 4a2

1 + 2c2 + 4a1c2)− 1

2
(1 + 2a2)− 1

4
(1 + 2a2)

− 1

2
(1 + 2a3)+

1

2
(1)− 1

2
(1 + 2a1 + a2

1)+
1

2
(1)+

1

2
(1 + a2)

=
1

2
a2

1 +
1

2
c2 + a1c2−a2−a3 (43)

PCI-CF1(Ci,$d) =
1

60
(1 + 6c2)− 1

4
(1 + 2a2)− 1

6
(1)+

1

6
(1)− 1

10
(1 + c2)

+
1

2
(1)+

1

2
(1 + a2)+

1

3
(1)−1 = 0 (44)

PCI-CF1(C3,$d) =
1

4
(1 + 2b3)− 1

4
(1)− 1

4
(1 + 2a3)− 1

4
(1)− 1

2
(1)

+
1

2
(1)+

1

2
(1)+

1

2
(1)− 1

2
(1) =

1

2
b3− 1

2
a3 (45)

PCI-CF1(D2,$d) =
1

6
(1)− 1

6
(1)− 1

6
(1)+

1

6
(1) = 0 (46)

PCI-CF1(C2v,$d) =
1

2
(1 + 2a2)− 1

2
(1) = a2 (47)

PCI-CF1(C2h,$d) =
1

2
(1 + 2a2)− 1

2
(1)−1− (1 + a2)+ 2(1) = 0 (48)

PCI-CF1(C5,$d) =
1

4
(1 + 2b1 + b2

1)− 1

4
(1 + b2)− 1

4
(1 + 2a1 + a2

1)

− 1

4
(1 + c2)+

1

2
(1 + a2)

=
1

2
b1 +

1

4
b2

1−
1

4
b2− 1

2
a1− 1

4
a2

1−
1

4
c2 +

1

2
a2 (49)

PCI-CF1(D3,$d) =
1

2
(1)− 1

2
(1)− 1

2
(1)+

1

2
(1) = 0 (50)

PCI-CF1(C3v,$d) =
1

2
(1 + 2a3)− 1

2
(1) = a3 (51)

PCI-CF1(C3i,$d) =
1

2
(1)− 1

2
(1)−1 + 1 = 0 (52)

PCI-CF1(D2h,$d) =
1

3
(1)− 1

3
(1) = 0 (53)

PCI-CF1(D5,$d) =
1

2
(1 + b2)− 1

2
(1 + a2)− 1

2
(1)+

1

2
(1) =

1

2
b2− 1

2
a2 (54)

PCI-CF1(C5v,$d) =
1

2
(1 + 2a1 + a2

1)− 1

2
(1 + a2) = a1 +

1

2
a2

1−
1

2
a2 (55)

PCI-CF1(C5i,$d) =
1

2
(1 + c2)− 1

2
(1 + a2) =

1

2
c2− 1

2
a2 (56)
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PCI-CF1(T,$d) =
1

2
(1)− 1

2
(1)− 1

2
(1)+

1

2
(1) = 0 (57)

PCI-CF1(D3d,$d) = 1−1 = 0 (58)

PCI-CF1(D5d,$d) = (1 + a2)−1 = a2 (59)

PCI-CF1(Th,$d) = 1−1 = 0 (60)

PCI-CF1(I,$d) =
1

2
(1)− 1

2
(1) = 0 (61)

PCI-CF1(Ih,$d) = 1 (62)

2.2.5 Enumeration Results and Their Illustrations

For the purpose of conducting restricted enumeration by starting from the ligand inventory L
(Eq. 25), the inventory functions shown in Eqs. 26–28 are modified to match the condition of

restriction:

ad = Xd (63)

bd = Xd + pd + pd (64)

cd = Xd + 2pd/2pd/2 (65)

where the term (1) is omitted from the right-hand sides of Eqs. 26–28 to avoid the duplicated

evaluation of hydrogens. These inventory functions are introduced into the restricted PCI-CFs

shown in Eqs. 41–62. Then, the resulting equations are expanded so as to give the following

generating functions for every subgroups of Ih:

f1(C1) =
1

2
(Xp + Xp)+

1

2
(X2p + X2p)+

1

2
(Xp2 + Xp2)+

1

2
(p2p + Xpp2) (66)

f1(C2) =
1

2
(p2 + p2) (67)

f1(Cs) = pp + 2Xpp (68)

f1(Ci) = 0 (69)

f1(C3) =
1

2
(p3 + p3) (70)

f1(D2) = 0 (71)

f1(C2v) = X2 (72)

f1(C2h) = 0 (73)

f1(C5) =
1

2
(p + p)+

1

2
(Xp + Xp) (74)

f1(D3) = 0 (75)

f1(C3v) = X3 (76)

f1(C3i) = 0 (77)

f1(D2h) = 0 (78)

f1(D5) =
1

2
(p2 + p2) (79)

f1(C5v) = X (80)

f1(C5i) = pp (81)
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f1(T) = 0 (82)

f1(D3d) = 0 (83)

f1(D5d) = X2 (84)

f1(Th) = 0 (85)

f1(I) = 0 (86)

f1(Ih) = 1 (87)

It should be noted that each enantiomeric pair of chiral derivatives is counted once in the

form of such a term as 1
2(p2 + p2) (e.g., in Eq. 67). The zero values in Eq. 69 (Ci), Eq. 71 (D2),

Eq. 73 (C2h), Eq. 75 (D3), Eq. 77 (C3i), Eq. 78 (D2h), Eq. 82 (T), Eq. 83 (D3d), Eq. 85 (Ih), and

Eq. 86 (I) have already appeared in the level of restricted PCI-CFs (Eqs. 41–62). This means

that there are no derivatives of such subsymmetries even if the ligand inventory L is expanded

to contain other ligands.

Non-zero results shown in Eqs. 67–86 (except Eqs. 66 and 87) are illustrated in Fig. 4, where

ligands are represented by the symbols shown in Fig. 1. The following comments concerning

the derivatives shown in Fig. 4 should be added to examine the validity of the present restricted

enumeration.

The generating function of Cs (Eq. 68) indicates that there are one Cs-derivative with the

formula pp (i.e., 26) and two Cs-derivatives with the formula Xpp (i.e., 27 and 28). Note that

the mirror plane of the Cs selected to draw 26–28 contains vertices 1, 2, 9, and 12, and that each

pair of p and p constructs an enantiospheric orbit.

The exchange (permutation) of p and p causes an isomerization between 27 and 28, whereas

they are fixed (unchanged) under the action of the Cs. In other words, the relationship between

27 and 28 is a diastereomeric one, which is akin to a pseudoasymmetric case of CHXpp.

On the other hand, the Cs-derivative 26 is fixed under an exchange (permutation) between

p and p as well as under the action of Cs. Thus, the case of 26 is akin to such a degenerate case

as CH2pp derived from a tetrahedral skeleton (a methane skeleton). Note that the exchange

(permutation) between p and p in 26 is alternatively realized by a rotation around a three-fold

axis which runs through the centers of two trigonal faces (vertices 1, 4, and 5; vertices 7, 9, and

11).

It should be noted that the two Cs-derivatives (27 and 28) have an enantiomeric pair of

bulky sec-butyl ligands (p and p as chiral ligands in isolation). In other words, Eq. 68 (no

terms concerning X, X2, or X3) implicitly indicates that other Cs derivatives only with achiral

ligands (X’s) do not exist under the restricted condition for rejecting the adjacency of bulky

ligands. Compare this result with the corresponding unrestricted case calculated by Eq. 29,

which contains the term 3X3 corresponding to achiral ligands. These three Cs-derivatives have

already shown in Fig. 2 (4, 5, and 6), where they suffer from steric hindrance due to the

adjacency of bulky ligands.

Comparison between the term 8Xpp in Eq. 29 (unrestricted) and the term 2Xpp in Eq. 68

(restricted) indicates the presence of six Cs-derivatives characterized by at least one adjacency

of bulky ligands. Although their illustrations are omitted, they can be easily drawn by relating

them to 4, 5, and 8 illustrated in Fig. 2, where an adjacent pair of X’s is selected from three X’s

and replaced by a pair of p and p, so as to construct an enantiospheric orbit. Thus, the pair of

X’s at the positions {7,11} of 4, the pair of X’s at the positions {3,6} of 5, and the pair of X’s

at the positions {4,5} of 8 (the selection of {4,9} or {5,9} gives the same result) are selected

as such an adjacent pair. Note that there are two modes of replacement by each pair of p and p.
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Figure 4: Icosahedral derivatives with considering steric hindrance. For the symbols of ligands,

see Fig. 1.
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Thereby, we have 2×3 = 6, which corresponds to 8Xpp − 2Xpp = 6Xpp.

Among the two C3v-derivatives (7 and 8 in Fig. 2) corresponding to the term 2X3 of the

unrestricted calculation (Eq. 30), Fig. 4 depicts only 7 (= 31) in accord with the term X3 of the

restricted calculation (Eq. 76). Because any two X’s selected from 8 occupy an adjacent pair of

positions, the C3v-derivative 8 is rejected under the restriction condition.

The effect of the restriction condition is also found by comparing Eq. 78 (no term X4)

and Eq. 31 (the term X4). Thus, the D2h-derivative (9) shown in Fig. 2 is rejected under the

restriction condition due to steric hindrance.

3 PCI-CFs Derived From SCI-CFs for Two or More Orbits

3.1 Unrestricted Enumeration for Tow or More Orbits
Let us next consider the substitution of bulky bidentate ligands:

L′ = {Z,Z′, . . .} (88)

in addition to such bulky monodentate ligands as shown in the ligand inventory L (Eq. 25). For

the simplicity’s sake, we here take account of achiral bidentate ligands with no directions (i.e,

with symmetric constitutions such as —C(CH3)2——C(CH3)2—). In order that substitutions of

such bidentate ligands to edges are treated properly (in addition to substitutions of monodentate

ligands to the 12 vertices), the 30 edges of the icosahedral skeleton (1) along with the 12 vertices

are taken into consideration. The edges construct a thirty-membered orbit governed by a coset

representation Ih(/C2v) (|Ih|/|C2v| = 120/4 = 30). The corresponding USCI-CFs are cited

from the Ih(/C2v)-row of the USCI-CF table of Ih (Table 3 of [15]), as collected in the SCI-CF

(Edges)-column of Table 2. Table 2 also contains the USCI-CFs for Ih(/C5v) for substitution of

monodentate ligands to vertices in the SCI-CF (Vertices)-column. The two types of USCI-CFs

for each subgroup are multiplied to give corresponding SCI-CF. For example, the USCI-CF for

the 12 vertices (Ih(/C5v)) is a4
1c4

2 and the USCI-CF for the 30 edges (Ih(/C2v)) is a4
1c13

2 for the

subgroup Cs, so that the SCI-CF for the Cs is calculated to be a4
1c4

2 · ã4
1c̃13

2 , where tilde accents

are added to specify edge substitutions. Such SCI-CFs as obtained for every subgroups are

summed up according to Eq. 2 so as to give the corresponding PCI-CFs on a similar line to the

calculations of Eqs. 3–24.

The resulting PCI-CFs can be applied to unrestricted enumerations in a similar way to Sec-

tion 2.1, when the bulkiness of monodentate and bidentate ligands is tentatively disregarded.

Note that edge substitutions should take directions and chiralities of bidentate ligands into con-

sideration. Because this type of consideration is difficult to be treated, we here select achiral

bidentate ligands with no directions for the simplicity’s sake. As a result, the ligand inventory

for L′ (Eq. 88) is obtained as follows:

ãd = b̃d = c̃d = Zd + Z′d + · · · , (89)

which is used in addition to the ligand-inventory functions for monodentate ligands (Eqs.63–

65).
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Table 2: SCI-CFs and Restricted SCI-CFs for Vertices (Ih(/C5v)) and Edges (Ih(/C2v))

subgroup SCI-CF
SCI-CF

G j Vertices × Edges

C1 b12
1 b30

1 (1 + 12b1 + 36b2
1 + 20b3

1)
+(30b̃1 + 75b̃2

1)+(120b1 + 30b2
1)b̃1

C2 b6
2 b2

1b14
2 (1 + 4b2)+(2b̃1 + b̃2

1 + 6b̃2)+ 2b2b̃1

Cs a4
1c4

2 a4
1c13

2 (1 + 4a1 + 4a2
1 + 2c2 + 4a1c2)

+(4ã1 + 2ã2
1 + c̃2)+(8a1 + 2a2

1 + 2c2)ã1

Ci c6
2 c15

2 (1 + 6c2)+ 15c̃2

C3 b4
3 b10

3 1 + 2b3

D2 b3
4 b3

2b6
4 1 + 3b̃2

C2v a4
2c4 a2

1a2
2c6

4 (1 + 2a2)+(2ã1 + ã2
1 + 2c̃2)+ 2a2ã1

C2h a2
2c2

4 a2
2c2c6

4 (1 + 2a2)+(2ã2 + c̃2)
C5 b2

1b2
5 b6

5 1 + 2b1 + b2
1

D3 b2
6 b2

3b4
6 1

C3v a4
3* a4

3c3
6 1 + 2a3

C3i c2
6 c5

6 1

D2h a3
4 a3

2c3
8 1 + 3ã2

D5 b2b10 b2
5b2

10 1 + b2

C5v a2
1a2

5 a4
5c10 1 + 2a1 + a2

1

C5i c2c10 c5
10 1 + c2

T b12 b6b2
12 1

D3d a2
6 a2

6c6c12 1

D5d a2a10* a2
10c10 1 + a2

Th a12 a6c24 1

I b12 b30 1

Ih a12 a30 1

* Corrected data for Table 3 of [15].
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3.2 Restricted Enumeration for Two or More Orbits
3.2.1 Factorizations of SCI-CFs for Two or More Orbits

Suppose that bulky bidentate ligands selected from L′ (Eq. 88) are considered to occupy an

appropriate set of edges selected from 1 in addition to bulky monodentate ligands selected from

L (Eq. 25), where the bulkiness of such monodentate and bidentate ligands is taken into explicit

consideration. In other words, we consider a restriction condition that bulky bidentate ligands

of any pair and/or bulky monodentate ligands of any pair are not adjacent as well as each bulky

bidentate ligand is not adjacent to a ligand selected from L.

Let us continue and extend the restriction procedure shown in Fig. 3 for the subgroup Cs.

Because the present case is concerned both with vertices (for monodentate ligands) and edges

(for bidentate ligands), the factorization of the unrestricted SCI-CF, i.e., a4
1c4

2 · ã4
1c̃13

2 , should be

examined by considering three types of cases, i.e., cases with vertices only, cases with edges

only, and cases with interaction between vertices and edges.

First, the cases with vertices only are treated equally to Fig. 3, because the corresponding

factorization of a4
1c4

2 · (1̃4 · (1̃2)13) is essentially identical with that of a4
1c4

2. As found in Fig. 3,

the resulting polynomial, i.e.,

SCI-CF
(v)(Cs;$d, $̃d) = 1 + 4a1 + 4a2

1 + 2c2 + 4a1c2, (90)

is a vertex part of the restricted SCI-CF to be obtained for the subgroup Cs, where the symbol

$d represents ad , bd , or cd for vertex substitution, while the symbol $̃d represents ãd , b̃d , and c̃d
for edge substitution.

The second cases with edges only are treated as shown in Fig. 5. The unrestricted SCI-CF

a4
1c4

2 · ã4
1c̃13

2 is preliminarily restricted into (14 · (12)4) · ã4
1c̃13

2 = ã4
1c̃13

2 , which is further factor-

ized in the procedure shown in Fig. 5. Because the mirror plane of the Cs contains vertices 1,

2, 9, and 12, there are four edges, {{1,2}}, {{4,5}}, {{7,11}}, and {{9,12}}, each of which

constructs a one-membered orbit fixed under the action of the Cs. Hence, the factorization repre-

sented by (ã1
1) · 1̃3 · (1̃2)13 = ã1 corresponds to four promolecules (38–41) so that the monomial

4ã1 is assigned to them. Further the factorization represented by (ã2
1) · 1̃2 · (1̃2)13 = ã2

1 corre-

sponds to two promolecules (42 and 43) because of the restriction condition describe above. It

follows that the monomial 2ã2
1 is assigned to them.

The term c̃13
2 (among ã4

1c̃13
2 ) indicates that there are 13 pairs of edges, which respectively

construct two-membered orbits. Among them, only the orbit {{3,8},{6,10}} (corresponding

to 44) is fixed under the action of the Cs because the restriction condition describe above is

taken into consideration. The selection of 44 as a fixed promolecule is characterized by the

factorization 1̃4 · c̃2 · (1̃2)12 = c̃2.

The three modes of factorization shown in Fig. 5 are summarized to give an edge part of the

restricted SCI-CF to be obtained for the subgroup Cs:

SCI-CF
(e)(Cs;$d, $̃d) = 4ã1 + 2ã2

1 + c̃2, (91)

where tilde accents characterize edge substitutions.

The third cases with interaction between vertices and edges are treated as shown in Fig.

6. For cases of substituting one vertex and one edge under the restriction condition described

above, the unrestricted SCI-CF a4
1c4

2 · ã4
1c̃13

2 is factorized into a1
1 · 13 · (12)4 · ã1

1 · 1̃3 · (1̃2)13 =
a1ã1, which is assigned to each of eight promolecules 45–52. Hence, the monomial 8a1ã1 is

-280-



4ã1
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Figure 5: Promolecules with bidentate ligands, which are fixed on the action of Cs, where the

mirror plane at issue contains vertices 1, 2, 9, and 12. Their restricted monomials are shown in

the leftmost columns, where the sum (4ã1 + 2ã2
1 + c̃2) represents an edge part of the restricted

SCI-CF of the subgroup Cs.

assigned to them. For cases of substituting two vertices and one edge under the restriction

condition described above, the unrestricted SCI-CF a4
1c4

2 · ã4
1c̃13

2 is factorized into two ways,

i.e., a2
1 · 12 · (12)4 · ã1

1 · 1̃3 · (1̃2)13 = a2
1ã1 and 14 · c2 · (12)3 · ã1

1 · 1̃3 · (1̃2)13 = c2ã1. The former

mode of factorization corresponds to 53 and 54 (2a2
1ã1), while the latter mode of factorization

corresponds to 55 and 56 (2c2ã1).

The three modes of factorization shown in Fig. 6 are summarized to give a vertex-edge part

of the restricted SCI-CF to be obtained for the subgroup Cs:

SCI-CF
(ve)(Cs;$d, $̃d) = (8a1 + 2a2

1 + 2c2)ã1. (92)

Because the first to third cases shown in Figs. 3, 5, and 6 cover all of the fixed promolecules

under the action of Cs, the respective polynomials (Eqs. 90, 91, and 92) are summed up to give

the corresponding restricted SCI-CF as follows:

SCI-CF(Cs;$d, $̃d)

= SCI-CF
(v)(Cs;$d, $̃d)+ SCI-CF

(e)(Cs;$d, $̃d)+ SCI-CF
(ve)(Cs;$d, $̃d)

= (1 + 4a1 + 4a2
1 + 2c2 + 4a1c2)+(4ã1 + 2ã2

1 + c̃2)
+(8a1 + 2a2

1 + 2c2)ã1. (93)
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Figure 6: Promolecules with monodentate and bidentate ligands, which are fixed on the action of

Cs, where the mirror plane at issue contains vertices 1, 2, 9, and 12. Their restricted monomials

are shown in the leftmost columns, where the sum ((8a1 +2a2
1 +2c2)ã1) represents another part

of the restricted SCI-CF of the subgroup Cs.

Similar procedures for testing factorization and matching (cf. Figs. 3, 5, and 6) are repeated

to cover all cases of respective subgroups. The resulting restricted SCI-CFs of respective sub-

groups are collected in the SCI-CF-column of Table 2.

3.2.2 Restricted PCI-CFs for Two or More Orbits

The restricted SCI-CFs collected in the SCI-CF-column of Table 2 are used to calculate re-

stricted PCI-CFs (PCI-CF) for respective subgroups according to Eq. 32, where the inverse

mark table of Ih is used in a similar way to Eqs. 41–62.

PCI-CF2(C1,$d, $̃d) =
1

4
b2

1 +
1

6
b3

1−
1

4
b2− 1

6
b3− 1

4
a2

1 +
1

2
a2 +

1

2
a3− 1

4
c2− 1

2
a1c2

− 1

2
b̃2 +

1

2
b̃2

1−
1

2
ã2 +

1

2
c̃2
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+
1

2
a2ã1−a1ã1− 1

4
a2

1ã1− 1

4
c2ã1 + b1b̃1 +

1

4
b2

1b̃1− 1

4
b2b̃1(94)

PCI-CF2(C2,$d, $̃d) =
1

2
b2− 1

2
a2 +

1

2
b̃1 +

1

4
b̃2

1 +
3

4
b̃2− 1

4
ã2

1−
1

2
ã1 + ã2− 3

4
c̃2

− 1

2
a2ã1 +

1

2
b2b̃1 (95)

PCI-CF2(Cs,$d, $̃d) =
1

2
a2

1−a2−a3 +
1

2
c2 + a1c2

+ ã2− c̃2−a2ã1 + 2a1ã1 +
1

2
a2

1ã1 +
1

2
c2ã1 (96)

PCI-CF2(Ci,$d, $̃d) = 0 (97)

PCI-CF2(C3,$d, $̃d) =
1

2
b3− 1

2
a3 (98)

PCI-CF2(D2,$d, $̃d) =
1

2
b̃2− 1

2
ã2 (99)

PCI-CF2(C2v,$d, $̃d) = a2 + ã1 +
1

2
ã2

1−
3

2
ã2 + c̃2 + a2ã1 (100)

PCI-CF2(C2h,$d, $̃d) =
1

2
c̃2− 1

2
ã2 (101)

PCI-CF2(C5,$d, $̃d) =
1

2
b1 +

1

4
b2

1−
1

4
b2− 1

2
a1− 1

4
a2

1 +
1

2
a2− 1

4
c2 (102)

PCI-CF2(D3,$d, $̃d) = 0 (103)

PCI-CF2(C3v,$d, $̃d) = a3 (104)

PCI-CF2(C3i,$d, $̃d) = 0 (105)

PCI-CF2(D2h,$d, $̃d) = ã2 (106)

PCI-CF2(D5,$d, $̃d) =
1

2
b2− 1

2
a2 (107)

PCI-CF2(C5v,$d, $̃d) = a1 +
1

2
a2

1−
1

2
a2 (108)

PCI-CF2(C5i,$d, $̃d) =
1

2
c2− 1

2
a2 (109)

PCI-CF2(T,$d, $̃d) = 0 (110)

PCI-CF2(D3d,$d, $̃d) = 0 (111)

PCI-CF2(D5d,$d, $̃d) = a2 (112)

PCI-CF2(Th,$d, $̃d) = 0 (113)

PCI-CF2(I,$d, $̃d) = 0 (114)

PCI-CF2(Ih,$d, $̃d) = 1 (115)

3.2.3 Enumeration Results and Their Illustrations

For the simplicity’s sake, suppose that bulky bidentate ligands (Z) of one kind selected from L′
(Eq. 88) are considered to occupy an appropriate set of edges selected from 1. It follows that

Eq. 89 is simplified into the following inventory function:

ãd = b̃d = c̃d = Zd (116)
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The inventory functions for vertex substitution (Eqs. 63–65) and for edge substitution (Eq.

116) are introduced into the restricted PCI-CFs (Eqs. 94–115). The expansions of the resulting

equations give the following generation functions:

f2(C1) =
1

2
(Xp + Xp)+

1

2
(X2p + X2p)+

1

2
(Xp2 + Xp2)+

1

2
(p2p + Xpp2)

+
1

2
(Xp + Xp)Z +(p + p)Z (117)

f2(C2) =
1

2
(p2 + p2)+

1

2
(p2 + p2)Z + Z2 (118)

f2(Cs) = pp + 2Xpp + ppZ + 2XZ (119)

f2(Ci) = 0 (120)

f2(C3) =
1

2
(p3 + p3) (121)

f2(D2) = 0 (122)

f2(C2v) = X2 + Z + X2Z (123)

f2(C2h) = 0 (124)

f2(C5) =
1

2
(p + p)+

1

2
(Xp + Xp) (125)

f2(D3) = 0 (126)

f2(C3v) = X3 (127)

f2(C3i) = 0 (128)

f2(D2h) = Z2 (129)

f2(D5) =
1

2
(p2 + p2) (130)

f2(C5v) = X (131)

f2(C5i) = pp (132)

f2(T) = 0 (133)

f2(D3d) = 0 (134)

f2(D5d) = X2 (135)

f2(Th) = 0 (136)

f2(I) = 0 (137)

f2(Ih) = 1 (138)

Obviously, Eqs. 117–138 involves Eqs. 66–87. The differences between them are terms

containing Z’s, which represent the presence of bidentate ligands on edges. Because Fig. 4 has

already illustrated the derivatives calculated by Eqs. 66–87, the remaining derivatives involving

Z’s (calculated by Eqs. 117–138) are shown in Fig. 4.

In addition to one enantiomeric pair of C2-derivatives (25/25) shown in Fig. 4, Fig. 7 in-

volves two enantiomeric pairs of C2-derivatives (57/57 and 58/58) in accord with Eq. 118. To

grasp the enantiomeric relationship for each pair, consider the mirror plane containing vertices

2, 4, 9, and 11, by which the two enantiomers of each pair can be interchanged into each other.

In accord with Eq. 119, Fig. 7 adds three Cs-derivatives (59–61) to the listed Cs-derivatives

of Fig. 4 (26–28). The mirror plane at issue contains vertices 1, 2, 9, and 12.
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Figure 7: Icosahedral derivatives with edge substitutions in addition to vertex substitutions. For

the symbols of ligands, see Fig. 1.

As for C2v, Eq. 119 indicates the presence of 62 and 63 (Fig. 7) in addition to 30 (Fig. 4).

The two-fold axis of 62 (or 63) runs through the midpoints of the edges {1,3} and {10,12},
while the counterpart of 30 runs through the midpoints of the edges {1,2} and {9,12}. Note

that the bidentate ligand of 63 (Fig. 7) is deleted to give a homomer of 30 (Fig. 4).

It is to be noted that the D2h-derivative 64 (Fig. 7) is related to the D2h-derivative 9 (Fig.

2), which is rejected under the restriction condition due to steric hindrance. The three types of

PCI-CFs for D2h, i.e, Eq. 15 (unrestricted), Eq. 53 (restricted vertices), and Eq. 106 (restricted

vertices and edges) as well as the corresponding three generating functions, i.e., Eq. 31 (the

term X4), Eq. 78 (no term X4), and Eq. 129 (the term Z2), should be compared to verify the

different behaviors with and without the restricted conditions for vertices and edges.
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4 Conclusion
The PCI method of the USCI approach is extended to enumerate derivatives by taking restricted

modes of vertex and/or edge substitutions into consideration. Subduced cycle indices with

chirality fittingness (SCI-CFs) are calculated for respective subgroups of a given skeleton by

starting from unit subduced cycle indices with chirality fittingness (USCI-CFs) and factorized

into restricted SCI-CFs. The restricted SCI-CF for each subgroup contains a set of monomials,

which is effective to evaluate the numbers of fixed points (promolecules) on the action of the

subgroup under the restricted conditions of enumeration. The set of the restricted SCI-CFs is

multiplied by the inverse mark table to generate partial cycle indices with chirality fittingness

(PCI-CFs) for every subgroups, which are used to conduct enumerations itemized with respect

to the subgroups under the restricted conditions. Several results starting from an icosahedral

skeleton are discussed to examine differences between unrestricted and restricted enumerations.

Appendix

Maple Program for Restricted SCI-CFs of an Icosahedral Skeleton
The source list of a sample program (named “isocaResA.mpl”) for obtaining the restricted SCI-

CFs is attached below. The results are summarized in the SCI-CF-column of Table 1.

#isocaResA.mpl
#read "c:/fujita0/calc/isocaResA.mpl";
# Evaluation of Restricted SCIs for an Icosahedral Skeleton
# Remove Adjacent Vertices
ResSCI := proc(SCI)
global x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,RSCI;
local N1, N2, N3, N4, N5, N6, N7, N8, N9, N10,
N11, N12, N13, N14, N15, N16, N17, N18, N19, N20,
N21, N22, N23, N24, N25, N26, N27, N28, N29, N30,
NN1, NN2, NN3, NN4, NN5, NN6, NN7, NN8, NN9, NN10,
NN11, NN12, NN13, NN14, NN15, NN16, NN17, NN18, NN19, NN20,
NN21, NN22, NN23, NN24, NN25, NN26, NN27, NN28, NN29, NN30,
tempSCI,tempSCI1,tempSCI2,tempSCI3,tempSCI4,tempSCI5,
tempSCI6,tempSCI7,tempSCI8,tempSCI9,tempSCI10,
tempSCI11,tempSCI12,tempSCI13,tempSCI14,tempSCI15,
tempSCI16,tempSCI17,tempSCI18,tempSCI19,tempSCI20,
tempSCI21,tempSCI22,tempSCI23,tempSCI24,tempSCI25,
tempSCI26,tempSCI27,tempSCI28,tempSCI29,tempSCI30;
tempSCI := expand(SCI);
N1 := coeff(tempSCI, x1); NN1 := coeff(N1, x2);
tempSCI1 := expand(tempSCI - NN1*x1*x2);
N2 := coeff(tempSCI1, x1); NN2 := coeff(N2, x3);
tempSCI2 := expand(tempSCI1 - NN2*x1*x3);
N3 := coeff(tempSCI2, x1); NN3 := coeff(N3, x4);
tempSCI3 := expand(tempSCI2 - NN3*x1*x4);
N4 := coeff(tempSCI3, x1); NN4 := coeff(N4, x5);
tempSCI4 := expand(tempSCI3 - NN4*x1*x5);
N5 := coeff(tempSCI4, x1); NN5 := coeff(N5, x6);
tempSCI5 := expand(tempSCI4 - NN5*x1*x6);
N6 := coeff(tempSCI5, x2); NN6 := coeff(N6, x3);
tempSCI6 := expand(tempSCI5 - NN6*x2*x3);
N7 := coeff(tempSCI6, x2); NN7 := coeff(N7, x6);
tempSCI7 := expand(tempSCI6 - NN7*x2*x6);
N8 := coeff(tempSCI7, x2); NN8 := coeff(N8, x7);
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tempSCI8 := expand(tempSCI7 - NN8*x2*x7);
N9 := coeff(tempSCI8, x2); NN9 := coeff(N9, x11);
tempSCI9 := expand(tempSCI8 - NN9*x2*x11);
N10 := coeff(tempSCI9, x3); NN10 := coeff(N10, x4);
tempSCI10 := expand(tempSCI9 - NN10*x3*x4);
N11 := coeff(tempSCI10, x3); NN11 := coeff(N11, x7);
tempSCI11 := expand(tempSCI10 - NN11*x3*x7);
N12 := coeff(tempSCI11, x3); NN12 := coeff(N12, x8);
tempSCI12 := expand(tempSCI11 - NN12*x3*x8);
N13 := coeff(tempSCI12, x4); NN13 := coeff(N13, x8);
tempSCI13 := expand(tempSCI12 - NN13*x4*x8);
N14 := coeff(tempSCI13, x4); NN14 := coeff(N14, x9);
tempSCI14 := expand(tempSCI13 - NN14*x4*x9);
N15 := coeff(tempSCI14, x4); NN15 := coeff(N15, x5);
tempSCI15 := expand(tempSCI14 - NN15*x4*x5);
N16 := coeff(tempSCI15, x5); NN16 := coeff(N16, x6);
tempSCI16 := expand(tempSCI15 - NN16*x5*x6);
N17 := coeff(tempSCI16, x5); NN17 := coeff(N17, x9);
tempSCI17 := expand(tempSCI16 - NN17*x5*x9);
N18 := coeff(tempSCI17, x5); NN18 := coeff(N18, x10);
tempSCI18 := expand(tempSCI17 - NN18*x5*x10);
N19 := coeff(tempSCI18, x6); NN19 := coeff(N19, x10);
tempSCI19 := expand(tempSCI18 - NN19*x6*x10);
N20 := coeff(tempSCI19, x6); NN20 := coeff(N20, x11);
tempSCI20 := expand(tempSCI19 - NN20*x6*x11);
N21 := coeff(tempSCI20, x7); NN21 := coeff(N21, x8);
tempSCI21 := expand(tempSCI20 - NN21*x7*x8);
N22 := coeff(tempSCI21, x7); NN22 := coeff(N22, x11);
tempSCI22 := expand(tempSCI21 - NN22*x7*x11);
N23 := coeff(tempSCI22, x7); NN23 := coeff(N23, x12);
tempSCI23 := expand(tempSCI22 - NN23*x7*x12);
N24 := coeff(tempSCI23, x8); NN24 := coeff(N24, x9);
tempSCI24 := expand(tempSCI23 - NN24*x8*x9);
N25 := coeff(tempSCI24, x8); NN25 := coeff(N25, x12);
tempSCI25 := expand(tempSCI24 - NN25*x8*x12);
N26 := coeff(tempSCI25, x9); NN26 := coeff(N26, x10);
tempSCI26 := expand(tempSCI25 - NN26*x9*x10);
N27 := coeff(tempSCI26, x9); NN27 := coeff(N27, x12);
tempSCI27 := expand(tempSCI26 - NN27*x9*x12);
N28 := coeff(tempSCI27, x10); NN28 := coeff(N28, x11);
tempSCI28 := expand(tempSCI27 - NN28*x10*x11);
N29 := coeff(tempSCI28, x10); NN29 := coeff(N29, x12);
tempSCI29 := expand(tempSCI28 - NN29*x10*x12);
N30 := coeff(tempSCI29, x11); NN30 := coeff(N30, x12);
tempSCI30 := expand(tempSCI29 - NN30*x11*x12);
x1 :=1: x2 :=1: x3 :=1: x4 :=1: x5 :=1: x6 :=1:
x7 :=1: x8 :=1: x9 :=1: x10 :=1: x11 :=1: x12 :=1:
RSCI := expand(tempSCI30);
end proc:

#Initialize
resetX := proc()
global x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12;
x1 :=’x1’; x2 :=’x2’; x3 :=’x3’; x4 :=’x4’; x5 :=’x5’;
x6 :=’x6’; x7 :=’x7’; x8 :=’x8’; x9 :=’x9’; x10 :=’x10’;
x11 :=’x11’; x12 :=’x12’;

end proc:

#Evaluation of Restricted SCIs
resetX():
DSCIC1 := (1+b1*x1)*(1+b1*x2)*(1+b1*x3)*(1+b1*x4)*(1+b1*x5)
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*(1+b1*x6)*(1+b1*x7)*(1+b1*x8)*(1+b1*x9)*(1+b1*x10)*
(1+b1*x11)*(1+b1*x12);
ResSCI(DSCIC1); ResCSIC1 := RSCI;

resetX():
DSCIC2 := (1+b2*x1*x3)*(1+b2*x2*x4)*(1+b2*x5*x7)*
(1+b2*x6*x8)*(1+b2*x9*x11)*(1+b2*x10*x12);
ResSCI(DSCIC2); ResCSIC2 := RSCI;

resetX():
DSCICs := (1+a1*x1)*(1+a1*x2)*(1+a1*x9)*(1+a1*x12)*
(1+c2*x3*x6)*(1+c2*x4*x5)*(1+c2*x7*x11)*(1+c2*x8*x10);
ResSCI(DSCICs); ResCSICs := RSCI;

resetX():
DSCICi := (1+c2*x1*x12)*(1+c2*x2*x9)*(1+c2*x3*x10)*
(1+c2*x4*x11)*(1+c2*x5*x7)*(1+c2*x6*x8);
ResSCI(DSCICi); ResCSICi := RSCI;

resetX():
DSCIC3 := (1+b3*x1*x8*x10)*(1+b3*x4*x5*x9)*
(1+b3*x3*x6*x12)*(1+b3*x2*x7*x11);
ResSCI(DSCIC3); ResCSIC3 := RSCI;

resetX():
DSCID2 := (1+b4*x1*x3*x10*x12)*
(1+b4*x2*x4*x9*x11)*
(1+b4*x5*x6*x7*x8);
ResSCI(DSCID2); ResCSID2 := RSCI;

resetX():
DSCIC2v := (1+a2*x1*x3)*(1+a2*x2*x4)*(1+a2*x9*x11)*
(1+a2*x10*x12)*(1+c4*x5*x6*x7*x8);
ResSCI(DSCIC2v); ResCSIC2v := RSCI;

resetX():
DSCIC2h := (1+a2*x5*x7)*(1+a2*x6*x8)*
(1+c4*x1*x3*x10*x12)*(1+c4*x2*x4*x9*x11);
ResSCI(DSCIC2h); ResCSIC2h := RSCI;

resetX():
DSCIC5 := (1+b1*x1)*(1+b1*x12)*
(1+b5*x2*x3*x4*x5*x6)*(1+b5*x7*x8*x9*x10*x11);
ResSCI(DSCIC5); ResCSIC5 := RSCI;

resetX():
DSCID3 := (1+b6*x1*x3*x8*x12*x10*x6)*
(1+b6*x4*x5*x9*x2*x7*x11);
ResSCI(DSCID3); ResCSID3 := RSCI;

resetX():
DSCIC3v := (1+a3*x1*x8*x10)*(1+a3*x3*x12*x6)*
(1+a3*x4*x5*x9)*(1+a3*x2*x7*x11);
ResSCI(DSCIC3v); ResCSIC3v := RSCI;

resetX():
DSCIC3i := (1+c6*x1*x3*x8*x12*x10*x6)*
(1+c6*x4*x5*x9*x2*x7*x11);
ResSCI(DSCIC3i); ResCSIC3i := RSCI;
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resetX():
DSCID2h := (1+a4*x1*x3*x10*x12)*
(1+a4*x2*x4*x9*x11)*(1+a4*x5*x6*x7*x8);
ResSCI(DSCID2h); ResCSID2h := RSCI;

resetX():
DSCID5 := (1+b2*x1*x12)*
(1+b10*x2*x3*x4*x5*x6*x7*x8*x9*x10*x11);
ResSCI(DSCID5); ResCSID5 := RSCI;

resetX():
DSCIC5v := (1+a1*x1)*(1+a1*x12)*
(1+a5*x2*x3*x4*x5*x6)*(1+a5*x7*x8*x9*x10*x11);
ResSCI(DSCIC5v); ResCSIC5v := RSCI;

resetX():
DSCIC5i := (1+c2*x1*x12)*
(1+c10*x2*x3*x4*x5*x6*x7*x8*x9*x10*x11);
ResSCI(DSCIC5i); ResCSIC5i := RSCI;

resetX():
DSCIT :=
(1+b12*x1*x2*x3*x4*x5*x6*x7*x8*x9*x10*x11*x12);
ResSCI(DSCIT); ResCSIT := RSCI;

resetX():
DSCID3d :=
(1+a6*x1*x3*x8*x12*x10*x6)*
(1+a6*x4*x5*x9*x2*x7*x11);
ResSCI(DSCID3d); ResCSID3d := RSCI;

resetX():
DSCID5d := (1+a2*x1*x12)*
(1+a10*x2*x3*x4*x5*x6*x7*x8*x9*x10*x11);
ResSCI(DSCID5d); ResCSID5d := RSCI;

resetX():
DSCITh :=
(1+a12*x1*x2*x3*x4*x5*x6*x7*x8*x9*x10*x11*x12);
ResSCI(DSCITh); ResCSITh := RSCI;

resetX():
DSCII :=
(1+b12*x1*x2*x3*x4*x5*x6*x7*x8*x9*x10*x11*x12);
ResSCI(DSCII); ResCSII := RSCI;

resetX():
DSCIIh :=
(1+a12*x1*x2*x3*x4*x5*x6*x7*x8*x9*x10*x11*x12);
ResSCI(DSCIIh); ResCSIIh := RSCI;
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