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Abstract

The paper deals with a partial relaxation–time–approximation of a simple Boltz-
mann kinetic model for a slow bimolecular chemical reaction when the process is
driven by mechanical collisions. The dominant operator is in fact approximated by
an ellipsoidal BGK–operator, recently introduced in the literature, which ensures
correct constitutive equations for the diffusion velocities in the inert gas. The hydro-
dynamic limit up to the fluid–dynamic reactive Navier–Stokes equations is worked
out by a Chapman–Enskog asymptotic procedure. Results indicate that transport
coefficients are not affected by the (slow) chemical reaction, but reactive effects
are described by additional source terms (integrals of the chemical cross sections),
vanishing at chemical equilibrium, which appear in the non–conservative balance
equations for species densities and for temperature.

1 Introduction

As widely recognized, several important regimes of gas dynamics and allied fields are

best described at a kinetic level, and the appropriate mathematical tool is the nonlinear

Boltzmann equation [1, 2, 3]. The complexity of the relevant collision operator stimulated

quite rapidly the introduction of simplified kinetic models, which are being commonly

and quite successfully used, mainly for practical purposes. Among them, relaxation–

time–approximation of BGK type [4, 5, 6] constitute probably the most popular, flexible,

and reliable, though ancient, working tool. Despite ignoring the details of the actual

microscopic collisions, they retain the most significant mathematical and physical features

of the actual Boltzmann equation (conservation laws, collision equilibria, H-theorem), and

for this reason they have been attracting increasing interest for applications. However, one
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of the main shortcomings of the BGK approach, pointed out since the very beginning, is its

incapability in reproducing the correct Boltzmann hydrodynamic regime in the asymptotic

continuum limit. The asymptotic procedure provides consistently, in the hydrodynamic

limit, Newton’s law for viscous stress and Fourier law for heat flux, but it is impossible

to fit simultaneously the correct values of viscosity coefficient and thermal conductivity,

and so, as well known, the Prandtl number is incorrectly predicted.

On the other hand, one of the most needed and natural extension of the BGK ap-

proach concerns the modelling of more realistic scenarios, like mixture of different gases,

polyatomic molecules, and possible occurrence of chemical reactions. Unfortunately, it

is well known that quite severe difficulties arise when trying to apply the BGK strategy

to a gas made up by different species. Breakdown of positivity for density or tempera-

ture fields, and/or of the indifferentiability principle, may easily take place [7, 8]. In this

respect we may quote the simple and ingenious idea proposed in [9] in order to avoid

previous shortcomings, which consists in resorting to a single BGK collision operator for

each given species, accounting for collisions of that species with any other species. As

regards reactive mixtures, a quite deep and rigorous mathematical investigation of Boltz-

mann kinetic approaches to chemical reactions in a gas has been performed in a recent

past, and we may quote for instance the excellent book [10]. In this paper we shall stick

for simplicity to the reactive kinetic Boltzmann model proposed in [11] for a reversible

bimolecular reaction

A1 + A2 � A3 + A4, (1)

which was later generalized in [12] in order to account for the non–translational degrees of

freedom of the participating molecules. Some reactive BGK models have been proposed

indeed for the description of reaction (1) (see for instance [13, 14]), and, among them,

we may quote [15, 16] (which follow the algorithm of [9] and are appropriate when the

reaction is slow if compared to mechanical scattering), and [17] which, still in the line

of [9], introduces a different algorithm well suited also for the case in which reactive and

mechanical encounters are equally fast. All of the above BGK models for inert or react-

ing mixtures are affected by the previously mentioned shortcoming on the quantitative

evaluation of transport coefficients.

Such crucial drawback has been overcome, in the basic case of mono–species and mono–

atomic gas, by resorting to the so called ellipsoidal BGK (ES-BGK) model, introduced

-198-



first by Holway [18], which, in more recent times, has been cast in a consistent and elegant

mathematical frame [19, 20]. Roughly speaking, the main idea consists in allowing some

fundamental power moments of the distribution function to relax to its equilibrium value

at a different (faster) rate than the distribution function itself, and to add this constraint

to the other physical requirements imposed to the model (such as conservation of mass,

momentum, energy and dissipation of entropy). Introducing then a second relaxation

parameter quantifying the vanishing of viscous stress allows to fit quantitatively, via

Chapman–Enskog expansion, both viscosity and thermal conductivity, and to reproduce

correctly any given Prandtl number. The strategy can be extended to polyatomic gases

[21], in which case the further constraint of equalization of translational and internal

temperatures yields finally also a correct value for the bulk viscosity.

A substantial breakthrough towards the extension of the ES–BGK philosophy to gas

mixtures has been performed very recently in [22]. The task is quite formidable, since

now several transport coefficients are involved, pertinent to the Fick law for diffusion

velocities, and to the Soret and Dufour effects, which show up in addition to the usual

Newton and Fourier laws for viscous stress and heat flux, respectively [23]. The very clever

procedure devised in [22] amounts to imposing equalization of the N species velocities,

which introduces N − 1 independent relaxation parameters in addition to the standard

collision frequency of the model. These parameters are cast in a one–to–one relationship

with the N−1 nonzero eigenvalues of the exact Fick matrix of the considered gas, in such
a way that constitutive equations for diffusion velocities are correctly recovered by the

proposed model. All necessary positivity and consistency requirements, under suitable

restrictions on parameters, can be guaranteed, and the additional relaxation coefficient

may be used to fit, for instance, Newton’s law for viscosity.

Of course, the ES–BGK model in [22] can reproduce only qualitatively Soret, Fourier,

and Dufour laws which make up the whole set of fluid–dynamic Navier–Stokes equations

governing the gas mixture. More relaxation constraints, and then more free parameters,

would be needed for that, but it is easily realized that one is very likely to run into

breakdown of obvious physical requirements, like positivity. The point deserves certainly

attention and investigation, as well as other issues of physical relevance, like consideration

of polyatomic molecules and/or of possible chemical reactions among species. It is just

this last problem that will be addressed here, with reference to a quaternary mixture
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(N = 4) in which reaction (1) takes place. For the Boltzmann scenario characterizing

this reactive case the interested reader is referred to [11], and, as regards standard BGK

approximations, to [17, 16]. However, main results will be summarized in the next Section

for the readers’ convenience, before proceeding with the task of putting together the

inert ES–BGK modelling available so far and the reactive Boltzmann kinetic operator,

aiming mainly at investigating preliminarily the chemical effects on the resulting reaction–

diffusion Navier–Stokes equations. For simplicity reasons, the analysis will be confined

to the case of slow chemistry, in which the process is dominated by mechanical elastic

scattering, and the longer chemical characteristic time is comparable to the macroscopic

scale. Other scalings will be hopefully matter of future research, as well as other points,

including a rigorous treatment of the present (only formal) approach. The complete ES–

BGK approximation will be presented in the next Section, together with the scaling and

the relevant constraints. In the following Section the full asymptotic Chapman–Enskog

expansion will be performed up to the Navier–Stokes fluid–dynamic level, emphasizing the

chemical corrections with respect to the non–reacting frame. The final Section summarizes

results and comments.

2 The ES–BGK model with chemical reaction

The kinetic Boltzmann equations governing the evolution of the distribution functions in

the considered mixture read as (∇ standing for spatial gradient)

∂fi
∂t

+ v · ∇fi = QME
i +QCH

i ≡ Qi i = 1, . . . , 4 (2)

where the mechanical and chemical collision integrals can be found elsewhere [12], and the

crucial properties of the whole collision operator may be summarized as follows. Seven

conservation laws hold for pair combinations of densities, for momentum, and for total

(thermal plus chemical) energy∫
(Qi +Qj) dv = 0, (i, j) = (1, 3), (1, 4), (2, 4),

4∑
i=1

∫
mivQi dv = 0,

4∑
i=1

∫ (
1

2
miv

2 + Ei

)
Qi dv = 0, (3)

where v = |v| and Ei is the i–th energy of chemical bond. Collision equilibria are deter-

mined as a seven parameter family of local Maxwellians

Mi(v) = ni

(
mi

2πKT

)3/2

exp
(
− mi

2KT
(v − u)2

)
i = 1, . . . , 4 (4)
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at a common mass velocity u and temperature T , with number densities related by the

mass action law
n1n2

n3n4

=

(
m1m2

m3m4

)3/2

exp

(
ΔE

KT

)
(5)

where K is the Boltzmann constant and the energy jump ΔE is defined as −∑4
i=1 ΛiEi,

where Λ is the string of stoichiometric coefficients (1, 1,−1,−1). The kinetic model fulfils
an H–theorem with respect to equilibrium (4) in terms of the entropy functional

H =
4∑

i=1

∫
fi log

(
fi/m

3
i

)
dv (6)

which is minimized by (4), and decreases monotonically along phase trajectories. The

macroscopic fields for each species (including mass density ρi, pressure tensor Pi and

heat flux qi) are defined in the standard way, and the corresponding quantities for the

mixture follow as

n =
4∑

i=1

ni, ρ =
4∑

i=1

ρi, u =
1

ρ

4∑
i=1

ρiui,

nKT =
4∑

i=1

niKTi +
1

3

4∑
i=1

ρi(ui − u)2,

P =
4∑

i=1

Pi +
4∑

i=1

ρi(ui − u)⊗ (ui − u),

q =
4∑

i=1

qi +
4∑

i=1

Pi · (ui − u) +
4∑

i=1

3

2
niKTi(ui − u)

+
4∑

i=1

1

2
ρi(ui − u)(ui − u)2.

(7)

We consider here an ES–BGK model in which the actual Boltzmann collision operator

QME
i is replaced by a relaxation term Q̂ME

i , in physical regimes in which chemical reaction

is a slow process, so that we shall write

∂fi
∂t

+ v · ∇fi = 1

ε
Q̂ME

i +QCH
i i = 1, . . . , 4 (8)

where ε is the small scaling parameter, representing the ratio between the mechanical and

the chemical (or macroscopic) scales, making (8) a singular perturbation problem. The

mechanical relaxation operator, as discussed in the Introduction, will be taken of the type

Q̂ME
i = ν(Gi − fi) i = 1, . . . , 4 (9)
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with ν as a v–independent collision frequency (inverse relaxation time), and where Gi is

the attractor, that would coincide with equilibrium (4) in the standard BGK model, but

is constructed here according to the algorithm of [22]. Precisely, the Gi are provided by

the family of Gaussian functions

Gi(v) = ni

( mi

2πKT ∗

) 3
2
exp

[
− mi

2KT ∗
(
v − uG

i

)2]
, i = 1, . . . , 4 (10)

which minimize the standard mechanical entropy

H0 =
4∑

i=1

∫
fi log fidv (11)

in a suitable class of admissible distribution functions for which the relaxation operator

(9) fulfils the standard mechanical conservation laws (densities of each species, momen-

tum, thermal energy), plus the additional constraints that species velocities relax to mass

velocity at paces given by three suitable inverse relaxation times λ1, λ2, λ3, and that

species temperatures are equal to each other. Referring to [22] for technical details, we

simply mention here that macroscopic parameters relevant to the distribution function

G = (G1, G2, G3, G4), labelled by a G superscript, may be cast in terms of the actual

macroscopic parameters relevant to the distribution function f by means of the relax-

ation coefficients λk, with in particular n
G = n, ρG = ρ, uG = u, TG = T , and

uG
i − u =

4∑
j=1

Aij(uj − u) i = 1, . . . , 4 (12)

where the matrix Aij is given in [22] (see equation (35)), and is not repeated here for

brevity. In addition we have

T ∗ = T − 1

3nK

4∑
i=1

ρi(u
G
i − u)2, (13)

which completes the definition of the attractor G. The parameters λk appearing in Aij are

determined by the three nonzero eigenvalues of the Fick matrix and, under a meaningful

assumption on them, it is possible to prove [22] a contractive property for the matrix,

yielding
4∑

i=1

ρi(u
G
i − u)2 <

4∑
i=1

ρi(ui − u)2. (14)

Since TG
i = T ∗ and TG = T , on using the temperature equation in (7) and resorting to

(14), one ends up with

T ∗ >
1

n

4∑
i=1

niTi (15)
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which ensures the positivity requested to this temperature field.

As regards the reactive operator QCH
i , we shall stick to the kinetic Boltzmann model

proposed in [11, 12], which fulfils the correct reactive conservation equations (3), and

drives distribution functions towards an equilibrium (4) characterized by the mass action

law (5). It reads, for i = 1, . . . , 4, as a five-fold integral (w ∈ R
3, Ω̂′ ∈ S

2)

QCH
i =

∫∫
U(g2− δhkij )Bhk

ij (g, Ω̂ · Ω̂′)

[(
μij

μhk

)3

fh(v
hk
ij )fk(w

hk
ij )− fi(v)fj(w)

]
dwdΩ̂′ (16)

where the i-th component is relevant to the event (i, j)→ (h, k), and the allowed quadru-

plets are (1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1). With ΔEhk
ij = Eh + Ek − Ei − Ej,

μij = mimj/(mi +mj) standing for reduced mass, αij = μij/mj for mass ratio, we have

set δhkij = 2ΔEhk
ij /μij , g = |v − w| , Ω̂ = (v − w)/g, and Bhk

ij = gσhk
ij , where σ

hk
ij is the

reactive differential cross section. The sign of δhkij determines a possibile threshold for the

reaction, accounted for by the unit step function U ; vhk
ij and whk

ij are the post-collision

velocities

vhk
ij = αijv + αjiw + αkh g

hk
ij Ω̂

′, whk
ij = αijv + αjiw − αhk g

hk
ij Ω̂

′ (17)

and ghkij is the post-collision relative speed

ghkij =

[
μij

μhk

(g2 − δhkij )

]1/2
. (18)

Moreover, we have used in (5) the notation ΔE for ΔE34
12 . In the ranges allowed for

reaction, collision kernels Bhk
ij are related by the microreversibility condition

μ2
ij g B

hk
ij (g, Ω̂ · Ω̂′) = μ2

hk g
hk
ij B

ij
hk(g

hk
ij , Ω̂ · Ω̂′) (19)

and the following Jacobian holds

dvhk
ij dw

hk
ij dΩ̂ =

μij

μhk

ghkij
g
dv dw dΩ̂′. (20)

Taking a string of smooth test function ϕi, the weak form of the overall reactive operator

reads as

4∑
i=1

∫
ϕiQ

CH
i (v)dv= −

∫∫∫
U(g2 − δ3412)B

34
12(g, Ω̂ · Ω̂′)

[(
μ12

μ34

)3

f3(v
34
12)f4(w

34
12) (21)

−f1(v)f2(w)] ·
[
ϕ3(v

34
12) + ϕ4(w

34
12)− ϕ1(v)− ϕ2(w)

]
dvdwdΩ̂′
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where reference has been made to the event (1, 2) → (3, 4), and thus to the quadruplet

(1, 2, 3, 4), but any other option, or combination of them, can be used, by simple permu-

tation of indices. The interested reader is referred to [11, 12] or to the review [24] for

more information and for technical details.

A complete analysis of mathematical and physical properties of the whole ES–BGK

operator Q̂ = 1
ε
Q̂

ME
+ QCH is out of the purposes of the present work. However it is

evident that it satisfies the correct conservation laws (3) of the Boltzmann equation. Also

it is easy to verify that Q̂ vanishes if the fi are the correct collision equilibria (4)–(5), since

any distribution function of the form (4) is equilibrium for Q̂
ME

, and also QCH vanishes

if mass action law (5) additionally holds [12]. Finally, it is not difficult to check that an

H–theorem holds in terms of the actual Boltzmann H–functional (6). In fact, the required

minimum property of H, irrespective of the specific collision operator, was established in

[12], and the negativity of Ḣ (Boltzmann lemma) follows easily from analogous pertinent

results obtained in [22] and [12] for its mechanical and chemical parts, respectively.

In the sequel, we shall focus on the hydrodynamic limit of equations (8) for ε → 0

by performing a Chapman–Enskog asymptotic expansion up to the Navier–Stokes level.

For such a purpose we need invariants and zeroes of the dominant operator Q̂
ME

alone,

which are well known and coincide with those of QME. Weak forms to be closed are

then represented by balance equations corresponding to the eight mechanically conserved

macroscopic quantities (number density of each species, momentum vector, thermal en-

ergy), and are relevant to the “test functions” [22]⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
m1v
m2v
m3v
m4v

⎞⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1
2
m1v

2

1
2
m2v

2

1
2
m3v

2

1
2
m4v

2

⎞⎟⎟⎟⎠ , (22)

while collision equilibria are provided by the 8–parameter family of Maxwellians (4) with-

out any relationship among densities and temperature. Specifically, the set of exact

macroscopic balance equations to be dealt with reads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
(ni) +∇ · (niui) = ΛiS i = 1, . . . , 4

∂

∂t
(ρu) +∇ · (ρu⊗ u+P) = 0

∂

∂t

(
1

2
ρ u2 +

3

2
nKT

)
+∇ ·

[(
1

2
ρ u2 +

3

2
nKT

)
u+P · u+ q

]
= SΔE

(23)
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where S = S1 is defined by [12]

Si =

∫
QCH

i dv, Si = ΛiS (24)

and represents the net gain of molecules of type 1 by reaction. Inhomogeneous terms

on the r.h.s. are in fact contributed by the slow collisions, and account for exchange of

mass among species by chemical reaction, and for transfer between the thermal and the

chemical forms of energy. Proper linear combinations would allow to recover the seven

conservation equations (without reactive sources) holding for the whole problem, which

are not written down here for brevity (see [12]).

Balance laws of the present type are indeed quite common in classical and extended

thermodynamics for gas mixtures [25]. They are typically postulated from basic principles,

even in a multi–temperature frame [26], rather than deduced from a kinetic level. In any

case, the set (23) is not closed in the eight macroscopic fields n1, n2, n3, n4, u, T because

of the presence of the three independent diffusion velocities ui−u, of the five independent

components of the deviatoric part of the pressure tensor P, of the heat flux vector q, and

of the reactive scalar unknown S. We shall search for constitutive equations for these

extra fields, up to O(ε) terms, by expanding the kinetic unknowns as

fi ≡ f ε
i = f

(0)
i + εf

(1)
i i = 1, . . . , 4 (25)

and plugging them into (8). It is clear that, to leading order, we get Q̂
ME(0)

i
= 0,

i = 1, . . . , 4, so that, as discussed above, the leading term in (25) is

f
(0)
i =Mi(v) = ni

(
mi

2πKT

)3/2

exp
(
− mi

2KT
(v − u)2

)
i = 1, . . . , 4, (26)

where hydrodynamic variables ni, u, T are unexpanded [2], and the same occurs then to

ρi, n, ρ. Otherwise, (25) implies corresponding expansions

ui = u+ εu
(1)
i Ti = T + εT

(1)
i S = S(0) + εS(1) (27)

with the constraints
4∑

i=1

ρiu
(1)
i = 0,

4∑
i=1

niT
(1)
i = 0. (28)

3 Hydrodynamic limit

Euler equations would correspond to retaining only O(1) contributions, and so they differ

from the standard inert Euler equations for a mixture only by the presence of reactive
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source terms on the r.h.s., namely S(0)Λi in the i-th continuity equation, and S
(0)ΔE in

the energy equation. Retaining only O(1) terms in (24) leads to the integral representation

S(0) =

[(
μ12

μ34

)3/2

eΔE/KT n3n4

n1n2

− 1

]∫∫
U

(
g2 − 2ΔE

μ12

)
B̄34

12(g)M̃1(v)M̃2(w) dv dw

(29)

where

B̄hk
ij (g) =

∫
Bhk

ij (g, Ω̂ · Ω̂′) dΩ̂′ (30)

and M̃i(v) = Mi(v + u). The chemical source in the reactive Euler equations is then a

kind of Gaussian average of the reactive collision kernel, that can be put in analytical

closed form for some specialization of the collision model, with a multiplicative factor

vanishing under mass action law.

Inserting (25) into (8) and ordering in powers of ε we get then

f ε
i = Gi[f

ε]− ε

ν

(
∂Mi

∂t
+ v · ∇Mi

)
+
ε

ν
Q

CH(0)
i +O(ε2) , (31)

where Q
CH(0)
i is the i-th reactive operator corresponding to the option fi = Mi for the

distribution functions. A little algebra yields

Q
CH(0)
i =Mi(v)

[(
μij

μhk

)3/2

exp

(
ΔEhk

ij

KT

)
nhnk

ninj

− 1

]
χi(v), (32)

where

χi(v) =

∫
U
(
g2 − δhkij

)
B̄hk

ij (g)Mj(w) dw (33)

is a function accounting for the relevant collision kernel, which depends on v only via

|v − u|, and is thus, like the Maxwellians Mi, isotropic in the peculiar velocity c. Once

more, all Q
CH(0)
i vanish at chemical equilibrium, where mass action law (5) holds.

The derivatives of Maxwellians appearing in (31) may be performed by usual tech-

niques and, according to the Chapman-Enskog procedure [1, 19], we use (23) themselves

in order to eliminate time derivatives to leading order (Euler equations). We have

∂ni

∂t
= −∇ · (niu) + ΛiS

(0) +O(ε)

∂u

∂t
= −u · ∇u− 1

ρ
∇(nKT ) +O(ε)

∂T

∂t
= −u · ∇T − 2

3
T∇ · u+ 2ΔE

3Kn
S(0) +O(ε)

(34)
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and the final result reads

∂Mi

∂t
+v · ∇Mi =Mi

[
1

ni

c · ∇ni − mi

ρ
c · ∇n+ mi

KT

(
cscr − 1

3
c2δsr

)
∂us
∂xr

+
1

T
c · ∇T

(
mic

2

2KT
− 3

2
− min

ρ

)]
+Mi

[
Λi

ni

+
2

3

ΔE

KT

(
mic

2

2KT
− 3

2

)
1

n

]
S(0)+O(ε)

(35)

where Einstein convention on repeated indices s, r has been used. This contribution to f
(1)
i

in (31) may be then split into a mechanical part, typical of inert mixtures, and a reactive

one, isotropic in c, proportional to S(0) and thus vanishing at chemical equilibrium.

Expanding finally also Gi yields

Gi[f
ε] = G

(0)
i + εG

(1)
i +O(ε2), G

(0)
i = Gi |ε=0, G

(1)
i =

∂Gi

∂ε
|ε=0 (36)

and an easy calculation, bearing (12) in mind, leads to

G
(0)
i =Mi, G

(1)
i =Mi

mi

KT
u
G(1)
i · (v − u) =Mi

mi

KT
c ·

4∑
j=1

Aiju
(1)
j (37)

with appearance of the velocity corrections u
(1)
i , which are moments of the unknown f

(1)
i

themselves. Putting all expansions together and disregarding higher order terms we end

up with

f
(1)
i = f

(1)
iME + f

(1)
i CH =Mi(ψ

ME
i + ψCH

i ) =Miψi

ψME
i =

mi

KT
c ·

4∑
j=1

Aiju
(1)
j − 1

ν

[
1

ni

c · ∇ni − mi

ρ
c · ∇n+ mi

KT

(
cscr − 1

3
c2δsr

)
∂us
∂xr

+
1

T
c · ∇T

(
mic

2

2KT
− 3

2
− min

ρ

)]
(38)

ψCH
i = −S

(0)

ν

[
Λi

ni

+
2

3

ΔE

KT

(
mic

2

2KT
− 3

2

)
1

n

]
+
χi(v)

ν

[(
μij

μhk

)3/2

exp

(
ΔEhk

ij

KT

)
nhnk

ninj

− 1

]

which is not explicit because of the presence of the u
(1)
i , with

u
(1)
i =

1

ni

∫
vf

(1)
i dv =

1

ni

∫
cf

(1)
i dc (39)

(densities are unexpanded). Therefore, one has to take the weak form of (38) correspond-

ing to the weight 1
ni
c in order to compute all u

(1)
i from the resulting linear algebraic equa-

tions. In doing that, the contributions from f
(1)
i CH all disappear, since they are isotropic

functions of c, so that one is left exactly with the same problem that would occur for the
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inert mixture modelled according to the ES-BGK approximation [22]. We take then from

that paper the final result, which, in our notation, reads as

u
(1)
i =

4∑
j=1

Fij∇nj +Di∇T (40)

where Fij is the Fick matrix (exact by this approach) and Di accounts for thermal diffu-

sion. By resorting to (40), the mechanical part of the first order corrections to distribution

functions becomes explicitly

ψME
i =

mi

KT
c ·

4∑
j=1

F̃ij∇nj +
mi

KT
D̃ic · ∇T − 1

ν

[
1

ni

c · ∇ni − mi

ρ
c · ∇n

+
mi

KT

(
cscr − 1

3
c2δsr

)
∂us
∂xr

+
1

T
c · ∇T

(
mic

2

2KT
− 3

2
− min

ρ

)]
(41)

where

F̃ij =
4∑

k=1

AikFkj, D̃i =
4∑

j=1

AijDj, (42)

so that the f
(1)
i are expressed, to leading order, in terms of hydrodynamic fields and of

their space derivatives.

We are then ready to calculate all O(ε) corrections appearing in the exact balance

equations (23), building up the sought reactive Navier-Stokes fluid-dynamic equations.

An important remark is that, in the usual L2 norm, f
(1)
iME (given by (38) and (41)) is

orthogonal to all test functions which are isotropic in c, and conversely f
(1)
i CH in (38) is

actually isotropic in c. In particular, as already observed, there is no chemical correction to

species velocities, which remain the same as for the inert mixture. When looking instead

for temperature corrections, no contribution arises from f
(1)
iME, since the test functions

1
2
mic

2 are isotropic (in fact, Ti = T +O(ε2) in the non reactive case), whereas the reaction

does contribute an O(ε) correction. Precisely, since

ε

∫
1

2
mic

2f
(1)
i dv =

3

2
niK(Ti − T ) +O(ε2) = ε

3

2
niKT

(1)
i +O(ε2), (43)

we get from (38), again to leading order,

3

2
niKT

(1)
i = −S

(0)

ν

(
3

2
ΛiKT +

ni

n
ΔE

)
+
1

ν

[(
μij

μhk

)3/2

exp

(
ΔEhk

ij

KT

)
nhnk

ninj

− 1

]

·
∫∫

1

2
mic

2U
(
g2 − δhkij

)
B̄hk

ij (g)Mi(v)Mj(w) dvdw (44)

involving once more a weighted integration of the collision kernel, that could be made

explicit for simple collision models (like Maxwell molecules). After suitable manipulations,
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resorting repeatedly to (19), (20) and applying energy conservation in each encounter, it

is possible to prove that

4∑
i=1

[(
μij

μhk

)3/2

exp

(
ΔEhk

ij

KT

)
nhnk

ninj

− 1

]

·
∫∫

1

2
mic

2U
(
g2 − δhkij

)
B̄hk

ij (g)Mi(v)Mj(w) dvdw = S(0)ΔE (45)

ensuring that
4∑

i=1

niT
(1)
i = −S

(0)T

ν

4∑
i=1

Λi − 2ΔE

3Kν
S(0) 1

n

4∑
i=1

ni +
2ΔE

3Kν
S(0) = 0 (46)

in agreement with constraint (28).

A crucial term in the fluid-dynamic equations is the chemical source correction S(1)

in (27). On using definition (24), expansion (25), expression (38), and neglecting higher

order terms we have first

Q
CH(1)
i =Mi(v)

∫∫
U
(
g2 − δhkij

)
Bhk

ij (g, Ω̂ · Ω̂′)Mj(w) (47)

·
{(

μij

μhk

)3/2

exp

(
ΔEhk

ij

KT

)
nhnk

ninj

[
ψh(v

hk
ij ) + ψk(w

hk
ij )
]− [ψi(v) + ψj(w)

]}
dwdΩ̂′

and then, resorting again to (19), (20)

S(1) =

∫∫
U

(
g2 +

2ΔE

μ34

)
B̄12

34(g)
[
ψ3(v) + ψ4(w)

]
M3(v)M4(w) dvdw

−
∫∫

U

(
g2 − 2ΔE

μ12

)
B̄34

12(g)
[
ψ1(v) + ψ2(w)

]
M1(v)M2(w) dvdw (48)

or, recalling (33) and setting ψ̃i(v) = ψi(v + u) and χ̃i(v) = χi(v + u)

S(1) = −
4∑

i=1

ΛiRi, Ri =

∫
ψ̃i(v)χ̃i(v)M̃i(v) dv. (49)

It is important to notice that both χ̃i and M̃i are isotropic functions of v, and to recall

that the addend ψ̃ME
i of ψ̃i vanishes when integrated against an isotropic function. This

implies that there is no mechanical contribution to Ri (and to S(1)), which is entirely

made up by the reactive addend ψ̃CH
i , namely

Ri =

∫
ψ̃CH
i (v)χ̃i(v)M̃i(v) dv (50)

with

ψ̃CH
i (v)= −S

(0)

ν

[
Λi

ni

+
2

3

ΔE

nKT

(
miv

2

2KT
− 3

2

)]
+
χ̃i(v)

ν

[(
μij

μhk

)3/2

exp

(
ΔEhk

ij

KT

)
nhnk

ninj

− 1

]
(51)
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and

χ̃i(v) = M̃j(v)
4π

v

KT

mj

∫ +∞

0

U(g2 − δhkij )B̄
hk
ij (g) exp

(
−mjg

2

2KT

)
sinh

( mj

KT
vg
)
g dg. (52)

Notice that ψ̃CH
i vanishes at chemical equilibrium, since both S(0) and the square bracket

in the second addend are equal to zero. The O(ε) contribution to the reaction rate S in

(23) is then completely defined by (49)-(52), where again integrations involve the reactive

collision kernels, and could be made explicit for suitable specialization of them.

The other constitutive equations needed for the closure of the set (23) of balance laws

concern the diffusion velocities ui − u, the viscous stress tensor P− nKT I, and the heat
flux q, which are all O(ε). We found already that diffusion velocities are the same as

for the inert mixture, and are provided by (40). Indeed, the same happens to the other

sought fields. In fact, they are merely moments of the distributions f
(1)
i in (38) with test

functions like cscr − 1
3
c2δsr or csc

2, whose integral against an isotropic function of c is

bound to vanish, as already observed. Since f
CH(1)
i is indeed isotropic in the peculiar

velocity, there is no contribution at all from the chemical reaction, neither to viscous

stress nor to heat flux. All relevant transport coefficients are then the same as for the

non reactive mixture, and so, in our scheme, Fick diffusion law, Newton law for viscosity,

Fourier law for heat conduction, as well as Soret and Dufour effects, coincide with those

of [22]. Reactive effects are confined to the chemical source S = S(0) + εS(1), with S(0)

given by (29) and S(1) by (49)-(52), which vanishes at chemical equilibrium, namely when

(5) holds. The chemical reaction rate S depends of course on the reactive collision kernel

B34
12 (related to its reciprocal B

12
34 by (19)), and is expressed in terms of integrals of known

functions. Some of these integrals can be put in closed analytical form for some simple

collision model. Just as an example, if we take Maxwell-like interaction potential for the

endothermic direction (B̄34
12 = constant, ΔE > 0) we can write, in terms of error functions

and incomplete Gamma functions,

S(0) = B̄34
12

2√
π
Γ

(
3

2
,
ΔE

KT

)[
n3n4

(
μ12

μ34

)3/2

eΔE/KT − n1n2

]
(53)
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and, after some algebra, we have for instance for species 1

T
(1)
1 = −S

(0)

ν

1

n1

T − 2

3

S(0)

ν

1

n

ΔE

K
+
B̄34

12

ν

[
n3n4

(
μ12

μ34

)3/2

eΔE/KT − n1n2

]

· 2√
π

[
2

3
α21Γ

(
5

2
,
ΔE

KT

)
+ α12Γ

(
3

2
,
ΔE

KT

)]
1

n1

T (54)

χ̃1(v) =
1

2
√
π
B̄34

12n2

⎧⎨⎩exp
(
− m2

2KT
(
√
2ΔE/μ12 − v)2

)
− exp

(
− m2

2KT
(
√
2ΔE/μ12 + v)2

)
√
m2/(2KT ) v

+
√
π erfc

[√
m2

2KT

(√
2ΔE

μ12

− v

)]
+
√
π erfc

[√
m2

2KT

(√
2ΔE

μ12

+ v

)]}
.

Simpler expressions are in order for Maxwellian molecules relevant to the exothermic

direction (B̄34
12 = constant, ΔE < 0)

S(0) = B̄34
12

[
n3n4

(
μ12

μ34

)3/2

eΔE/KT − n1n2

]

T
(1)
1 = −2

3

S(0)

ν

1

n

ΔE

K
, χ̃1(v) = B̄34

12n2.

(55)

Unfortunately, once B34
12 is assigned, B12

34 follows from (19), and takes typically a form

leading to integrations of rational functionals and quadratic exponentials which are not

amenable to standard transcendental or special functions. In other words, under any

assumption on cross sections, one should expect that at least some of the integrals must

be computed numerically.

4 Conclusions

We have examined the Navier–Stokes hydrodynamic limit of the reactive kinetic ES–BGK

model equations (8), where the dominant mechanical operator is the ellipsoidal one re-

cently proposed by Brull, Pavan, and Schneider in [22], and the slow chemical operator,

according to the Boltzmann model introduced in [11], accounts additionally for exchange

of mass and of energy of chemical link among species. Exact macroscopic equations for the

eight hydrodynamic fields ni (i = 1, . . . , 4), u, T are provided by the set (23) of eight reac-

tive partial differential equations, where constitutive relations have been obtained for the

extra fields ui−u, P−nKT I, q, and S, up to first order accuracy in the small parameter
ε, yielding then a closed set of reaction diffusion equations. Chemical corrections to the

inert scenario are confined to the reactive source terms on the r.h.s. of equations (23), all

determined by the single scalar parameter S = S(0)+εS(1). Fick matrix, viscosity, thermal
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conductivity, as well as Soret and Dufour effects, are not affected by chemical reactions,

and are the same as in [22]. This conclusion is in agreement with previous results from

slow (standard) reactive BGK models [16], and at variance with conclusions drawn from

fast reactive BGK models [17], where chemical microscopic parameters do affect transport

coefficients, and reactions are further taken into account by an additional scalar pressure

(not present here), rather than by inhomogeneous source terms. In particular, the present

analysis shows that first order corrections to species temperatures (missing in the inert

frame) actually arise in the presence of reactions, as given by (44). There are instead no

chemical contributions to the mechanical first order corrections of species velocities. The

dominant reactive contribution S(0) is given here in explicit form by equation (29). The

first order correction S(1) to chemical sources is given by (49)-(52). Both of them are

expressed in terms of integrals of the reactive collision kernels, with Maxwellian weights

and other suitable weighting functions. Chemical collision kernels appear linearly in S(0)

and quadratically in S(1), whereas mechanical macroscopic parameters do not affect these

fluid-dynamic reaction rates. All chemical contributions vanish if mass action law (5)

holds, namely at chemical equilibrium. A deeper analysis of the present results, and their

extension to more realistic situations is scheduled as future work.
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