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Abstract 

A novel class of property-distance counting polynomials was proposed in ref. Studia Univ. 
“Babes-Bolyai”, 2002, 47, 131-139. The polynomial coefficients are calculated by means of 
layer/shell matrices, built up according to the vertex distance partitions of a graph. The old 
results are revisited and put in a new light. More focused was the polynomial constructed on 
the Cluj matrix acted by the shell matrix operator.  
 
 
1. Introduction 
In the early Hűckel theory, the roots of the graph characteristic polynomial:[1] 

 ( ) det[ ( )]Ch x x G� �I A  (1) 

with I being the unit matrix of a pertinent order and A the adjacency matrix, are assimilated to 

the 1-electron energy levels of the molecular orbitals in conjugated hydrocarbons. Other 

related topics: Topological Resonance Energy TRE, Topological Effect on Molecular 

Orbitals, TEMO, the Aromatic Sextet Theory, AST, the Kekulé Structure Count, KSC, etc. 

[1,2] also used the information provided by Ch(x). 
 The coefficients of the characteristic polynomial are calculable from the graph G as 

shown by Sachs, Harary, Milić, Spialter, etc. [1], by using the Sachs subgraphs or by some 

more efficient numeric methods of  linear algebra, (see the recursive algorithms of Le Verier, 

Frame, or Fadeev) [3,4].  
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 Hosoya[5] and others[6-10] have extended the above definition (1) by changing the 

adjacency matrix with the distance matrix and next by any topological square matrix. 

  A different field in the polynomial description is that of finite sequences of some 

graph invariants, such as the distance degree sequence or the sequence of the number of k-

independent edge sets. The polynomial corresponding to the last sequence was introduced by 

Hosoya as the Z-counting polynomial [11]. 

 The present paper is organized as follows. After the above introduction, basic 

definitions are given in a second section, as preliminaries for the main study on Hosoya-

Diudea polynomials, detailed in the third section. In the forth section, the Cluj-Centrality CJC 

index is introduced while its dicriminating ability is presented in the fifth section. Conclusions 

and References will close the article. 

 

2. Basic definitions 
Let G(V,E) be a connected molecular graph, [12] without directed and multiple edges 

and without loops, the vertex and edge-sets of which being represented by V(G) and E(G), 

respectively. Let’s next define the kth layer/shell of vertices v lying at distance k with respect 

to the reference vertex i as [13]: 

 � �kdGVvviG ivk ��� );()(  (2) 

The collection of all its layers defines the partition of G with respect to i: 

 � �],..,1,0[;)()( ik ecckiGiG ��  (3) 

with ecci being the eccentricity of i (i.e., the largest distance from i to the other vertices in G).  

Layer Matrices 

The entries in a layer matrix (of a vertex property) LM, are defined as [13-15]: 
 

 � �
,

,
i v

i k v
v d k

p
�

� 2LM  (4) 

with summation being the most used operation on the collected vertices. The zero column is 

just the column of vertex properties � � ii p�0,LM . Any atomic/vertex property can be 

considered as pi. More over, any square matrix M can be taken as info matrix, i.e., the matrix 

supplying local/vertex properties as row sum RS, column sum CS or diagonal entries given by 

the Walk matrix [13], as developed by TOPOCLUJ software package [16].   

 The Layer matrix LM is a collection of the above defined entries: 
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 � �)](,..,1,0[);(;][ , GdkGViki ��� LMLM  (5) 

with d(G) being the diameter of the graph or the largest distance in G. 
 
Shell Matrices 

The entries in a shell matrix ShM are defined as [13, 17]: 

 
,

, ,[ ] [ ]
i v

i k i v
v d k�

� �ShM M  (6) 

where M is any square topological matrix. Any other operation over the square matrix entries  

� � vi,M  can be used.  The shell matrix is a collection of the above defined entries: 

 � �,[ ] ; ( ); [0,1,.., ( )]i k i V G k d G� � �ShM ShM  (7) 

The zero column � � ,0iShM is just the diagonal entries in the info matrix M. 

Counting Polynomials 

Define a distance-based polynomial as: 

 ( ) ( , ) k
k

P x p G k x� 3�  (8) 

with p(G,k) being sets of  local contributions (of extent k) to the global (molecular) property 

( ) ( , )P G p G k�4   and summation running up to d(G) [1,18]. 

The polynomial coefficients are calculable from the above defined layer/shell matrices, as the 

half sums on columns. When p(v)=1 (i.e., the vertex counting), p(G,k) denotes the number of 

pair vertices separated by distance k in G, and the classical Hosoya polynomial [19] is 

recovered (see below).  

Some single number descriptors (i.e., topological indices TIs) can be calculated by 

evaluating the polynomial derivatives (usually in x = 1):                                                                                     

 ( ,1) ! ( , )k
k

P G k p G k� 3�  (9) 

Any square matrix can be used as an info matrix for the layer/shell matrices, thus 

resulting in an unlimited number of property polynomials. The property P can be taken either 

as a crude property (i.e., column zero in LM) or within some weighting schemes. In the 

present paper we limit discussion to some graph theoretical properties.  
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3. Hosoya-Diudea polynomials 
 In the following, a polynomial will be named by specifying the info square matrix (if any) and 

the layer/shell matrix used to compute it. 

 
Hosoya Polynomial 
In the case: p(v)=1, LM = LC, (i.e., layer matrix of counting) and the property 

polynomial P(LC,x) is just the Hosoya H(x) polynomial. The formulas given in the following 

represent well-known results. The index calculated as the polynomial first derivative is the 

well-known Wiener index [20], W.  

 ( ) ( ,1)W G P.� LC  (10) 

The hyper-Wiener index WW, patterned by Randić [21], is calculated as  

 ( ) ( ,1) (1/ 2) ( ,1)WW G P P. ..� 
LC LC  (11) 

For the graph G1, the P(LC,x) polynomial is given in Figure 1. 
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k 

1 2 3 4 

1 1 2 2 1 
2 3 2 1 0 
3 3 3 0 0 
4 2 2 2 0 
5 1 1 2 2 
6 1 2 2 1 

G1 7 1 2 3 0 
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S 
1
2 

1
4 

1
2 
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Figure 1. The graph G1 and its Hosoya polynomial 
2 3 4( , ) 6 7 6 2P x x x x x� 
 
 
LC   

( ,1) 46P W. � �LC ; ( ,1) 74P.. �LC ; 46 74 / 2 83WW � 
 �  
 
 

Shell Polynomials 
Any square matrix M, taken as the info matrix to be treated by the Shell-operator 

[13,18,22], will provide a Shell matrix ShM and a corresponding Hosoya-Diudea polynomial, 

weighted by the property of info matrix. The polynomial coefficients are calculable from the 

shell matrices, as the half sums on columns. Hereafter, such a polynomial will be called a 

Shell-polynomial and symbolized P(ShM,x) or ShM(x). 
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Next, a new topological index, calculated on the first two Shell-polynomial derivatives 

(by analogy to WW  - see (11)), was proposed [23-25]: 

 ( , ) ( ,1) (1/ 2) ( ,1)CT ShM G P P. ..� 
ShM ShM  (12) 

It was named the Cluj-Tehran index and symbolized CT(ShM,G) (with the specification of 

the info matrix M). Examples will be given in the following.  

 

Info Matrix: DI (Distance) 
The polynomial defined on the Sell of Distance matrix ShDI (given at the middle of 

Table 1) has the coefficients already multiplied by (topological) distance and then 

P(ShDI,1)=P’(LC,1)=W. Recall the half sum of entries in the Distance matrix D gives the 

well-known Wiener index W. 

The Hyper-Wiener index is calculable on P(ShDI,x) as: 

 ( ) [ ( ,1) ( ,1)] / 2WW G P P.� 
ShDI ShDI  (13) 

and the relation is valid in any graph. 

 
                    Table 1. Polynomial P(ShDI,x) and CT index in G1. 

 ShDI(G1)     DI(G1)     

  i  \  k 1 2 3 4 RS  1 2 3 4 5 6 7 RS 
1 1 4 6 4 15  0 1 2 3 4 2 3 15 
2 3 4 3 0 10  1 0 1 2 3 1 2 10 
3 3 6 0 0 9  2 1 0 1 2 2 1 9 
4 2 4 6 0 12  3 2 1 0 1 3 2 12 
5 1 2 6 8 17  4 3 2 1 0 4 3 17 
6 1 4 6 4 15  2 1 2 3 4 0 3 15 
7 1 4 9 0 14  3 2 1 2 3 3 0 14 

CS 12 28 36 16 92  15 10 9 12 17 15 14 92 

 
P(ShDI,x) 

 
6x 

 
+14x2 

 
+18x3 

 
+8x4 

          

P(1)     46 = W    
P’(1)     120 = WW =(46+120)/2=83 
P”(1)     232          
CT 

(ShDI) 
    236          

 

Info Matrix: DIp (Distance path) 
The matrix DIp was proposed by Diudea [26] to count the “internal” paths existing between 

any pair of vertices (i,j) in G; it is provided, within the TOPOCLUJ software package [16], by 
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the combinatorial matrix operator. The half sum of entries in the matrix DIp gives the well-

known hyper-Wiener index WW. More about this and other related matrices the reader can 

find in our recent book [25]. The derived polynomial P(ShDIp,x) shows P(1)=WW (Table 2) 

while the 1st derivative is related to that of other polynomials (see below). 

 
Table 2. Polynomial P(ShDIp,x) and corresponding CT index in G1. 

  ShDIp(G1)     DIp(G1)     

  i  \  k  1 2 3 4 RS  1 2 3 4 5 6 7 RS 
1  1 6 12 10 29  0 1 3 6 10 3 6 29 
2  3 6 6 0 15  1 0 1 3 6 1 3 15 
3  3 9 0 0 12  3 1 0 1 3 3 1 12 
4  2 6 12 0 20  6 3 1 0 1 6 3 20 
5  1 3 12 20 36  10 6 3 1 0 10 6 36 
6  1 6 12 10 29  3 1 3 6 10 0 6 29 
7  1 6 18 0 25  6 3 1 3 6 6 0 25 

CS  12 42 72 40 166  29 15 12 20 36 29 25 166 

Table 2. (continued) 

 
P(ShDIp,x

) 

  
6x 

 
+21x

2 

 
+36x3 

 
+20x

4 

          

P(1)      83 = WW    
P’(1)      236          
P”(1)      498          

CT(ShDIp)      485          
 
 

Info Matrix: Wp (Wiener path) 
 

The matrix Wp was proposed by Randić [27], to count the “external” paths joining  

any pair of vertices (i,j) in G. This matrix is defined only in tree graphs and it is provided, 

within the TOPOCLUJ software package [16], as the SCJ matrix (see below). The half sum 

of entries in the matrix Wp gives the well-known hyper-Wiener index WW.  

The polynomial P(ShWp,x) shows P(1)=WW (Table 3) while the 1st derivative is also 

related to that of other polynomials, as will be see in the following section. 

 
Table 3. Polynomial P(ShWp,x) and corresponding CT index in G1. 

 ShWp(G1)     Wp(G1)     

  i  \  k 1 2 3 4 RS  1 2 3 4 5 6 7 RS 
1 6 5 3 1 15  0 6 4 2 1 1 1 15 
2 24 9 3 0 36  6 0 12 6 3 6 3 36 
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3 28 13 0 0 41  4 12 0 10 5 4 6 41 
4 16 8 4 0 28  2 6 10 0 6 2 2 28 
5 6 5 4 2 17  1 3 5 6 0 1 1 17 
6 6 5 3 1 15  1 6 4 2 1 0 1 15 
7 6 5 3 0 14  1 3 6 2 1 1 0 14 

CS 92 50 20 4 166  15 36 41 28 17 15 14 166 
 

P(ShWp,x) 
 

46
x 

 
+25x2 

 
+10x3 

 
+2x4 

          

P(1)     83 =WW    
P’(1)     134          
P”(1)     134          

CT(ShWp)     201          
 

Info Matrix: UCJ (Unsymmetric Cluj) 
 

A Cluj subgraph [1,13,17,22,25,28,29] pjiCJ ,,  collects the vertex proximities of i 

against any vertex j, joined by the path p, with the distances measured in the subgraph G-p:  

 � �, , ( ) ( )( ); ( , ) ( , )i j p G p G pCJ v v V G DI i v DI j v� �� � 5  (13) 

By definition, the entries in the Cluj matrix are taken, as the maximum cardinality among all 

such subgraphs, to limit the possibilities in the choice of p, in cycle-containing graphs: 

 pj,i,
p

CJmax�ji,[UCJ]  (14) 

In trees, the paths joining any two vertices is unique, then pjiCJ ,,  represents the set of 

paths going to j through i. In this way, the path p(i,j) is characterized by a single endpoint, 

which is sufficient to calculate the unsymmetric matrix UCJ. When the path p belongs to the 

set of distances DI(G), the suffix DI is added to the name of matrix, as in UCJDI. When path 

p belongs to the set of detours DE(G), the suffix is DE. In trees, due to the uniqueness of the 

paths, the two variants of Cluj matrices superimpose. When the matrix symbol is not followed 

by a suffix, it is implicitly DI. Thus, UCJ can be calculated on path UCJp or on edges UCJe., 

the last one being obtained as the Hadamard pair-wise product of UCJp with the adjacency 

matrix A (having the entries 1 if the pair (i,j) belongs to E(G) or zero, otherwise): 

 UCJa = UCJp 	 A (15) 

The Cluj matrices are defined in any graph and, except for some symmetric graphs, 
are unsymmetric. They can be made symmetric by the Hadamard multiplication with their 
transposes: 

 SCJp = UCJp 	 (UCJp)T (16) 
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The matrix SCJp is identical to Wp matrix (see above).  
The Shell-Cluj polynomial P(ShUCJ,x) is calculated only on the unsymmetric, on 

path calculated, matrix UCJp (or simply UCJ). The matrix UCJ and its corresponding shell 

for the graph G1 are illustrated in Table 4.  

In trees, there is interesting meaning of the descriptors derived from the Shell-Cluj 

polynomial (see the bottom of Table 4). These originate in the mixing information (both as in 

DIp and Wp) contained in UCJ matrix, which demonstrates the well-known theorem of Klein, 

Lukovits and Gutman [30], saying that, in a tree graph, the number of internal paths (given by 

DIp) equal that of external paths (calculated by Wp).  

In trees, the following relation is true: 

 p 1 p( ) ( ) ( )k k km m m 
� �ShUCJ ShW ShW  (17) 

which says the coefficients of Shell-Cluj polynomial P(ShUCJ,x) can be deduced from those 

of P(ShWp,x) polynomial. Also, the hyper-Wiener index can be expressed from the 

derivatives of the two above polynomials: 

 p p(1/ 2)[3 ( ) ( )]WW P P. .� �ShW ShDI  (18) 

In cycles, the above relations are no more valid, firstly because the matrix Wp is not defined. 

The meaning of the above descriptors is deeply different in cycle-containing graphs compared 

to trees [25].  

 
Table 4. Polynomial P(ShUCJ,x) and corresponding CT index in G1. 

 ShUCJ(G1)     UCJ(G1)     

  i  \  k 1 2 3 4 RS  1 2 3 4 5 6 7 RS 
1 1 2 2 1 6  0 1 1 1 1 1 1 6 
2 15 6 3 0 24  6 0 3 3 3 6 3 24 
3 15 13 0 0 28  4 4 0 5 5 4 6 28 
4 8 4 4 0 16  2 2 2 0 6 2 2 16 
5 1 1 2 2 6  1 1 1 1 0 1 1 6 
6 1 2 2 1 6  1 1 1 1 1 0 1 6 
7 1 2 3 0 6  1 1 1 1 1 1 0 6 

CS 42 30 16 4 92  15 10 9 12 17 15 14 92 

 
P(ShUCJ,x) 

 
21
x 

 
+15x2 

 
+8x3 

 
+2x4 

          

P(1)     46 = W    
P’(1)     83 = WW    
P”(1)     102 = P’ (ShDIp)-P’(ShWp) 

CT(ShUCJ)     134 = P’(ShWp) 
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 Info Matrix: DDI (Degree Distance) 
 
The Cramer product of the diagonal matrix of vertex degrees D with the Distance 

matrix DI provides the matrix of degree distances denoted as DDI.  

 ( ) ( ) ( )G G G� �D DI DDI  (19) 

The above Cramer product (19) is equivalent (gives the same half sum of entries) with the 

pair-wise (Hadamard) product of the vectors “row sum” RS in the Adjacency A and Distance 

DI matrices, respectively [22,25].  

 ( ) ( ) ( )RS RS RS	 �A DI DDI  (20) 

Next, by applying the Shell operator, we obtain the Shell matrix of Degree-Distances 

ShDDI, of which column half sums are just the coefficients of the corresponding Shell-

polynomial [25] ( , )P xShDDI  (an example is given in Table 5) 

Irrespective the above Cramer product (19) is performed “to the left” or “to the right”, 

the Shell-polynomial ( , )P xShDDI remains always the same. 

The half sum of entries in the D�DI or DI�D matrices is the well-known Degree-Distance 

DDI(G) index, defined by Dobrynin and Kochetova [31]. 

   

Table 5. Degree-Distance matrix DDI of the graph G1 and its Shell matrix  

  ShDDI( G1)     DDI( G1)     

  i  \  k 0 1 2 3 4 RS  1 2 3 4 5 6 7 RS 
1 0 1 4 6 4 15  0 1 2 3 4 2 3 15 
2 0 9 12 9 0 30  3 0 3 6 9 3 6 30 
3 0 9 18 0 0 27  6 3 0 3 6 6 3 27 
4 0 4 8 12 0 24  6 4 2 0 2 6 4 24 
5 0 1 2 6 8 17  4 3 2 1 0 4 3 17 
6 0 1 4 6 4 15  2 1 2 3 4 0 3 15 
7 0 2 4 9 0 14  3 2 1 2 3 3 0 14 

CS 0 26 52 48 16 142  
24 14 12 18 28 24 22 

14
2 

                
P(ShDDI,x

) 
 13x +26x2 +24x3 +8x4           

P(1)      71      
P’(1)      169          
P”(1)      292          

CT(ShDDI)     315   
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( )
( ) ( ) ( )

v V G
DDI G D v DI v

�
�� , (21) 

where D(v) and DI(v) are just RS(A(v)) and RS(DI(v)), see (20). This index is in fact the non-

trivial part of the Schultz index [25,32-34]. Accordingly, this index can be calculated as the 

half sum of entries within the matrices A�DI or DI�A. Next, by applying the Shell operator, 

we obtain the matrices Sh(A�DI) and Sh(DI�A) which differ from ShDDI and ShDID by the 

non-zero diagonals, of which information is lost in the first derivative of the corresponding 

Shell-polynomial. Even the P(1) values are the same and equal to the values of index 

DegD(G), in the following we will only calculate the polynomial P(ShDDI,x).  

Another reason is that the entries in DDI matrix have just the property defined by 

Dobrynin in (21). This matrix can also be obtained by Diudea’s Walk operator [25,35]  

 ( , , )( ) ( )k G � A K DID DI W  (22) 

where K stands for the square matrix, of a pertinent order, having all the non-diagonal entries 

k while the diagonal entries zero; in case k=1, the classical DDI(G) index is recovered. The 

walk operator W(M1,M2,M3) is defined as 

 2 ,[ ]
, , , 1 3 ,[ ] ( ) [ ]i j

i j i i jRS�
1 2 3

M
(M M M )W M M .   (23) 

It works by Hadamard algebra and was extensively exemplified in refs [22,25,35]. (see also 

ref. [36]). The shell matrix of the walk operator W(A,K,DI) is next illustrated in Table 6 (for 

k=1).  

Relation (22), by setting k=1,..d(G), with d(G) being the diameter of the graph, defines 

Extended-Degree-Distance matrices and corresponding Shell-polynomials P(ShW(A,K,DI),x), 

recalling the “extended connectivity” developed at the pioneering age of Chemical Graph 

Theory by Balaban et al. [37-40] or by Morgan [41], for the Chemical Abstracts CA service.  

Table 6. Shell matrix of W(A,K,DI) 

 
W(A,1,DI)( G1) 

       1    2    3    4    5    6     7     RS 
 
1     0    1    2    3    4    2    3      15   
2     3    0    3    6    9    3    6      30   
3     6    3    0    3    6    6    3      27   
4     6    4    2    0    2    6    4      24   
5     4    3    2    1    0    4    3      17   
6     2    1    2    3    4    0    3      15   

 
ShW(A,1,DI)( G1) 

              0    1      2     3    4     RS 
 

     1       0    1      4     6    4      15   
     2       0    9    12     9    0      30   
     3       0    9    18     0    0      27   
     4       0    4      8   12    0      24   
     5       0    1      2     6    8      17   
     6       0    1      4     6    4      15   

-102-



7     3    2    1    2    3    3    0      14   
 
CS 24  14  12  18  28  24  22    142  
1/2SUM = 71   

     7       0    1      4     9    0      14   
 

CS         0   26   52    48   16    142  
P(1)       0   13   26    24     8      71  
P’(1)          13   52    72    32   169 

 
 
Info Matrix: Shell-Degree-Cluj Polynomials  
 
In full analogy to the Shell-degree-distance polynomial, one can write a modified 

relation (22), with the Cluj matrix instead of Distance matrix [25]: 

 ( , , )( ) ( )k G � A K UCJD UCJ W  (24) 

The corresponding Shell-extended-degree-Cluj polynomial P(ShW(A,K,UCJ),x) and derived 

indices are exemplified (for k=1) in Table 7.  

 

Table 7. Shell matrix of  W(A,K,UCJ) 

 
W(A,1,UCJ)( G1) 
       1    2    3    4    5    6    7     RS 
 
1     0    1    1    1    1    1    1      6    
2   18    0    9    9    9   18   9     72   
3   12   12   0  15  15   12  18    84   
4     4    4    4    0   12   4    4     32   
5     1    1    1    1    0    1    1      6    
6     1    1    1    1    1    0    1      6    
7     1    1    1    1    1    1    0      6  
 
CS 37  20  17  28  39  37  34   212  
 
1/2SUM = 106   

 
ShW(A,1,UCJ)( G1) 
            0      1     2    3    4     RS 

 
     1     0      1     2    2    1       6    
     2     0    45   18    9    0      72  
     3     0    45   39    0    0      84   
     4     0    16     8    8    0      32   
     5     0      1     1    2    2       6    
     6     0      1     2    2    1       6    
     7     0      1     2    3    0       6   
 
CS        0 110   72    26    4    212  
P(1)      0   55   36    13    2    106  
P’(1)     0   55   72    39    8    174 
P”(1)           0   72    78   24   174 
CT=261 

 
Since the matrix UCJ is a non-symmetric one, we can use in (24) its transpose. The 

corresponding Shell-extended-degree-Cluj-T polynomial P(ShW(A,K,UCJT),x) and derived 

indices are exemplified (for k=1) in Table 8.  
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Table 8. Shell matrix of W(A,K,UCJT) 

 
W(A,1,UCJT)( G1) 
       1    2     3    4    5    6    7     RS 
 
1    0     6     4    2    1    1    1      15   
2    3     0   12    6    3    3    3      30   
3    3     9     0    6    3    3    3      27   
4    2     6   10    0    2    2    2      24   
5    1     3     5    6    0    1    1      17   
6    1     6     4    2    1    0    1      15   
7    1     3     6    2    1    1    0      14 
 
CS 11  33   41  24  11  11  11    142 
 
1/2SUM = 71   

 
ShW(A,1,UCJT)( G1) 
             0      1     2    3     4     RS 

 
     1      0      6     5    3     1      15   
     2      0    18     9    3     0      30   
     3      0    18     9    0     0      27   
     4      0    12     8    4     0      24   
     5      0      6     5    4     2      17   
     6      0      6     5    3     1      15   
     7      0      6     5    3     0      14 
 
CS        0    72   46   20    4    142  
 
P(1)      0    36   23   10    2      71  
P’(1)     0    36  46    30    8    120 
P”(1)            0   46    60  24    130 
CT=185 

 

Info Matrix: D(kr)M (Remote Degree Matrix) 
Let’s now consider the remote valences D(kr) defined as the number of neighbors at distance 

d(i,j)=r, r=1,2,...d(G) [25]. They can be calculated as row sums RS in the corresponding 

remote Adjacency matrices Ar.  Then, the extension of these remote valences can be achieved 

as 

 ( , , )( ) ( )
rrk G � A K MD M W  (25) 

where k,r=1,2,...d(G); next, r-different Shell-polynomials ( , , )( , )
r

P xA K MShW  can be 

calculated. An example is given, for M=DI, r=2; k=1, in Table 9. 

 
Table 9. Shell matrix of W(A2,1,DI) 

 
W(A2,1,DI)( G1) 

        1    2    3    4    5    6    7     RS 
 
 1     0    2    4    6    8    4    6      30   
 2     2    0    2    4    6    2    4      20   
 3     6    3    0    3    6    6    3      27   
 4     6    4    2    0    2    6    4      24   
 5     4    3    2    1    0    4    3      17   
 6     4    2    4    6    8    0    6      30   
 7     6    4    2    4    6    6    0      28   

 
ShW(A2,1,DI)(G1) 

            0    1     2    3    4     RS 
 
       1   0    2    8    12   8      30   
       2   0    6    8     6    0      20   
       3   0    9   18    0    0      27   
       4   0    4    8    12   0      24   
       5   0    1    2     6    8      17   
       6   0    2    8    12   8      30   
       7   0    2    8    18   0      28   

-104-



 
      28  18  16  24   36   28   26  176 
1/2SUM = 88 

 
CS        0  26  60    66  24   176     
P(1)      0  13  30    33  12     88 
P’(1)     0  13  60   99   48   220 
 

4. Cluj-centrality CJC index 

On the above defined Shell-polynomials, a Centrality super-index was defined [25]: 

 ( , , ),
( ) (1/ ) [ ( )]

r

s
k r

G kr RC� � A K MShWCJC  (26) 

In the above relation, C(ShM) is the centrality function [13-15, 42]: 
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2 1
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1
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i i
ecc ecck

i ik
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�
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) &
� ' $
( %
�ShM ShM  (27) 

 ( ) (1/ | ( ) | {[ ( ) ] / max[ ( ) ]}
i

i iRC V G C C� �ShM ShM ShM  (28) 

The indices of centrality are exemplified, for s=1, in case of graph G2, in Tables 10 and 11.  
 

1

2

3 4

5 6

7 8

9 10

11 12

13 14

15 16  
G2. DDSi:  3   6   6 

 
 
Table 10. Centrality indices for G2: M=DI 

 A1,1,DI A1,2,DI A1,3,DI A2,1,DI A2,2,DI A2,3,DI A3,1,DI A3,2,DI A3,3,DI 
1 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
2 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
3 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
4 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
5 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
6 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
7 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
8 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
9 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 

10 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
11 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
12 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
13 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
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14 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
15 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 
16 0.048001 0.02512 0.012899 0.021132 0.004545 0.000927 0.0165282 0.002717 0.000421 

RC 1 1 1 1 1 1 1 1 1 

EC 16 16 16 16 16 16 16 16 16 
 CJC(DI,G2)=1 

 

Table 11. Centrality indices for G2: M=UCJ 

 A1,1,UCJ A1,2,UCJ A1,3,UCJ A2,1,UCJ A2,2,UCJ A2,3,UCJ A3,1,UCJ A3,2,UCJ A3,3,UCJ 
1 0.959767 0.953534 0.948127 0.952041 0.941477 0.934615 0.950032 0.93886 0.932394 
2 1 1 1 1 1 1 1 1 1 
3 0.983054 0.979570 0.976347 0.978700 0.972171 0.967628 0.977509 0.970446 0.965845 
4 0.983054 0.979570 0.976347 0.978700 0.972171 0.967628 0.977509 0.970446 0.965845 
5 0.990549 0.986283 0.982176 0.985182 0.976650 0.970513 0.983664 0.974346 0.968310 
6 1 1 1 1 1 1 1 1 1 
7 0.983054 0.979570 0.976347 0.978700 0.972171 0.967628 0.977509 0.970446 0.965845 
8 0.990549 0.986283 0.982176 0.985182 0.976650 0.970513 0.983664 0.974346 0.968310 
9 1 1 1 1 1 1 1 1 1 

10 0.983054 0.979570 0.976347 0.978700 0.972171 0.967628 0.977509 0.970446 0.965845 
11 0.990549 0.986283 0.982176 0.985182 0.976650 0.970513 0.983664 0.974346 0.968310 
12 0.990549 0.986283 0.982176 0.985182 0.976650 0.970513 0.983664 0.974346 0.968310 
13 0.983054 0.979570 0.976347 0.978700 0.972171 0.967628 0.977509 0.970446 0.965845 
14 0.983054 0.979570 0.976347 0.978700 0.972171 0.967628 0.977509 0.970446 0.965845 
15 0.990549 0.986283 0.982176 0.985182 0.976650 0.970513 0.983664 0.974346 0.968310 
16 0.990549 0.986283 0.982176 0.985182 0.976650 0.970513 0.983664 0.974346 0.968310 

RC 0.987587 0.984291 0.981204 0.983458 0.977150 0.972716 0.982317 0.975476 0.971083 

EC 1,3,6,6 1,3,6,6 1,3,6,6 1,3,6,6 1,3,6,6 1,3,6,6 1,3,6,6 1,3,6,6 1,3,6,6 

 CJC(UCJ,G2)=0.979476 
 

 
Since the Distance Degree Sequence of any vertex in G2 is DDSi:  3   6   6, it is 

immediate the equivalence of all vertices, the population of  this single equivalence class is 

EC=16 and the (global) relative centrality RC=1.  However, the Cluj matrix UCJ is able to 

discriminate among the vertices of  G2, thus the global centrality is less than unity, by this 

criterion, as shown in Table 11; deviation to the full centrality is rather low (FCD=0.020). 

The population on the equivalence classes is given at the bottom of the above table.  

 

5. Discriminating ability of CJC index 
 

The CJC index can be used to discriminate/compare complex structures, as the 

quadruplet H10Q(11 to 44 - Figure 2) presented by Hosoya as isospectral structures with 

respect to the adjacency A matrix. This quadruplet, identified in the paper of Hosoya et al. 

[43] as:  29368=Q_11; 31037=Q_22; 31706=Q_33 and 31851=Q_44 can not be solved 
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neither by matrices ShW(A1,1,DI) and ShW(A2,1,DI)  nor by their higher analogues, as provided by 

the CJN  

super index [25], M=DI.  

This quadruplet, showing degeneracy of A1 matrix, is not uniform: it consists of two 

sub-sets, partition depending on the degeneracy of considered matrix: DI [(11&44);(22&33)]; 

DE [(11&22)FHD;(33&44)]; CJDE [(11&22)FHD;(33&44)] and also W(A1,1,DE)(33&44). 

Correspondingly, are the Distance Degree Sequence DDS: [(11&44), 22, 23]; [(22&33), 22, 

22, 1]; the Wiener index W: [(11&44), 68]; [(22&33), 69]; the Detour index w: [(11&22), 

405]; [(33&44), 399]; CJDE: [(11&22), 45]; [(33&44), 52].  

 

    
H10Q_11 H10Q_22 H10Q_33 H10Q_44 

Figure 2. Isospectral quartet of 10 vertices (Hosoya et al.31) 
 

 
The values of centrality indices are listed in Tables 12 and 13. As a first remark, our 

descriptors are able to discriminate this complex set of graphs. 

According to the first proximities (r=1): Q_22(DI: 0.8910)>Q_33(DI: 0.8902)> 

Q_44(DI: 0.8783) > Q_11(DI: 0.6191) and to CJC: Q_44(DI: 0.5834)>Q_33(DI: 0.5437)> 

Q_22(DI: 0.5342)> Q_11(DI: 0.3556). This means that the remote neighborhoods are 

distributed by the centrality function in a more diverse manner. The CJC index can be used as 

a test of the homogeny of graphs, in a given criterion (DI-criterion, in the above). 

In the UCJ-criterion (r=1): Q_44(UCJ: 0.8783)>Q_33(UCJ: 0.7802)>Q_22(UCJ: 

0.7781)>Q_11(0.7381) and CJC: Q_44(UCJ: 0.6163)>Q_33(UCJ: 0.5420)>Q_22(UCJ: 

0.5232)>Q_11(0.4396) the distribution at the first proximities is kept to the global CJC index  

and is the same as for CJC in the DI criterion. It is, perhaps, due to the fact the Cluj subgraphs 

include information of first and remote proximities at once, so that the distribution by 

centrality function is quite the same for all included subgraphs.  
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   Table 12. Sums of Relative Centrality RC , average RC_AV and CJC indices  
                   for the graphs H10Q_11 and H10Q_44: M=DI; UCJ 

 A1,1,M A1,2,M A2,1,M A2,2,M RC_AV CJC 
 DI DI DI DI DI DI 

RC(Q_11) 6.190536 4.50088 1.912452 1.619195 3.555766  
 0.619054 0.450088 0.191245 0.161920  0.355577 

RC(Q_44) 8.782636 7.331955 3.569239 3.650173 5.833501  
 0.878264 0.733196 0.356924 0.365017  0.583350 
 UCJ UCJ UCJ UCJ UCJ UCJ 

RC(Q_11) 7.380789 6.187785 2.193209 1.821228 4.395753  
 0.738079 0.618779 0.219321 0.182123  0.439575 

RC(Q_44) 8.782636 7.1806206 4.271030 4.418795 6.163271  
 0.878264 0.7180621 0.427103 0.441880  0.616327 

 
Table 13. Sums of Relative Centrality RC , average RCAV and CJC indices  
                   for the graphs H10Q_22 and H10Q_33: M=DI; UCJ 

 A1,1,M A1,2,M A1,3,M A2,1,M A2,2,M A2,3,M A3,1,M A3,2,M A3,3,M RCAV CJC 
 DI DI DI DI DI DI DI DI DI DI DI 

RC(Q_22) 8.9101 8.1153 8.0299 6.1015 5.5904 5.3322 2 2 2 5.3422  
 0.8910 0.8115 0.8030 0.6101 0.5590 0.5332 0.2 0.2 0.2  0.5342 

RC(Q_33) 8.9022 8.3069 8.1796 6.0570 5.9529 5.5322 2 2 2 5.4367  
 0.8902 0.8307 0.8180 0.6057 0.5953 0.5532 0.2 0.2 0.2  0.5437 

 UCJ UCJ UCJ UCJ UCJ UCJ UCJ UCJ UCJ UCJ UCJ 

RC(Q_22) 7.7808 7.4279 7.0557 6.8142 6.2041 5.8741 1.9780 1.9780 1.9780 5.2323  
 0.7781 0.7428 0.7056 0.6814 0.6204 0.5874 0.1978 0.1978 0.1978  0.5232 

RC(Q_33) 7.8025 7.4396 7.0704 7.0544 6.9635 6.4716 1.9937 1.9937 1.9937 5.4203  
 0.7802 0.7440 0.7070 0.7054 0.6963 0.6472 0.1994 0.1994 0.1994  0.5420 

 

We can say that the UCJ-criterion is a more reliable criterion in searching the 

homogeny of graphs by our centrality function. Further investigations are needed to find the 

usefulness of these theoretical tools. 

 
6. Conclusions 

Extension of the well-known Hosoya polynomial, grounded on vertex distance 

partitions of a graph, resulted in a novel class of distance property polynomials P(ShM,x) 

(called Shell-polynomials) which are Hosoya polynomials weighted by the property enclosed 

in the info matrix M.  

The polynomial coefficients are obtained as the column half sums in the shell 

matrices. Examples were given for each studied case. 

The single number descriptors calculated from polynomials defined on any 

combination ShM are actually tested in our labs in QSAR/QSPR studies. 
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