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Abstract

In this paper, we present explicit formulas for computing the first and second vertex-edge
Wiener indices of three classes of molecular graphs made by hexagons.

Introduction

Hexagonal systems are geometric objects obtained by arranging mutually congruent regular
hexagons in the plane. They are of considerable importance in theoretical Chemistry, because
they are natural graph representation of benzenoid hydrocarbons [1]. Each vertex in
hexagonal system is either of degree two or three. Vertex shared by three hexagons is called
an internal vertex of the respective hexagonal system. We call hexagonal system
catacondensed if it does not possess internal vertices, otherwise we call it pericondensed.

A hexagonal chain is a catacondensed hexagonal system in which every hexagon is adjacent
to at most two hexagons. Linear hexagonal chain is a hexagonal chain which is a graph
representation of linear polyacene. When a linear hexagonal chain is bent so that its ends meet,

a cyclic linear hexagonal chain is produced. A linear hexagonal chain and a cyclic linear
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hexagonal chain with n hexagons will be denoted by L, and T,, respectively. See Fig. 1 and

Fig. 2.

Fig. 2 Cyclic linear hexagonal chain T n-

Double hexagonal chain is a chain consisted of two condensed identical hexagonal chains. It
can be considered as benzenoid constructed by successive fusions of successive naphthalenes
along a zig-zag sequence of triples of edges as appear on opposite sides of each naphthalene
unit. Double linear hexagonal chain is consisted of two condensed linear hexagonal chains.

Such chain will be denoted by B,,, where 7 is the number of hexagons in the corresponding

linear hexagonal chain. See Fig. 3.

Fig. 3 Double linear hexagonal chain BZ” .

In theoretical Chemistry, the physico-chemical properties of chemical compounds are often
modeled by the molecular graph based molecular structure descriptors which are also referred

to as topological indices [2]. Among the variety of those indices, which are designed to
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capture the different aspects of molecular structure, the Wiener index is the best known one.
Vertex version of the Wiener index is the first reported distance-based topological index
which was introduced by the Chemist, Harold Wiener, in 1947 [3]. Wiener used his index, for
the calculation of the boiling points of alkanes. Using the language which in theoretical
Chemistry emerged several decades after Wiener, we may say that Wiener index was
conceived as the sum of distances between all pairs of vertices in the molecular graph of an
alkane, with the evident aim to provide a measure of the compactness of the respective
hydrocarbon molecule. From graph-theoretical point of view, Wiener index of a simple

undirected connected graph G is defined as follows:

W(G)= D d,y

{uvich(G)

G) M

where d(u,v

G) denotes the distance between the vertices # and v of G which is defined as

the length of any shortest path in G connecting # and v.

Wiener index happens to be one of the most frequently and most successfully employed
structural descriptors that can be deduced from the molecular graph. Since 1976, the Wiener
number has found a remarkable variety of chemical applications. Physical and chemical
properties of organic substances, which can be expected to depend on the area of the
molecular surface and/or on the branching of the molecular carbon-atom skeleton, are usually
well correlated with Wiener index. Among them are the heats of formation, vaporization and
atomization, density, boiling point, critical pressure, refractive index, surface tension and
viscosity of various, acyclic and cyclic, saturated and unsaturated as well as aromatic
hydrocarbon species, velocity of ultra sound in alkanes and alcohols, rate of electro reduction
of chlorobenzenes etc. [4]. We refer the reader to [5-7], for more information about the
Wiener index.

Edge versions of the Wiener index based on distance between all pairs of edges in a
connected graph G were introduced in 2009 [8-10]. In analogy with Eq. (1), the edge-Wiener

index of a simple undirected connected graph G needs to be defined as follows:

W.(G)= > def|G) @

te./1cE(G)

where d(e, f ‘G) stands for the distance between the edges e and f of the graph G .

The distance between two edges e =uv and f = z¢ of the graph G can be defined in two
ways [10]. The first distance is denoted by d, (e, ‘G) and defined as follows:
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d(e,f|G)+1 if exf
dy(e, f1G) = >
0 ife=f
where dl(e,f"G)=min{d(u,ZG),d(u,tG),d(v,zG),d(v,tG)} . It is easy to see that

d,(e, f‘G) =d(e, f‘L(G)) , where L(G) is the line graph of G .

The second distance is denoted by d, (e, f

G) and defined as follows:

d(e.f|G) if exf
d,(e, [1G) = >
0 if e=f
where d, (e, f‘G) =max{d(u, z|G), d(u,1|G),d(v, z|G),d(v,|G)} .

Corresponding to the above distances, two edge versions of the Wiener index can be defined.

The first and second edge Wiener indices of G are denoted by W, (G) and W, (G),

respectively and defined as follows [10]:

W,.(G)= Y.deflG), ie{04}.

{e.fICEG)
Obviously, W, (G)=W(L(G)).
In analogy with Eq. (1) and Eq. (2), the vertex-edge Wiener index of G needs to be defined as

follows:

W (@)= > > dud

uel (G) ecE(G)

G) 3

where d(u,e

G) stands for the distance between the vertex u and the edge e of the graph G .

The distance between the vertex » and the edge e = ab of the graph G can be defined in the
two following ways [11]:

D, (u,e|G) = min{d(u,a|G),d(u,b|G)} and D,(u,e|G) = max{d(u,a|G),d(u,b|G)} .

Corresponding to the above distances, two vertex-edge versions of the Wiener index can be

defined. The first and second vertex-edge Wiener indices of G are denoted by Min(G) and

Max(G) , respectively and defined as follows [11]:

Min(Gy= Y. Y Dw,dG)= . Y min{d(u,dG),d(u,bG)} and
ueV (G) ecE(G) ueV (G) abeE(G)
Max(G)= Y > D,w,dG)= Y Y max{d(u,dG),d(u,blG)}

uel (G) ecE(G) uel (G) abeE(G)
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The indices Min(G) and Max(G) are also called minimum and maximum indices,
respectively.

One can easily see that for arbitrary edges e =uv and f = z¢ of the graph G, the quantities
d, and D,, ie{1,2}, satisfy in the following relations:

d,(e, |G) =min{D, (u, £|G), D,(v, f|G)} = min{D, (z,¢

G),D\(t,¢

G)} and

d, (e, |G) = max{ D, (u, f|G), D, (v, /|G)} = max{ D, (z. G}

G), D,(1.¢

The first relation expresses the relation between the first edge Wiener index W, (G) and the
first vertex-edge Wiener index Min(G) . Similarly, the second relation expresses the relation
between the second edge Wiener index W, (G) and the second vertex-edge Wiener index
Max(G) . The vertex-edge Wiener indices play an important role in the computations on the
edge Wiener indices. While calculating on the edge Wiener indices W, (G) and W, (G), their

corresponding vertex-edge Wiener indices Min(G) and Max(G) are used frequently. For
example, the formulas of the edge Wiener indices of some composite graphs such as the graph
of Cartesian product, corona and composition are obtained based on the vertex-edge Wiener
indices of the primary graphs [11-14]. Furthermore, when we work on the edge Wiener
indices of some classes of chemical graphs and nanostructures, we first need to obtain the
vertex-edge Wiener indices of these graphs. For more information, see [15] and [16]. Because
of the similarity and relation among the various versions of the Wiener index, it is predicted
that the vertex-edge versions of the Wiener index like its vertex and edge versions will find

many chemical and mathematical applications in future.

In this paper, we present explicit formulas for computing the first and second vertex-edge
Wiener indices of three important classes of molecular graphs containing linear hexagonal

chain, cyclic linear hexagonal chain and double linear hexagonal chain.

Discussion and results

In this section, we consider the linear hexagonal chain L, , cyclic linear hexagonal chain T,

no>

and double linear hexagonal chain B,, and compute the first and second vertex-edge Wiener

indices of them.
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1. Vertex-edge Wiener indices of linear hexagonal chain

In order to compute the first and second vertex-edge Wiener indices of the linear hexagonal

chain L, , at first we choose a coordinate label for its vertices as shown in Fig. 4.
a1 a2 as asz as as a7 azrl an azn+l
b1 b2 bs ba bs bs b7 bar1 bzn ban-1

Fig. 4 A coordinate label for vertices of L,, .

Since the vertex-edge Wiener indices are distance-based topological indices, so we need to

know the distance between vertices in this graph. So we begin with the following Lemma.

Lemma 1.1 Let 1<, j <2n+1. Then
()  d(a,.a)|L,)=db,b|L)=i-j.
li—jl+1 ifi=j
L,)=41 ifi=j and i is odd
3 if i=j and iis even

(ii) d(a,,b,

Proof. (i) Without lost of generality, let j>i. The shortest path between a;, and a; is

—>a,, —>..—>a; and the shortest path between b, and b, is

a, —>a i J

i+l

b — b,

i+l

—b,

i+2

—...—>b,.So d(a;,a,

L)=d(b,b|L)=j—i.

(ii) Let j >i. A shortest path between g, and b, is a, > b, > b,,, —...—>b,, if i is odd and

i+l

a, —>a,, =>b,, —>b,—>..—>b, ifiis even. So for j>i, d(a,b;|L,)=j—i+]. In the

case i > j, using a similar method, we conclude that d(a;,b,|L,)=i—j+1.In the case i = j,

the proof is obvious.o

Definition 1.2 Let G=(V(G), E(G)) be a simple undirected connected graph. For a € V(G),
define:

D,(dG)= Y.D,(a,€[G) and D,(d|G)= > D,(a,d

ecE(G) ecE(G)

G).

In the following Lemma, we compute the value of D,(q,[L,), for 1<i<2n+1.
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Lemma 1.3 For 1<i<2n+1, we have:
5 22 . 2 7 . P
51 —5(n+1)i+5n +11n+5 if iis odd
DZ(GI‘LH):

%iz—S(n+1)l’+5n2+lln+6 if iis even

Proof. Let 1</ <2n+1.1f i is odd, then by the previous Lemma, we have:

2n+1 ntl

D,(a, Zd(a,,a » »
Z(z—])+ i(]—1)+2(1 J+D)+ i(/—1+l)+2(z—2]+2)+ i(ZJ—l)

and if i is even, we have:

2n+1

D, (a, s s s 50,0 |L,) =
Jj=1 Jj=1
J#EI=1i+]l
2n+l 2n+l n+l
Z(z 7+ Z(J—I)JrZ(z j+D)+ Z(/—l+1)+6+2(1 2/ +2)+ Z(zj—z)
J=i+l J=it2

After computing each summation, we can obtain the desire result.0

Lemma 1.4 For 1<i<2n+1, D,(q,

Proof. Let 1<i<2n+1.1If i is odd, then

D, (a,

i’

i’

i
Jj=2 Jj=2

i’

and if i is even, then

D (a,

L )+Zd(a,,azj L.

n

L,)+d(a;,b,,

i’ i’ i27i-1

=2
/sz

Now according to the proof of the previous lemma, the proof is clear.o

Now, we are ready to obtain the vertex-edge Wiener indices of the linear hexagonal chain L,

in the following Theorem.
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Theorem 1.5
(i) Max(L,)= %(40}13 +102n* + 681 +6) .
(i) Min(L,) = %(40;13 +42n° +26m).

Proof. (i) The symmetry of the graph L, implies that for every 1<i<2m+1 ,

DZ (ai

Ln) = Dz(bi

L,).So

2n+1 nt!

Max(L,)=2) D, (a|L,)= 2[21132 (a3,

i=1

L)+ Y D, (ayL,)].

Now, using Lemma 1.3, the proof is straightforward.

(ii) Using Lemma 1.4, we have:

2n+1

Min(L,)=2%"D(a|L,) = 2§[Dz(a,-

i=1 i=1

L )—(5n+1)]= Max(L,) —2(5n+1)(2n+1).
Now by part (i) of the Theorem, the proof is obvious.o
2. Vertex-edge Wiener indices of cyclic linear hexagonal chain

In order to find the first and second vertex-edge Wiener indices of the cyclic linear hexagonal

chain 7, at first consider a coordinate label for its vertices as shown in Fig. 5.

a1 az as a4 as as ar a1 azn
I 0 I I O I K
b1 bz bz ba bs bs by bar ban

Fig. 5 Two dimensional lattice of T ,, with a coordinate label for its vertices.

In the following Lemma, we obtain the distance between all vertices of T, with the vertices g,
and a,.
Lemma 2.1 Let 1<i<2n. Then

. i
Tn)_{l 1 if 1<i<n+1

@ da.q, 2n+l-i if n+2<i<2n’

(i)  d(a.b,

)= i if 1<i<n+1
Y 2n42—i if n+2<i<2n’
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1 if i=1
T)=<i-2 if 2<i<n+2.
2n+2—-i ifn+3<i<2n

(i)  d(a,,q

2 ifi=1
3 ifi=2
i) d(a,b|T) =
@) d@bil)=1;_, if3<i<n+2

2n+3—-i  if n+3<i<2n
Proof. (i) The shortest path between g, and g is

a —>a, >..—a,ifl<i<n+land g, > a,,, >..—>a,, —a,if n+2<i<2n.So

d(a,,q

- i-1 if 1<i<n+1
Y 2n+1—i if n+2<i<2n’

(ii) A shortest path between g, and b, is a, > b, > b, »>... > b,,if 1<i<n+1 and

b —b, —>..>b,, >b —a,,if n+2<i<2n.So
i if 1<i<n+1
d(a,b|T,)= .
(a.5T,) {2(n+1)—i ifn+2<i<2n

(iii) It is clear that d(a,,q,

T,) =1. The shortest path between a, and g, is

a, >a; —>..—a,if2<i<n+2and a, > a,, >..>a,, >a, —a,,if n+3<i<2n.

i+l
So
1 ifi=1
T,)=1i-2 if 2<i<n+2.
2(n+1)—i ifn+3<i<2n

d(a,,a,

(iv) It is clear that d(a,,b,

T)=2 and d(a,,b,

T,)=3. A shortest path between a, and b, is

iy > by, b —>a —>a,,if

a, >a;, >b, >b, —>..—>b,,if 3<i<n+2and b, > b,

n+3<i<2n.So

2 ifi=1
3 ifi=2
darbil,) =1, f3<i<n+2

2n+3—-i  if n+3<i<2n

Lemma 2.2 Let i € {1,2} . If » is odd, then
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énz,l i=1 SN W if i=1
T)= g 2 and D,(a g
5”2+E if i= P +5n+= if i=2
If n is even, then
én2 if i=1 énz+5n if i=1
T)= % and D,(a,|T,)=12 .
42 ifi=2 —nt+5n+2  if i=2
2 2
Proof. It is easy to see that:
2n 2n
n) = Zd(al’ai n Zd(apbx‘ n a,|T,)
i:;ul i¢:11+1
2n 2n
D, (az )= zd(azrai n Zd(azabi n a,|T,),
i;lt;x+2 i#?:iz
2n n
a,.[T,)+> d(a,.b|T,)+d(a,.b,,|T,)+ > d(a,,b, |T,) and
i=2 i=1
7,)+2d(a,,b, T)+
i=1
zd(aZ’bZI—l 7).
i=1

Now, using the previous lemma, we have:

i=n+2

Z(Zi—2)+ Z(2n+2—2i)
i=1 =3
ZT:(Zi—2)+ Z":(zwz—zi)
i=1 =t

ntl 2n

i=n+3

1+Z(2i—3)+ Z_(2n+3—2i)

1+ZT:(21'—3)+ i(2n+3—2i)
i=2 =2

D+ Z(2n+1—z)+1+21+ Z(2n+2—z)+

i=1 i=n+2
if nis odd
)

if nis even

ntl

_1+Z(z 2)+ Z(2n+2—1)+4+4+2(1 D+ Z(2n+3—z)+

i=n+3
if mis odd

s

if nis even
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n+l n+l

~)+n+ Z(2n+1—z)+21+(n+1)+ Z(2n+2—i)+

i=n+2 i=n+2

D, (ay|T,

2(2i—1)+ Z(2n+3—2i) if n is odd
i=1 =1

Z(Zi—l)+ Z(2n+3—2i) if nis even
i=1 =t

and

n+2 n+2

D (az‘T)71+Z(l—2)+n+ Z(2n+2—l)+6+2(l—1)+(n+1)+ Z(zn+3—l)+
i=n+3 i=n+3
2+Z(2i—2)+ Z(2n+4—2i) if nis odd
i=2 =3
2+2(2i—2)+ Z(2n+4—2i) if nis even
i=2 =

Now, the proof is straightforward.o

Below, we compute the first and second vertex-edge Wiener indices of the graph 7.

Theorem 2.3
Min(T,) = 2n(5n* +2) and Max(T,) = 2n(5n* +10n+2).

Proof. Using the previous Lemma, we have:

> +10n+2). 0O

3. Vertex-edge Wiener indices of double linear hexagonal chain

In order to compute the first and second vertex-edge Wiener indices of the double linear

hexagonal chain B,,, at first we choose a coordinate label for its vertices as shown in Fig. 6.

a1 a a3 aq as as a7 a1 azn a1
T
by b2 baI bs bsI bs b:I bs bani Dan bana barsa
9" {) { e

Can  CImel CIn+2

O
08
hE ¢
o8&
Og—()
5%

Fig. 6 A coordinate label for vertices of Bzﬂ .
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We begin with the following Lemma.

Lemma 3.1
() For 1<i,j<2n+1,d(a,a,|B,,)=|i—j|.

@ii) For 1<i,j<2n+2,d(b,b]|B,,)=li—j|.

27
(iii) For 2<i,j<2n+2,d(c,c,|B,,) =i—j|.
(iv) For 1<i<2n+1and 1< <2n+2,
li—jl+1 ifi#j
d(a,,bj‘Bz")= 1 ifi=j and i is odd
3 if i=j and iis even
(v) For 1<i<2n+2 and 2<j<2n+2,
li—j|+1 ifi#j
d(bl,cj‘Bzy,): 3 ifi=j and i is odd
1 if i=jand iis even
(vi) For 1<i<2n+1 and 2<j<2n+2,
li—j|+2 ifi#jand iis odd
d(a,.c|B,,)= li—j]+2 if jeli-Lii+1} and iis even
4 ifi=j
5 if jeli-Li+1} and iis even
Proof. Proof is similar to the proof of Lemmal.1.o

In the following Lemma, we compute the value of D,(q,

B,,) and Dz(bj‘Bz,,) , for

1<i<2n+land 1<j<2n+2.

Lemma 3.2

(i) For 1<i<2n+1, we have:

8n” +19n+6 ifi=1
Dz(a;‘Bzy.): 4i227(8n+12)i+8n2+27n+17 if.i.:tl and i is odd ]
8n” +11n+14 if i=2

4i* —(8n+12)i+8n> +27n+25 if i#2 and iis even

(ii) For 1<i<2n+2, we have:
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_ 8n’ +16n+7 if ie{l,2n+2}
2n 2 _(8n+12)i+8n* +24n+15 otherwise '

Proof. By previous Lemma, we have:

2n+1 2042
() D, (a|B,,) = Zd(al, a[B,,)+ Zd(al,b [B,,) + X d(ayc [B,,)+
=3
n+l 2n+1 2n+2 2n+2 n+l n+l
Zd(al’ 2~ 1‘32”)+2d(a1,62/‘32n) = Z(]_l)"' ZJ+ Z(l+1)+ 2(2]_1)+2(2J+1)
j=2 j=3

and

D (aZ‘BZH) d(ay,a ‘an)“'zd(aza ‘an)+2d(azvb ‘an)'*'zd(az’b ‘an)“'
=
2n+2

2d(a2,63‘32”)+ zd(ap ‘an)"' zd(al’ ) I‘B2n)+zd(a1362/‘32n)

J=1 J=1
2n+1 2742 2042 nl n+l

1+ D=2 +2x3+ D (j=D+2x5+ D j+ 2+ D (2j-2)+4+ 2j.
J=3 J=4 Jj=5 j=2 j=2

If i#1 and i is odd, then the calculation of D, (a,

2n

2n+1

D (a 2n i ‘BZn)+ Zd(ana ‘BZn)+Zd(amb ‘BZn)+
J=1 J=i+l J=1

Z"Z”d(a,,b B,)+ S dCay e, B, + 2d(ayc|B,) + S dlae |B,,) +

J=i+l Jj=2 J=i+2

Zd(aan/I‘BZn)+Zd(a1=C2/‘BZn) 2(1 N+ 2(/-1)+Z(1 J+D+

J=i+l
z+1
2n+2 2n+2 n+l
Z(]—z+1)+2(1 J+2)+2x4+ 2(1—1+2)+Z(1 2/+2)+ Z(2J—1)+
Jj=itl j=i+2

any

i1

ntl

(i-2j+2)+ Y (2j—i+2),
i+l
uzi}
2

4M“‘

7

if i #2 and i is even, then the calculation of D, (a,-‘an) is as follows:

2n+l
D,(a)|B,, nalB,)+ Y d(a, /‘lei)+2d(al, [By,) +2d(a,,b|B,,) +
J=itl
zd(anb ‘BZ,,)-FZd(a‘,C ‘an)+ 2d(a;,c; |B,,)+2d(a;,c,,|B,,) + Zd(a,ac ‘an)‘*'
Jj=i+2 J=i+3
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Zd(a,,bz,I\an)+2d(a,,cz,\32n) Z(z J)+§(J—1)+2(1—J+1)+2X3+
znf(]—1+1)+Z(1—]+2)+2><5+2><5+ Mf(]71+2)+2(z 2j+2)+ "zﬂ(zjfm

J=it2 J=i+3 /7
2

n+l

i-2
2
D-2j+2)+4+ D (2j—i+2).
-l =2
2

Now, the proof is straightforward.

(ii) Similar to the proof of the previous part, we have:

2n+l 2n+2 2n+2

D, (b|B,,) = Zd(bl, a,|B,,)+ Zd(bl,b |B,,)+ Zd(bl, c,|B,,)+

+1 2n+2

Zd(bl,az, I\Bz,,)+Zd(bl,cz,\an)— Z/+ Z(J -+ Z]+ 2(2/ 1)+22]

By the symmetry of B,,, we have D, (bl‘Bz,,) =D, (bzm‘an)-

If i#1 and i is odd, then the calculation of D, (b,-‘an) is as follows:

b, ;‘an)"‘zd(bn ,‘an)"'zd(bn /‘Bln)+

2n=

J=i+l
znfd(bnb ‘an)jLZd(bnc ‘BZ,,)JF 2d(b;,c;|B,, zr’izd(bnc/‘BZM)‘L
J=itl J=it2
n+l 2n+l
Zd(bl,az, I\Bz,,)+2d(b,,czj\32”) Z(l J+D)+ Z(J—z+1)+z(z N+
J=i+l
2n+2 2n+2 H] n+l
Z(]—l)+2(l—]+l)+2><3+ Z(j—l+l)+2(l 2j+2)+ 2(2/—1)+
J=i+l J=it2 .

2

i-1

n+l

(i=2j+D+ D (2j—i+D),
i+l
i}
2

Nl

<
T

if i#2n+2 and i is even, then the calculation of D, (b,-‘an) is as follows:

ZZ:d(bl,a \BZn)+Zd(b,,b |B,,)+

J=i+2

o) = af‘an)“'zd(bnai 2

2n+2
Zd(bnb ‘an)"'zd(b,sc ‘an)'*' Zd( ‘BZH)+zd(b1’a2/ I‘BZn)+Zd(b1’CZI‘BZH):

=i+l =i+1 Jj=1
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2n+1 2n+2

Z(z—j+1)+2x3+Z(]—z+1)+2(z N+ Z(]—I)JrZ(z J+D)+
2'TZ+2(]—1+1)+Z(1 2j+2)+ §(21—1)+2(z—2j+1)+ §(2]—1+1)

According to the above computation, we can obtain the desire results. 0

Lemma 3.3

(i) For 1<i<2n+1, Dy(a,

2n) o) =

) T ) =

Proof. By the previous Lemma, it is enough to compute the values of D,(q,

2n
Dy(b)|B,,),for 1<i<2n+1and 1< j<2n+2.

(i) We compute:

2n+l

D,(a[B,,)= Zd(al, \an)+2d<al,b \an)+2d(al, \an)+2d<al,az,l\Bz,,>+

ntl

> d(a,,b,|B,,), and

=

D,(a,|B,,)= Zd(az, 1By, +d(ay,b|B,,) +d(a,,b, \an)+2d(az,b |B,,)+d(ay,c,|B,,)+
Jj=3 Jj=3
2n+l

d(ay,c,|B,,)+ Zd(az, 1[Ba) + Zd(az,az, I\Bz,,)+2d(az,b2,\82n)

If i#1 and i is odd, then the calculation of D, (a,

2n

D,(a|B,,) = Zd(a,,a |B,,)+ Zd(a,,a \an)+2d(al,b |B,,)+2d(a,,b|B,,)+

Jj=2 J=i+l Jj=2
2n+1
> d(a,.b, ‘BZn)+2d(a‘,c |B,,)+ d(a;,c.,|B,,) +d(a,,c,,|B,,) + Zd(a,, c,|B,)+
J=itl j=3 J=itl

n+l n+l
Zd(anaz,q ‘an) + Zd(a[,sz‘Bh),

J=1 J=1

if i #2 and i is even, then the calculation of D, (a;

2n
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D,(a,|B,, .a,|B,,)+ Zd(al,a \BZW)+Zd(a,,b |B,,)+
J=itl

d(a,,b, ,|B,,) +d(a,b,,|B,,)+ Zd(a,,b |B,,)+ Zd(a,,c |B,,)+d(a,,c,,|B,,)+
j=i+l j=3

2n+1 n+l n+l
2d(ai’cf‘32n) + d(alﬁci+2‘32n) + Zd(ai’c/"BZH) + zd(ai’GZj—l‘BZn) + Zd(al,sz‘an).

J=it2 Jj=1 Jj=1

Now according to the proof of part (i) of the previous lemma, part (i) holds.

(ii) Similar to the proof of part (i), we have:

2n 2n+l 2n+l n+l
D,(b|B,,) =Y d(b,a,|B,,)+ > d(b.b,|B,)+ > d(b,c,|B,)+ D d(b.b,, |B,)+
Jj=1 j=1 Jj=2 j=1

ntl
Zd(blﬂbz/ ‘Bz,q )

Jj=1

By the symmetry of B,,, D, (b, ‘BZV,) D, (b,

B,,).

n+2

20
i1 2

Dl(bf‘BZn) = Zd(bnaj‘an) + 2d(bi’af‘B2n) + Zd( ‘BZn) + zd(bl’ ,‘an) +
=n

Zd(b,,b \an)+2d( ¢,|B,,)+ d(b,,c.|B,,)+d(b, ,HBZW)+Zd(b,, c,|B,)+

j=i+l J=i+l

ntl

n+l
> d(b,,b,, ,|B,,)+ Y d(b,,b,,|B,,),
Jj=1

=1

if i#2n+2 and i is even, then the calculation of D, (47,. B,,) is as follows:

i-1
) = s _/‘BZn)+d(bi’ai—l B,,)+d(b,,a,,|B,,)+ Zd( ;,“Bzﬂ)*“zd(bnb,‘BZn)ﬁL
J=i+l j=2
2n+l 2n+l +1
D d(b,,b, \32,7) + Zd(b,,c |B,,)+ 2d(b,,c|B,,)+ > d(b,.c,|B,,) + Zd(bi,sz,] |B,,)+
=i+l Jj=3 J=i+l Jj=1
n+l
Zld(bf,sz\BZn).

Now according to the proof of part (ii) of the previous lemma, part (ii) holds. o

Now, we use Lemmas 3.2 and 3.3 to obtain the first and second vertex-edge Wiener indices of

B,, in the following Theorem.
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Theorem 3.4
(i) Max(B,,)= 321 +116n* +128n+14.
(i) Min(B,,)= 321 +68n* +78n+2.

Proof. (i) The symmetry of the graph B, implies that, for every 1<i<2n+1 ,

2n

D,(a,|B,,) = Dy(¢,,,3.4B,,) - Hence
2n+l n+l n+l n
Max(B,,)= Z[ZDZ (a,|B,,)+ ZDz (b|B,)1= Z[ZDZ (ay41|By,) + zDz (ay|B,,) +
il = i1 il
n+l
D, (b[B,,)+ 3D, (5,[B,)].

i=2

Now, using Lemma 3.2, the proof is straightforward.

(ii) Using Lemma 3.3, we have:
2n+l n+l

Min(B,,) = 2[ZD1 (a,|B,,)+ ZDI (b,
=] =1
2n+l n+l

20 [Dy(a[B,,)~8n+3)]+ D [D,(b[B,,)~(8n+3)]} = Max(B,,) ~2(8n +3)(3n +2).

i=1 i=l

an)] =

Now by part (i), the proof is obvious.o

Conclusion

In this paper, we computed the vertex-edge Wiener indices of some classes of molecular
graphs made by hexagons. Nevertheless, there are still many classes of chemically interesting
and relevant graphs not covered by our approach. So, it would be interesting to find explicit
formulas for the vertex-edge Wiener indices of various classes of chemical graphs and
nanostructures.

Acknowledgement. We would like to thank the referee for a number of helpful comments and
suggestions.
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