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Abstract 
The concept of geometric-arithmetic indices was introduced in the chemical graph theory. 
These indices are defined as � �( )
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�
� 3 
� , where uQ  is some quantity that in 

a unique manner can be associated with the vertex u of graph G. In this paper, exact formulas 
for two types of geometric-arithmetic index of TUC4C8(S) nanotube and TC4C8(S) nanotorus 
are given. 
 
1. Introduction 

Throughout this section G is a simple connected graph with vertex and edge sets V(G) 
and E(G), respectively. A topological index is a numeric quantity from the structure of a 
graph which is invariant under automorphisms of the graph under consideration.  

A topological index is a numeric quantity from the structural graph of a molecule. 
Usage of topological indices in chemistry began in 1947 when chemist Harold Wiener 
developed the most widely known topological descriptor, the Wiener index, and used it to  
determine physical properties of types of alkanes known as paraffin. The Wiener index of G is 

the sum of distance between all unordered pair of vertices of G, ��  )(},{ ),()( GVvu G vudGW , 

where dG(u,v) and is defined as the number of edges in a minimal path connecting the vertices 
u and v, see [1]. The concept of geometric-arithmetic indices was introduced in the chemical 
graph theory. These indices generally are defined as  
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where uQ  is some quantity that in a unique manner can be associated with the vertex u of 

graph G.  
 The first type of geometric-arithmetic index is denoted by GA1 and defined as 
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GGAGA , where uv is an edge of the molecular graph G and du stand for 

the degree of the vertex u, see [2]. The GA1 index  has been introduced less than a year ago 
[2]. However, a few papers are appeared dealing with this quantity, see [3-5]. 

The second type of geometric-arithmetic index is denoted by GA2 and defined as 
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GGAGA , where nu is the number of vertices of G lying closer to u than 

to v and nv is the number of vertices of G lying closer to v than to u, see [6]. For )(GEuv� , 

let um  is the number of edges of G lying closer to u than to v and vm  is the number of edges 

of G lying closer to v than to u. 

  The third member of the class of generalGA  by setting uQ  ( vQ ) to be the number um ( vm ) 

for the edge uv of the graph G is defined as � � 
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GGAGA , it has been 

introduced in the paper [7]. A C4C8 net is a trivalent decoration made by alternating squares 
C4 and octagons C8. In recent years, some researchers are interested to topological indices of 
C4C8 nanotubes and nanotori, see [8-21] for details. They computed some distance based 
topological indices of these nanotubes and nanotori.  

The TUC4C8(S) nanotube is a mathematically beautiful object constructed from 
squares and octagons, Figure 1 (a). The aim of this article is to compute 2GA  and 3GA  indices 

of TUC4C8(S) nanotube and TC4C8(S) nanotorus  that obtained from TUC4C8(S) nanotube by 
gluing its ends, Figure 1 (b). 

 

  
a b 

Figure 1. (a) TUC4C8(S) nanotube, (b) TC4C8(S) nanotorus. 
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Throughout this paper T= T [p, q] denotes an arbitrary TUC4C8(S) nanotube in terms 

of the number of octagons in a fixed row (p) and  the number of octagons in a fixed column 

(q), in the two-dimensional lattice of T , Figure 2. We also denote a TC4C8(S) nanotorus, 

Figure 3, by S= S [p, q].   

 

             
  Figure 2. Two Dimensional Lattice TUC4C8(S) nanotube, with p=5 and q=3. 

 
Figure 3. Two Dimensional Lattice TC4C8(S) nanotorus, with p=5 and q=3. 

 

2. Main Results 
In this section, 2GA  and 3GA  indices of the molecular graph of TUC4C8(S) nanotube 

and TC4C8(S) nanotorus are computed. It is easy to see that 

pqqpTVTV 8|]),[(||)(| ��  and ppqqpTETE 212|]),[(||)(| ��� , 

pqqpSVSV 8|]),[(||)(| ��  and pqqpSESE 12|]),[(||)(| �� . 

In the following theorem the 2GA  index of TUC4C8(S) nanotube is obtained. 

-167-



 
 

Theorem 1. The 2GA  index of T=T [p, q] is computed as follows: 
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Proof.  One can see that there are three separate types of edges of TUC4C8(S) 

nanotube and the number of edges is different. Suppose e1, e2 and e3 are representative edges 

for these types. 

e1

 

Figure 4. The set E1(T) ( The edges of type e1). 

We partition the edges of TUC4C8(S) nanotube into three subsets )(1 TE , )(2 TE and 

)(3 TE , as follows: 

E1(T)= { e| e is the type of e1}, 

E2(T)= { e| e is  the type of e2,k  for qk 21 ##  }, 

E3(T)= { e| e is  the type of e3}. 
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The sets )(1 TE  , )(2 TE and )(3 TE are shown by dashed lines in Figures 4, 5 and 6, 

respectively. 

e2,1

e2,2

e2,2q  

Figure 5. The set E2(T) ( The edges of type e2). 

e3

 

Figure 6. The set E3(T) ( The edges of type e3). 

Therefore, by definition of GA2 index, 
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We evaluate each sums separately. For evaluating the first sum, we know that for 

)(1 TEuve �� , we have 
2

|)(| TVnn vu �� . Also pqTE 4|)(| 1 � , then pq
nn
nn

TEuv
vu
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For each )(2 TEuve �� , we have pqnn vu 8�
 . Obviously, for every uve �1,2 , we have 

)1(8),1( 
��
� pppqnppn vu , for every uve �2,2 , we have 

)2)(1(8),2)(1( 

��

� pppqnppn vu  , …, for every uve i �,2 , we have 
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By the same method when 
2
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Finally for computing the third sum, we attend, for each )(3 TEuve ��  in k-th row, nu= 

4pk and nv= 8pq-4pk and the number of edges of third type in each row is 2p. Since 

TUC4C8(S) nanotube is bipartite then for each )(3 TEuve �� , we have |)(| TVnn vu �
 . Then  
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This completes the proof.                                                                                        □ 

Theorem 2. The 3GA  index of  T=T [p, q] is given by: 
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where  the elements of  )(2 TE are shown in Figure 4.  

Proof.   We can now state the analogue of Theorem 1. Then 
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partition E2 (T) into 2q subsets such as E2,1,  E2,2, …, E2,2q,  such that  E2,k= { e| e is the type of 

e2,k }, for qk 21 ## . Therefore  
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By calculation we  have the following results.  Suppose i is an odd positive integer, such that 

qi ##1  , for each iEuve ,2�� ,  
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Suppose i is an even positive integer, such that qi ##1  , for each iEuve ,2�� , 
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For )(3 TEuve �� , in  k-th row,  mu+ mv=12pq-4p  and then,  mu=4p+6pk, mv=12pq-

8p-6pk. Hence �� �
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the proof.                                                                                                 □ 

Theorem 3. The 2GA and 3GA  indices of S=S [p, q] are equal and computed as follows: 

� � � � |)(|32 SESGASGA �� . 

Proof. Since TC4C8(S) nanotori is bipartite then for each )(SEuve �� , we have 

|)(| SVnn vu �
 . Moreover for each )(SEuve �� ,  
2

|)(| SVnn vu �� , therefore by definition of 
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GA2 index we conclude that, |)(|
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index, it is sufficient to show that for each )(SEuve �� , mu=mv . Such as Theorem 1, we 

partition the edge set of S=S [p, q] into three subsets )(1 SE , )(2 SE  and )(3 SE , these subsets 

are shown in Figure 7 by dashed lines. 
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and this complete the proof.                                                               □ 

 
Figure 7. The partition of E(S) into )(1 SE , )(2 SE  and )(3 SE . 
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