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Abstract. Let G be the molecular graph a dendrimer nanostar and η(G) = Sz(G) −
W (G), where W (G) denotes the Wiener index and Sz(G) denotes the Szeged index of G.
In this paper an edge-path matrix for G is presented by which it is possible to compute
η(G). We apply this number to compute the Wiener index of G.

1 Introduction and Preliminaries

Throughout this article G is a simple connected graph with vertex and edge sets V (G)

and E(G), respectively. As usual, the distance between the vertices u and v of G is

denoted by d(u, v) and it is defined as the number of edges in a minimal path connecting

them. The Wiener index W (G) is defined as the sum of all distances between vertices

of G [16]. The Wiener index has noteworthy applications in chemistry and interested

readers can be referred to papers [5, 6] and references therein for details.

We now describe some notations which will be kept throughout. Suppose e = uv.

Define nu(e) to be the number of vertices of G lying closer to u than v and nv(e) is defined

analogously. The Szeged index of G is defined as Sz(G) =
∑

e=uv∈E(G) nu(e)nv(e). Notice

that vertices equidistant from both ends of the edge e = uv are not counted. The Szeged

index is a mathematically elegant index defined by Ivan Gutman [7]. Also, the reader

can find more information about Szeged index in [8, 9].

Lukovits [13] introduced an all-path version of the Wiener index. To explain, we as-

sume that G is a connected graph with V (G) = {1, 2, ..., n}. Then P (G) =
∑
i<j

∑
P∈πi,j

|P |
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is called the “all–path” version of the Wiener index. Here, πi,j denotes the set of all path

connecting vertices i, j and the summations have to be performed between all pairs of

vertices i and j and for all paths between i and j. In the mentioned paper some math-

ematical properties of P (G) together with its extremal values are investigated. Notice

that this matrix is defined in a similar way as “all–path” index of Lukovits.

Suppose G is a connected graph and e = uv ∈ E(G). Define:

Nu(e) = {x ∈ V (G) | d(x, u) < d(x, v)} ,

Nv(e) = {x ∈ V (G) | d(x, u) > d(x, v)} ,

N0(e) = {x ∈ V (G) | d(x, u) = d(x, v)} .

Thus nu(e) = |Nu(e)| and nv(e) = |Nv(e)|. A set Y = {P1, P2, · · · , P(n2)} of shortest

paths in G such that for every vertex a, b ∈ V (G) and a 
= b, there exists a unique path

P ∈ Y connecting vertices a and b is called a complete set of shortest paths of G (CSSP

for short). Define the matrix AY = [aij], as follows:

aij =

{
1 ej ∈ E(Pi)

0 ej 
∈ E(Pi)
.

Clearly, if Pi is a path connecting vertices x and y then d(x, y) is the number of non-zero

entries in the ith row of AY . Thus the summation of entries of the matrix AY is equal

to the Wiener index of G. In what follows, PG(u, v) denotes the set of all shortest paths

connecting vertices u and v of G and CSSP(G) denotes the set of all CSSP of G.

Suppose G is an n−vertex graph with the path-edge matrix AY , where Y is a CSSP of

G. It is clear that |Y | = (n
2

)
. If e = uv is an edge of G then we define ηY (e) = nu(e)nv(e)−∑

i aij and ηY (G) =
∑

e∈G ηY (e). It is easy to see that ηY (G) = Sz(G) − W (G) and

so the value of ηY (G) is independent from Y . If H is a subgraph of G then we define

ηY (H) =
∑

e∈E(H) ηY (e). In [12], the presented authors proved the following two theorems

which are crucial throughout the paper.

Theorem 1. Suppose G is a graph, Y, Z ∈ CSSP (G) and B is a block of G. Then

ηY (B) = ηZ(B).

Theorem 2. Suppose e is an edge of a connected graph G. If η(e) > 0 then e is belonging

to a cycle Cn, n ≥ 4, or a subgraph isomorphic to K4 − e. If e is an edge of a complete

block B of G then η(e) = 0.
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By Theorem 1 and for simplicity, from now on we fix a set Y and write η(e) and η(G)

as ηY (e) and ηY (G), respectively. Throughout this paper our notation is standard and

taken mainly from [14, 15]. We let Kn, Pn and Cn denote the complete graph, path and

cycle on n vertices, respectively.

2 Main Result

Dendrimers are highly ordered branched macromolecules which have attracted much the-

oretical and experimental attention [4]. The nanostar dendrimer is part of a new group

of macromolecules that seem photon funnels just like artificial antennas and also, it is a

great resistant of photo bleaching.

In [1, 2, 10, 11], one of us (ARA) presented a technique for computing Wiener index of

dendrimer nanostars by considering some isometric subgraphs A1, A2, · · · , Ar such that we

can partition the edge set of the graph into subgraphs isomorphic to one of Ai, 1 ≤ i ≤ r.

If r ≤ 4 then it is possible to calculate the distance matrix of these subgraphs and find a

more and less good algorithm for computing Wiener index.

In this paper an efficient method is presented by which it is possible to compute the

Wiener index of dendrimer nanostars provided that its Szeged index is known. To do

this, we will compute η(G) = Sz(G)−W (G) for a given dendrimer nanostar G and since

Sz(G) is known the Wiener index of G will be computed immediately. We describe our

method by considering a dendrimer nanostar G[n] depicted in Figure 1, where n denotes

the number of growth in G[n]. Obviously, N = |V (G[n])| = 18× 2n−1 − 12. In Figure 1,

the molecular graph of G[3] is depicted.

From Figure 1, one can see that G[n] is constructed from blocks isomorphic to a

hexagon or K2. By Theorem 2, if e is an edge of G[n] outside hexagons then η(e) = 0.

Thus we must compute the values of η(e) for edges e, such that there exists a hexagon

through e.

It is obvious that every vertex v of Hi of degree 3 is adjacent to a unique cut edge

e of G[n]. Consider an arbitrary hexagon Hi in the ith step of G[n] with vertex set

V (Hi) = {v1, v2, v3, v4, v5, v6}. Then without loss of generality, we can assume that

vertices v1, v3 and v5 have degree 3, and vertices v2, v4 and v6 have degree 2. Define

nj = mj + 1, where mj is the minimum number of vertices in the components yield by

deleting e from G[n], j = 1, 3, 5.
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Figure 1: The dendrimer nanostar G[n].

If deg(v) = 2 then we define nj(v) = 1. Since Hi is a block, the Theorem 2 implies

that η is independent from choosing the shortest path. If i = n = 1 then for all j,

1 ≤ j ≤ 6, we define nj = 1. Suppose that n > 1. If i = 1 then n1 = n3 = n5 =
N−6
3

+ 1

= N
3
− 1 and so η(H1) = 5(N − 3) + 2 × 3 × (N

3
− 1)2 + 6 = 2N2

3
+ 9N - 3. If i = n

then n1 = n5 = 1 and n3 = N − 5. Hence η(Hn) = 5(2 +N − 5) + 2(1 + 2(N − 5) + 6) =

9(N − 3). We now assume that 1 < i < n. Therefore,

η(Hi) = n1n2 + 2n1n3 + 3n1n4 + 2n1n5 + n1n6

+ n2n3 + 2n2n4 + 3n2n5 + 2n2n6

+ n3n4 + 2n3n5 + 3n3n6

+ n4n5 + 2n4n6

+ n5n6

Simplify last equation by the condition n2 = n4 = n6 = 1 to prove:

η(Hi) = 5(n1 + n3 + n5) + 2(n1n3 + n1n5 + n3n5) + 6.

On the other hand, n1 = n5 = 6 × (2n−i − 1) + 1 = 3 × 2n−i+1 − 5 and so n3 =

N − 2(3× 2n−i+1 − 5) - 3 = N − 3× 2n−i+2 + 7. Therefore,

η(Hi) = 5(N − 3) + 2[(3× 2n−i+1 − 5)2 + 2(3× 2n−i+1 − 5)(N − 3× 2n−i+3 + 7)] + 6

= 3N(2n−i+3 − 5) + 9(2n−i+5 − 3× 22n−2i+3 − 11)
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Finally, η(G) =
∑

e∈E(G) η(e) and since for each complete block B and b ∈ B, η(b) = 0,

we have η(G) =
∑

i riη(Hi), where r1 = 1 and for i > 1, ri = 3 × 2i−2 is the number of

hexagons in the ith step of G[n]. Therefore, η(G[n]) = 162.n.4n− 783
2
4n+1107.2n−1−162.

On the other hand, by [3, Theorem 1], Sz(G[n]) = −30244n + 5724.2n + 6480.n.4n - 432.

Therefore, we prove our main result as follows:

Theorem. W (G[n]) = −1215
2

.4n + 1755.2n − 1 + 243.n.4n − 270.
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