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Abstract. The Hosoya polynomial of a graph G is a graphical invariant polynomial
that its first derivative at x = 1 is equal to the Wiener index. In this paper we compute
the Hosoya polynomial of the hierarchical product of graphs and give some applications
of this operation.

1 Introduction
Let G be a simple connected graph, with vertex and edge sets V (G) and E(G), respec-

tively. The distance between the vertices u and v of G is denoted by dG(u, v) or d(u, v)

which is defined as the length of a shortest path between u and v in G. The Wiener index

of G is a distance-based graph invariant defined as:

W (G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

d(u, v).

For details on mathematical properties of the Wiener index and its chemical applications

see [2, 3] and [7, 8, 17]. Motivated by the Wiener index Randić in [16] introduced an

extension of the Wiener index for trees, and this has come to be known as the hyper

Wiener index. Klein et al. [14] generalized this extension to cyclic structures as:

WW (G) =
1

2
W (G) +

1

4

∑
(u,v)∈V (G)×V (G)

d(u, v)2.

In [12], Hosoya introduced a distance-based graph polynomial, is called Wiener polynomial

or Hosoya polynomial, as:

H(G, x) =
1

2

∑
u∈V (G)

∑
u �=v∈V (G)

xd(u,v).
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As you see the first derivative of H(G, x) at x = 1 is equal to the Wiener index. This

polynomial is very attractive for some mathematicians and mathematical chemists [4, 5,

9, 11, 13, 15, 18]. Computing the Wiener index and the Hosoya polynomial of the graph

operations have been the object of some papers. For instance, Yeh and Gutman et al.

in [22] computed the Wiener index in the case of graphs that are obtained by means of

certain binary operations (such as product, join, and composition) on pairs of graphs.

Stevanović in [19] and Sagan et al. in [18] generalized their results and computed the

Wiener polynomial of product, join, and composition of graphs. Recently in [6] Eliasi

et al. introduced four new sums of graphs( is called F−sums) and computed the Winer

indices of these new graphs. In this paper we compute the Hosoya polynomial of the

hierarchical product of graphs and give some applications of this operation. For example

we obtain the Hosoya polynomial of F−sums. Also at the end of paper we give a new

proof of a result of Zhang et al. [20] on the Hosoya polynomial of hexagonal chains.

2 Generalized Hierarchical Product

The cartesian product G�H of the graphs G and H has the vertex set V (G�H) =

V (G) × V (H) and two vertices (g1, h1) and (g2, h2) adjoint by an edge if and only if [

g1 = g2 and h1h2 ∈ E(H)] or [ h1 = h2 and g1g2 ∈ E(G) ].

L. Barrire, et al. in [1], defined a new product of graphs, namely generalized hierar-

chical product, as follows:

Definition 1. Let G and H be two graphs with nonempty vertex subset U ⊆ V (G). Then

the generalized hierarchical product G(U)	H is the graph with the vertex set V (G)×V (H)

and two vertices (g, h) and (g′, h′) adjoint by an edge if and only if [ g = g′ ∈ U and

hh′ ∈ E(H)] or [ h = h′ and gg′ ∈ E(G) ].

The following lemma gives some basic properties of the generalized hierarchical product

of graphs.

Lemma 1. (See [1]) Let G and H be graphs with U ⊆ V (G). Then we have

(a) If U = V (G), then the generalized hierarchical product G(U)	H is the Cartesian

product of G and H,

(b) |V (G(U) 	H)| = |V (G)||V (H)| , |E(G(U) 	H)| = |E(G)||V (H)|+ |E(H)||U |,
(c) G(U) 	H is connected if and only if G and H are connected,
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(d) dG(U)�H((g, h), (g′, h′)) =

{
dG(U)(g, g

′) + dH(h, h
′) if h 
= h′

dG(g, g
′) if h = h′.

Let G = (V,E) be a graph and ∅ 
= U ⊆ V . A path between vertices u and v

through U , denoted by ρG(U)(u, v), is simply a u − v path of G containing some vertex

z ∈ U (vertex z could be the vertex u or v). Then, the distance through U , denoted by

dG(U)(u, v), between u and v is the length of the shortest path ρG(U)(u, v). Note that, if

one of the vertices u or v belong to U , then dG(U)(u, v) = dG(u, v). We define

H(G(U), x) =
∑

(u,v)∈V (G)×V (G)

xdG(U)(u,v).

As [18], it is sometimes more natural to express our results in terms of the ordered Hosoya

polynomial defined by

H(G, x) =
∑
(u,v)

xd(u,v),

where the sum is now over all ordered pairs (u, v) of vertices, including those u = v. Thus

H(G, x) = 2H(G, x) + |V (G)|.

Using this notation, in the following theorem, we compute the Hosoya polynomial of the

generalized hierarchical product.

Theorem 1. Let G and H be graphs with U ⊆ V (G). Then we have

H(G(U) 	H, x) = |V (H)|H(G, x) +
(
H(H, x)− |V (H)|

)
H(G(U), x).

Proof. Set V (G) = {g1, g2, . . . , gn} and V (H) = {h1, h2, . . . , hm}. Also let Γ =

G(U) 	H. We have

H(Γ, x) =
∑

(u,v)∈V (Γ)×V (Γ)

xdΓ(u,v)

=
∑
(gj ,hl)

∑
(gi,hk)

xdΓ((gi,hk),(gj ,hl))

=

[
m∑
k=1

n∑
i,j=1

xdΓ((gi,hk),(gj ,hk)) +
m∑

k �=l=1

n∑
i,j=1

xdΓ((gi,hk),(gj ,hl))

]

=

[
m∑
k=1

n∑
i,j=1

xdG(gi,gj) +
m∑

k �=l=1

n∑
i,j=1

x[dG(U)(gi,gj)+dH(hk,hl)]

]
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=

[
m∑
k=1

n∑
i,j=1

xdG(gi,gj) +
m∑

k �=l=1

xdH(hk,hl)

n∑
i,j=1

xdG(U)(gi,gj)

]

= |V (H)|H(G, x) +
(
H(H, x)− |V (H)|

)
H(G(U), x),

which completes the proof. �

Corollary 2. Let G and H be two connected graphs. Then

H(G�H) = H(G, x)H(H, x).

Proof. Let U = V (G). Then H(G(U), x) = H(G, x) and the desired result obtains

from Theorem 1. �

3 Hosoya polynomial of F−sum of graphs

In [6], the authors introduced four new sums of graphs and obtained their Wiener index.

Here we obtain the Hosoya polynomials of these operations and as an application, we

give a new method to compute the Wiener index of these graphs. At first we recall some

definitions and notations. Let G be a connected graph.

(a) S(G) is obtained from G by replacing each edge of G by a path of length two.

(b) R(G) is obtained from G by adding a new vertex corresponding to each edge of

G, then joining each new vertex to the end vertices of the corresponding edge.

(c) Q(G) is obtained from G by inserting a new vertex into each edge of G, then

joining with edges those pairs of new vertices on adjacent edges of G.

(d) T (G) has as its vertices the edges and vertices of G. Adjacency in T (G) is defined

as adjacency or incidence for the corresponding elements of G. (This graph is called total

graph of G).

Definition 2. ( See [6]) Let F be one of the symbols S,R,Q or T . The F -sum G1+FG2 is

a graph with the set of vertices V (G1+F G2) = (V (G1)∪E(G1))×V (G2) and two vertices

(g1, g2) and (g′1, g
′
2) of G1 +F G2 are adjacent if and only if [g1 = g′1 and g2 ∼ g′2 in G2]

or [g2 = g′2 and g1 ∼ g′1 in F (G1)].

The Wiener index of G +F H has been computed in [6]. Note that if we set U =

V (G) ⊆ V (F (G)), then G+F H = F (G)(U)	H. Thus we have a new and short method

in computing the Wiener index of G+F H.
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Theorem 2. Let G = (V1, E1) and H = (V2, E2) be two connected graphs. Suppose that

U = V (G) ⊆ V (F (G)). Then if F = Q or T , then the Wiener index of graph G+F H is

equal to:

|V2|H(F (G), x) +
(
H(H, x)− |V2|

)(
x[H(F (G), x)− |V (F (G))|] + |E1|x2 + |V1|

)
.

Also if F = S or R, then the Wiener index of graph G+F H is equal to:

|V2|H(F (G), x) +

(
H(H, x)| − |V2|

)(
H(F (G), x) + |E1|x2 − |E1|

)
.

Proof. At first suppose that F = S or R. Then for every y 
= x ∈ V (F (G)) we have

dF (G)(U)(x, y) = dF (G)(x, y). Also for every x ∈ V (F (G)) \ U , dF (G)(U)(x, x) = 2. So we

obtain

H(F (G)(U), x) =

( ∑
y∈V (F (G))

∑
y �=x∈V (F (G))

xdF (G)(U)(x,y)

+
∑

x∈V (F (G))\U
xdF (G)(U)(x,x) +

∑
x∈U

xdF (G)(U)(x,x)

)

=
∑

y∈V (F (G))

∑
y �=x∈V (F (G))

xdF (G)(x,y) +
∑

x∈V (F (G))\U
x2 +

∑
x∈U

x0

=

(
H(F (G), x)− |V (F (G))|

)
+ |V (F (G)) \ U |x2 + |V1|

= H(F (G), x) + |E1|x2 − |E1|. (1)

Combining (1) and Theorem 1, we obtain the desired result when F = S,R.

Now suppose that F = Q or T . Then clearly for every y 
= x ∈ V (F (G)) \ U we have

dF (G)(U)(x, y) = dF (G)(x, y)+ 1 and for other vertices of F (G) dF (G)(U)(x, y) = dF (G)(x, y).

Also note that for every y 
= x ∈ V (F (G)) \ U we have dF (G)(x, y) = dL(G)(x, y) and for

every x ∈ V (F (G)) \ U , dF (G)(U)(x, x) = 2. Hence, we obtain

H(F (G)(U), x) =

( ∑
y∈V (F (G))

∑
y �=x∈V (F (G))

xdF (G)(U)(x,y)

+
∑

x∈V (F (G))\U
xdF (G)(U)(x,x) +

∑
x∈U

xdF (G)(U)(x,x)

)
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= x
∑

y∈V (F (G))

∑
y �=x∈V (F (G))

xdF (G)(x,y) +

∑
x∈V (F (G))\U

x0 +
∑
x∈U

x2

= x

(
H(F (G), x)− |V (F (G))|

)
+ |V (F (G)) \ U |x2 + |V1|

= x

(
H(F (G), x)− |V (F (G))|

)
+ |E1|x2 + |V1|. (2)

Again by Theorem 1 and (2) we obtain the result. �

Corollary 3. Let G = (V1, E1) and H = (V2, E2) be two connected graphs. Suppose that

U = V (G) ⊆ V (F (G)). Then W (G+F H) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
|V2|2W (F (G)) +

(
|V1|+ |E1|

)2

W (H) + 1
2
(|E1|2 + |E1|)(|V2|2 − |V2)|) F = Q, T

|V2|2W (F (G)) +

(
|V1|+ |E1|

)2

W (H) + |E1||V2|(|V2)| − 1) F = S,R.

Figure 1: G′ = Cn +S P2

4 Examples

Let Cn and Pn denote a cycle and path with n vertices respectively. Then

H(Pn, x) =
2x

1− x
(n− [n]) + n,

H(C2n, x) = 4n([n]− 1) + 2nxn + 2n,
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H(C2n+1, x) = 2(2n+ 1)([n]− 1) + (2n+ 1) = (2n+ 1)(2[n]− 1),

where [n] = 1 + x+ x2 + · · ·+ xn−1 = xn−1
x−1 .

If G = Cn and H = K2, then by Theorem 2 for graph G′ = S(Cn)(U)	P2, shown in Fig.

1, H(G′, x) is equal to

|V (P2)|H(S(Cn), x) +

(
H(P2, x)| − |V (P2)|

)(
H(S(Cn), x) + |E(Cn)|x2 − |E(Cn)|

)

= 2H(C2n, x) +

(
H(P2, x)− 2

)(
H(C2n, x) + nx2 − n

)

= 2

(
4n([n]− 1) + 2nxn + 2n

)
+ 2x

(
4n([n]− 1) + 2nxn + 2n+ nx2 − n

)

=
2n (2 xn − 3 x+ 4 xn+1 − 2− 3 x2 + 2 xn+2 + x4 − x3)

x− 1

Note that S(Cn)(U) 	 P2 is called the Zig-Zag polyhex nanotube TUHC6[2n, 2].

Corollary 4. Let n be an integer. Then the Wiener index and the hyper Wiener index

of Zig-Zag polyhex nanotube TUHC6[2n, 2] are equal to

W (TUHC6[2n, 2]) = 4n3 + 4n2 + 2n,

WW (TUHC6[2n, 2]) =
n

3

(
15 + 14n+ 12n2 + 4n3

)
.

Also for hexagonal chains with n hexagonal Ln = S(Pn+1)(U) 	 P2, where U =

V (Pn+1), shown Fig. 2, we obtain

H(Ln, x) =
2 (1 + x) (nx4 − 3nx3 + nx2 − x2 − 2 x+ 2 xx2n+1 − nx+ 2n+ 1)

(x− 1)2
.

As a corollary of our results we compute the hyper Wiener index of linear hexagonal

chain. This result, by a different method, was already obtained by Zhang et al. Theorem

3.1, [20].

Corollary 5. Let n be an integer. Then the Wiener index and hyper the hyper Wiener

index of a hexagonal chain with n hexagonal ,Ln, are equal to

W (Ln) =

(
16n3 + 36n2 + 26n+ 3

3

)

WW (Ln) =
3 + 37n+ 46n2 + 32n3 + 8n4

3
.
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Figure 2: A linear hexagonal chain
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