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Abstract

Let U+
n be the set of bipartite unicyclic graphs with n vertices. In U+

n , ordering the

unicyclic graphs in terms of their maximal Estrada indices was considered. We deduce the

first four and three unicyclic graphs in U+
n for n ≥ 23 and 22 ≥ n ≥ 8, respectively. For

two bipartite graphs, we construct a relation between the Estrada index and the largest

eigenvalue.

1 Introduction

Let G = (V (G), E(G)) be a simple, connected graph with n vertices, where V (G) and

E(G) are the set of vertices and edges of G, respectively. The Estrada index (EI),

put forward by Estrada [12,14], is defined as

EE(G) =
n∑

i=1

eλi (1)

where λ1, . . . , λn are the eigenvalues of G, namely the n roots of φ(G, λ) = 0. Here

φ(G, λ) = det[λI − A(G)] (2)

is the characteristic polynomial of G [6], where I is the unit matrix of order n and

A(G) the adjacency matrix of G. It is obvious that each λi (1 ≤ i ≤ n) is real since
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A(G) is real and symmetric. Without loss of generality, we assume λ1 ≥ · · · ≥ λn.

Next we also write λi = λi(G) for 1 ≤ i ≤ n.

The largest eigenvalue λ1(G) is called the spectral radius of G. If G is connected,

then A(G) is irreducible. According to the Perron–Frobenius theory of non-negative

matrices, λ1(G) hasmultiplicity one and there exists a unique positive unit eigenvector

corresponding to λ1(G). Such an eigenvector is referred to as the Perron vector of

G [17].

The EI has already found numerous applications in the last decade, for exam-

ple, measuring the degree of protein folding [12] and the centrality of complex net-

works (such as neural, social, metabolic, protein–protein interaction networks, and

the World Wide Web) [13]. Some mathematical properties of the EI, including lower

and upper bounds may be found in Refs. [1, 3, 5, 8, 15, 16]. The Laplacian– and sign-

less Laplacian–spectral variants of the Estrada index were also studied [2, 25, 31].

For the characterization of graphs with the extremal EI, one can refer to Refs.

[7, 9, 10, 20, 23, 24, 30]. More details on the theory of EI and an exhaustive bibli-

ography can be found in the recent survey [19].

For k ≥ 0, we denote Mk(G) =
∑n

i=1 λ
k
i and refer to Mk(G) as the k-th spectral

moment of G. It is well-known that Mk(G) is equal to the number of closed walks of

length k in G [6]. From the Taylor expansion of eλi , EE(G) in (1) can be rewritten

as

EE(G) =
∞∑
k=0

Mk(G)

k!
. (3)

In particular, if G is a bipartite graph, then M2k+1(G) = 0 for k ≥ 0. Hence, we have

EE(G) =
∞∑
k=0

M2k(G)

(2k)!
. (4)

Let G1 and G2 be two bipartite graphs. If M2k(G1) ≥ M2k(G2) holds for any

positive integer k, then EE(G1) ≥ EE(G2). Moreover, if the strict inequality

M2k(G1) > M2k(G2) holds for at least one integer k, then EE(G1) > EE(G2). By

constructing a mapping and using this relation, the characterization of trees with the

extremal Estrada indices (EIs) has successfully been obtained. For the trees on n

vertices, some results were recently reported [9,10,24,30]. Deng [9] obtained the trees
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with the minimal and the maximal EIs. Among the trees with exactly two vertices

having the maximum degree, Li et al. [24] deduced the tree with the minimal EI.

Among the trees with a given matching number and among the trees with a fixed

diameter, Zhang et al. [30] determined the trees with the maximum EIs. Among the

trees with a given number of pendent vertices, Du and Zhou [10] determined the tree

with the maximum EI.

The set of unicyclic graphs on n vertices is denoted by Un, in which each graph has

only one cycle Cl of length l with 3 ≤ l ≤ n. The set of bipartite unicyclic graphs on n

vertices is denoted by U+
n . For the graphs in Un, by constructing a mapping, Du and

Zhou [11] determined the graph with the maximum EI and showed two candidates

with the minimum EI. For the graphs in U+
n , Du and Zhou [11] found the graph with

the maximum EI and the graph of a given bipartition with the maximum EI. In this

paper, we will study the connected bipartite unicyclic graphs. We construct a relation

between the EI and the largest eigenvalue of the graph. Thus, by this relation, the

results of Du and Zhou [11] will be extended. We deduce the first four and three

unicyclic graphs in U+
n for n ≥ 23 and 22 ≥ n ≥ 8, respectively.

2 Preliminaries

To deduce the main results of the present paper, some definitions and necessary

lemmas are simply quoted here.

Let G − v and G − uv be the graphs obtained from G by deleting the vertex

v ∈ V (G) and the edge uv ∈ E(G), respectively. Similarly, G + uv is a graph

obtained from G by adding an edge uv /∈ E(G), where u, v ∈ V (G).

Lemma 1. [6] Let v be a vertex of degree 1 in G and u be the vertex adjacent to v.

Then

φ(G, λ) = λφ(G− v, λ)− φ(G− u− v, λ) .

Lemma 2. [22] Let G1 and G2 be two graphs. If φ(G2, λ) > φ(G1, λ) for λ ≥ λ1(G2),

then λ1(G1) > λ1(G2).

Let Cl be a cycle with l vertices, and the vertices of Cl are labelled consecutively

by u1, u2, . . . , ul, where l ≥ 3. Let Gl,1
n be the graph obtained from Cl by attaching
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n− l pendent edges to u1 of Cl. Let G
l,2
n be the graph obtained from Cl by attaching

n− l − 1 pendent edges and one pendent edge to u1 and u2 of Cl, respectively.

Lemma 3. [4, 21] If the length of circle contained in G is l with l ≥ 3 and n ≥ l,

then we have

(i) for any G ∈ Un − {Gl,1
n }, λ1(G

l,1
n ) > λ1(G) ;

(ii) for any G ∈ Un − {Gl,1
n , Gl,2

n }, λ1(G
l,2
n ) > λ1(G) ;

(iii) λ1(G
l,1
n ) > λ1(G

l+1,1
n ) .

Lemma 4. [26] Let G be a connected graph, and let G′ be a proper spanning subgraph

of G. Then λ1(G) > λ1(G
′).

For v ∈ V (G), let d(v) and N(v) denote the degree of v and the set of all eighbors

of v, respectively.

Lemma 5. [27,29] Let G be a connected graph and u, v be two vertices of G. Suppose

that v1, v2, . . . , vs ∈ N(v)\N(u) (1 ≤ s ≤ d(v)) and x = (x1, x2, . . . , xn) is the Perron

vector of A(G), where xi corresponds to the vertex vi (1 ≤ i ≤ n). Let G∗ be the

graph obtained from G by deleting the edges vvi and adding the edges uvi (1 ≤ i ≤ s).

If xu ≥ xv, then λ1(G
∗) > λ1(G).

Lemma 6. [18] Let G be a connected graph and e = uv be a non-pendent edge of G

with N(u)∩N(v) = ∅. Let G� be the graph obtained from G by deleting the edge uv,

identifying u with v, and adding a pendent edge to u (= v). Then λ1(G
�) > λ1(G).

The transformation from G to G� in Lemma 6 is hereinafter called the edge–

growing transformation (EGT) of G on the edge e.

3 Main results

For simplicity, we refer to the connected graphs having n vertices and m edges as

the (n,m)-graphs, where n ≥ 3. For two bipartite (n,m)-graphs, from Lemma 7, we

have Lemma 8, which shows a relationship between the EI and the largest eigenvalue.

Lemma 8 will play a key role in the paper.
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Lemma 7. Let x, y, a and b be real numbers and k an integer not less than 2.

(i) If a > x > y ≥ a
2
> 0, then xk + (a− x)k > yk + (a− y)k;

(ii) If x > b > 0, then xk > (x− b)k + bk.

Proof. As a > x > y ≥ a/2 > 0, obviously, it holds that

xk − yk = (x− y)(xk−1 + xk−2y + · · ·+ yk−1) (5)

(a− y)k − (a− x)k = (x− y)
[
(a− y)k−1 + (a− y)k−2 (a− x) + · · ·

+ (a− x)k−1
]
. (6)

Since x > y ≥ a/2, we have x − y > 0, x > a − x, and y ≥ a − y. Thus, by (5) and

(6), we get xk − yk > (a− y)k − (a− x)k. Hence, we have Lemma 7(i).

By methods similar to that for Lemma 7(i), we can get Lemma 7(ii). �

Lemma 8. Let G1 and G2 be two connected bipartite (n,m)-graphs. If G1 has exactly

two positive eigenvalues and G2 has at least two positive eigenvalues with λ1(G1) >

λ1(G2), then EE(G1) > EE(G2).

Proof. For an (n,m)-graph G, we have
∑n

i=1 λ
2
i = 2m [6]. Furthermore, if G is

a connected bipartite (n,m)-graph, then it is well known that the eigenvalues of G

are symmetric with respect to the origin [6]. Thus G has t = [n − η(G)]/2 positive

eigenvalues and
∑t

i=1 λ
2
i = m, where η(G) is the multiplicity of zero eigenvalue of G.

By (1) and the Taylor expansion of eλi , we have

EE(G) = n+m+ 2
∞∑
k=2

(
1

(2k)!

t∑
i=1

λ2k
i

)
. (7)

Let G1 and G2 be two connected bipartite (n,m)-graphs, where G1 has exactly two

positive eigenvalues, G2 has at least two positive eigenvalues, and λ1(G1) > λ1(G2).

Let λ2
i (G1) = xi with i = 1, 2 and λ2

i (G2) = yi with 1 ≤ i ≤ t and 2 ≤ t ≤ n
2
.

Obviously, x1 > y1, x1 > x2 > 0, y1 > y2 ≥ · · · ≥ yt > 0, and
∑2

i=1 xi =
∑t

i=1 yi = m.

The expressions for EE(G1) and EE(G2) can be obtained by replacing λ2
i in (7) with

xi and yi, respectively.

Let k ≥ 2. Next, we prove xk
1 + xk

2 > yk1 + · · · + ykt . Two cases are considered as

follows.
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Case (i) t = 2.

Since y1 > y2 and
∑2

i=1 xi =
∑2

i=1 yi = m, we get m > x1 > y1 > m/2. By

Lemma 7(i), we have xk
1 + xk

2 > yk1 + yk2 . Thus, by (7), we have EE(G1) > EE(G2).

Case (ii) 3 ≤ t ≤ n/2.

Two subcases are considered as follows.

Subcase (ii.i) y1 ≥ m/2.

Obviously, m > x1 > y1 ≥ m
2
. By Lemma 7(i), we get xk

1 + xk
2 = xk

1 +(m− x1)
k >

yk1 +(m− y1)
k. Since m− y1 = y2+ · · ·+ yt, using Lemma 7(ii) repeatedly, we obtain

(m− y1)
k > yk2 + · · ·+ ykt . Thus, we get xk

1 + xk
2 > yk1 + yk2 + · · ·+ ykt . Hence, by (7),

we get EE(G1) > EE(G2).

Subcase (ii.ii) y1 < m/2.

For y1 < m/2 and a fixed k, we prove xk
1 + xk

2 > yk1 + · · ·+ ykt by induction on t.

As t = 3, we have

xk
1 + xk

2 >
(m
2

)k

+
(m
2

)k

>
(m
2

)k

+ yk1 +
(m
2
− y1

)k

> yk1 + yk2 + yk3 . (8)

The first inequality in (8) follows from Lemma 7(i) since
∑2

i=1 xi = m and x1 > m/2,

the second one in (8) from Lemma 7(ii) since m/2 > y1 > 0, and the third one in (8)

from Lemma 7(i) since

m

2
> y1 > y2 ≥

y2 + y3
2

and
m

2
+
(m
2
− y1

)
= y2 + y3 .

As t = p and p ≥ 4, we suppose xk
1+xk

2 > yk1+· · ·+ykp , where
∑2

i=1 xi =
∑p

i=1 yi =

m.

As t = p + 1, we have
∑p+1

i=1 yi = m. Since y1 > y2 ≥ · · · ≥ yp+1 > 0 and p ≥ 4,

we have m/2 > yp + yp+1 . By the induction and Lemma 7(ii), we get

In conclusion, we obtain xk
1 + xk

2 > yk1 + · · · + ykt for y1 < m/2 and 3 ≤ t ≤ n/2.

Thus, by (7), we obtain EE(G1) > EE(G2).

Lemma 8 is thus proved. �

Remark: For those (n,m)-graphs which are not bipartite, Eq. (1) can not be

changed into (7) and Lemma 8 is not applicable to obtain the graph with the maxi-

mum EI.
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(d) I48

Fig. 1: C4
8 , L

2
8, K

4
8(1, 3), and I48 .

Let C4
n(n1, n2, n3, n4) be the unicyclic graph obtained from C4 by attaching ni

pendent edges to every ui of C4, where 0 ≤ ni ≤ n − 4,
∑4

i=1 ni = n − 4 and

1 ≤ i ≤ 4.

Specially, we denote C4
n(n−5, 0, 0, 1) by C4

n with n ≥ 6 and C4
n(n1, 0, n3, 0) by Ln3

n

with n1 = n− 4− n3 .

For example, L0
b+4 is the graph obtained from C4 by attaching b pendent edges to

u1 of C4. In L0
b+4, we denote by {z1, z2, . . . , zb} the set of the b pendent vertices.

Let K4
n(b, c) be the unicyclic graph obtained by attaching c pendent edges to z1 of

L0
b+4, where c = n−4−b and 1 ≤ b ≤ n−5. InK4

n(b, c), we denote by {w1, w2, . . . , wc}
the set of the c pendent vertices adjacent to z1 .

Specially, we denote K4
n(n− 5, 1) by I4n with n ≥ 6.

For example, C4
8 , L

2
8, K

4
8(1, 3) and I48 are shown in Fig. 1.

In this paper, for the ordering of the graphs in U+
n in terms of their maximal EIs,

we will show that L0
n, C

4
n, I

4
n, and L1

n are the first four graphs for n ≥ 23 while L0
n,

C4
n, and L1

n are the first three ones for 22 ≥ n ≥ 8.

We introduce Lemmas 9–17 from which the main results of this paper follows.

Lemma 9. EE(L0
n) > EE(C4

n) > EE(I4n) for n ≥ 6.

Proof. Straightforward derivation by Lemma 1 yields

φ(L0
n, λ) = λn−4

[
(2n− 8)− nλ2 + λ4

]
(9)

φ(C4
n, λ) = λn−6

[
−(n− 5) + (3n− 13)λ2 − nλ4 + λ6

]
� λn−6g1(λ) (10)

φ(I4n, λ) = λn−6
[
−(2n− 12) + (3n− 12)λ2 − nλ4 + λ6

]
� λn−6g2(λ) . (11)

From (9) and (10), we can see that L0
n and C4

n have two and three positive eigen-

values, respectively. Since L0
n = G4,1

n , by Lemma 3(i), we have λ1(L
0
n) > λ1(C

4
n) for

n ≥ 6. Since L0
n, C

4
n ∈ U+

n , by Lemma 8, we get EE(L0
n) > EE(C4

n) for n ≥ 6.
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We can check that

g1

(√
0.38

)
= 0.114872− 0.0044n < 0 (n ≥ 27)

g1

(√
0.382

)
= 0.089743 + 0.000076n > 0 (n ≥ 6)

g1

(√
2.6
)
= −11.224 + 0.04n > 0 (n ≥ 281)

g1

(√
2.62

)
= −11.0753− 0.0044n < 0 (n ≥ 7)

g1

(√
n− 3 + 5/n

)
=

125− 225n+ 120n2 − 28n3

n3
< 0 (n ≥ 7)

g1

(√
n− 3 + 8/n

)
= −55 +

512

n3
− 576

n2
+

240

n
+ 3n > 0 (n ≥ 14) .

According to the theorem of zero points, we have, for n ≥ 281,

n− 3 +
5

n
< λ2

1(C
4
n) < n− 3 +

8

n
, 2.6 < λ2

2(C
4
n) < 2.62, 0.38 < λ2

3(C
4
n) < 0.382 .

(12)

The explicit expressions for gj(·) with j ≥ 2 can be obtained by a straightforward

calculation and will be omitted hereinafter for the sake of conciseness. One can readily

obtain the following expressions: g2
(√

0.976
)
< 0 for n ≥ 50, g2

(√
1
)
> 0 for n ≥ 6,

g2
(√

1.91
)
> 0 for n ≥ 49, g2

(√
2
)
< 0 for n ≥ 6, g2

(√
n− 3 + 5/n

)
< 0 for n ≥ 6,

and g2

(√
n− 3 + 6/n

)
> 0 for n ≥ 28. According to the theorem of zero points, we

have, for n ≥ 50,

n− 3 +
5

n
< λ2

1(I
4
n) < n− 3 +

6

n
, 1.91 < λ2

2(I
4
n) < 2, 0.976 < λ2

3(I
4
n) < 1. (13)

As n ≥ 281, let λ2
i (C

4
n) = xi and λ2

i (I
4
n) = yi, where i = 1, 2, 3. Since C4

n = G4,2
n ,

by Lemma 3(ii), we have x1 > y1. By (12) and (13), we get y1 ≥ x1+x2

2
. Hence, by

Lemma 7(i), we have, for k ≥ 2,

xk
1 + xk

2 > yk1 + (x2 + x1 − y1)
k . (14)

Since x1 > y1 and x2 > y2, we have x2+x1−y1 > y2. Since x2+x1−y1+x3 = y2+y3

and y2 >
y2+y3

2
, by Lemma 7(i), we get, for k ≥ 2,

(x2 + x1 − y1)
k + xk

3 > yk2 + yk3 . (15)
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It follows from (14) and (15) that
∑3

i=1 x
k
i >

∑3
i=1 y

k
i for n ≥ 281. By (7), we

have EE(C4
n) > EE(I4n) for n ≥ 281. Calculation yields EE(C4

n) > EE(I4n) for

280 ≥ n ≥ 6. Therefore, EE(C4
n) > EE(I4n) for n ≥ 6. �

Lemma 10. EE(I4n) > EE(L1
n) for n ≥ 23 and EE(L1

n) > EE(I4n) for 22 ≥ n ≥ 6.

Proof. By (1), (11) and (13), we have, for n ≥ 50,

EE(I4n) > n− 6 + e
√

n−3+5/n + e
√
1.91 + e

√
0.976 + e−

√
1 + e−

√
2 + e−

√
n−3+6/n. (16)

Straightforward derivation by Lemma 1 yields

φ(L1
n, λ) = λn−4[(3n− 13)− nλ2 + λ4] . (17)

It follows from (17) that L1
n has two positive eigenvalues and

λ1(L
1
n) =

√
1

2
(n+

√
52− 12n+ n2) . (18)

From (1) and (17), we obtain

EE(L1
n) = n− 4 + e

√
1/2(n+

√
52−12n+n2) + e

√
1/2(n−√

52−12n+n2)

+ e−
√

1/2(n−√
52−12n+n2) + e−

√
1/2(n+

√
52−12n+n2). (19)

We can check that the right-hand side of (16) is greater than that of (19) as n ≥ 50.

Therefore, EE(I4n) > EE(L1
n) for n ≥ 50. Calculation yields EE(I4n) > EE(L1

n) for

49 ≥ n ≥ 23 while EE(L1
n) > EE(I4n) for 22 ≥ n ≥ 6. �

We introduce Lemmas 11–15 from which Lemma 16 follows.

Lemma 11. As n ≥ 8, λ1(L
1
n) > λ1(C

4
n(n− 6, 0, 0, 2)).

Proof. Straightforward derivation by Lemma 1 yields

φ(C4
n(n− 6, 0, 0, 2), λ) = λn−6[−(2n− 12) + (4n− 20)λ2 − nλ4 + λ6] . (20)

For n ≥ 8, the union of the star K1,n−4 and three isolated vertices is a proper spanning

subgraph of C4
n(n − 6, 0, 0, 2). Hence, by Lemma 4, we have λ1(C

4
n(n − 6, 0, 0, 2)) >

λ1(K1,n−4) =
√
n− 4. As n ≥ 8 and λ ≥ λ1(C

4
n(n− 6, 0, 0, 2), by (17), we have

φ(C4
n(n− 6, 0, 0, 2), λ)− φ(L1

n, λ) = λn−6[−(2n− 12) + (n− 7)λ2] > 0. (21)

Thus, by Lemma 2, we have Lemma 11. �
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Lemma 12. Let G ∈ {C4
n(n1, n2, n3, n4)}\{L0

n, C
4
n, L

1
n} and n ≥ 8. We have λ1(L

1
n) >

λ1(G).

Proof. Let G ∈ {C4
n(n1, n2, n3, n4)} \ {L0

n, C
4
n, L

1
n} and n ≥ 8. In G, we denote

by {r1, . . . , rn1}, {s1, . . . , sn2} , {t1, . . . , tn3}, and {v1, . . . , vn4} the sets of pendent

vertices adjacent to u1 , u2, u3, and u4, respectively. Since G �= L0
n, at most two of

n1, n2, n3, n4 are zero. Without loss of generality, we suppose n1 �= 0. We consider

three cases as follows.

Case (i) Two of n2, n3, n4 are zero.

Two subcases are considered.

Subcase (i.i) n2 = n4 = 0, n3 �= 0.

In this subcase, G ∼= C4
n(n1, 0, n3, 0). Since G �= L1

n, 2 ≤ n1, n3 ≤ n − 6. We

suppose xu1 ≥ xu3 . Let G∗ = G − {u3t2, . . . , u3tn3} + {u1t2, . . . , u1tn3}. Obviously,

G∗ ∼= L1
n. By Lemma 5, we have λ1(L

1
n) = λ1(G

∗) > λ1(G).

Subcase (i.ii) n2 = n3 = 0, n4 �= 0.

In this subcase, G ∼= C4
n(n1, 0, 0, n4). Since G �= C4

n, 2 ≤ n1, n4 ≤ n − 6. We

suppose xu1 ≥ xu4 . Let G∗ = G − {u4v3, . . . , u4vn4} + {u1v3, . . . , u1vn4}. Obviously,

G∗ ∼= C4
n(n−6, 0, 0, 2). By Lemmas 11 and 5, we have λ1(L

1
n) > λ1(C

4
n(n−6, 0, 0, 2)) =

λ1(G
∗) ≥ λ1(G).

Case (ii) One of n2, n3, n4 is zero.

Without loss of generality, we may assume that n4 = 0 and n2, n3 �= 0. Thus,

G ∼= C4
n(n1, n2, n3, 0), where 1 ≤ n1, n2, n3 ≤ n− 6. Two subcases are considered.

Subcase (ii.i) n2 = 1.

In this subcase, G ∼= C4
n(n1, 1, n3, 0). We suppose n3 ≥ n1 ≥ 1. Let

G∗ =

⎧⎨
⎩

G− {u2s1}+ {u1s1}, if xu1 ≥ xu2

G− {u1r1, . . . , u1rn1}+ {u2r1, . . . , u2rn1}, if xu1 < xu2 .

Then, in either case, G∗ ∼= C4
n(n1+1, 0, n3, 0) or G

∗ ∼= C4
n(0, n1+1, n3, 0). By Lemma

5, we have λ1(G
∗) > λ1(G). For n ≥ 8, we have 2 ≤ n1 + 1, n3 ≤ n − 6 (If n3 = 1,

then it will contradict with n3 ≥ n1). By the results of Subcase (i.i) and (i.ii), we

have λ1(L
1
n) > λ1(G

∗). Thus, λ1(L
1
n) > λ1(G).

Subcase (ii.ii) 2 ≤ n2 ≤ n− 6.
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Suppose that xu1 ≥ xu3 . Let G∗ = G − {u3t1, . . . , u3tn3} + {u1t1, . . . , u1tn3}.
Obviously, G∗ ∼= C4

n(n1 + n3, n2, 0, 0). Since 2 ≤ n1 + n3, n2 ≤ n− 6, by the result of

Subcase (i.ii) and Lemma 5, we have λ1(L
1
n) > λ1(C

4
n(n1 + n3, 0, 0, n2)) = λ1(G

∗) >

λ1(G).

Case (iii) None of n2, n3, n4 is zero.

Without loss of generality, we suppose that xu1 ≥ xu4 . Let

G∗ = G− {u4v1, . . . , u4vn4}+ {u1v1, . . . , u1vn4} .

Obviously, G∗ ∼= C4
n(n1 + n4, n2, n3, 0). By the result of Case (ii) and Lemma 5, we

have λ1(L
1
n) > λ1(G

∗) > λ1(G). �

Lemma 13. As 1 ≤ b ≤ n− 6 and n ≥ 8, λ1(L
1
n) > λ1(K

4
n(b, c)).

Proof. Let n ≥ 8. We consider the following two cases.

Case (i) b = 1 and b = n− 6.

Lemma 1 yields

φ(K4
n(1, n− 5), λ) = λn−4 [(4n− 18)− nλ2 + λ4]

and

φ(K4
n(n− 6, 2), λ) = λn−6 (λ2 − 2)[(2n− 14)− (n− 2)λ2 + λ4] .

Hence

λ1(K
4
n(1, n− 5)) =

√
1

2
(n+

√
72− 16n+ n2)

λ1(K
4
n(n− 6, 2)) =

√
1

2
(−2 + n+

√
60− 12n+ n2) .

From (18), we can easily verify that λ1(L
1
n) > λ1(K

4
n(1, n − 5)) and λ1(L

1
n) >

λ1(K
4
n(n− 6, 2)) for n ≥ 8.

Case (ii) 2 ≤ b ≤ n− 7.

In this case, since b + c = n − 4, we have 3 ≤ c ≤ n − 6. In K4
n(b, c), bearing in

mind that N(u1) = {u2, u4, z1, . . . , zb} and N(z1) = {u1, w1, . . . , wc}, we let

G∗ =

⎧⎨
⎩

K4
n(b, c)− {u1z2, . . . , u1zb}+ {z1z2, . . . , z1zb}, if xz1 ≥ xu1

K4
n(b, c)− {z1w3, . . . , z1wc}+ {u1w3, . . . , u1wc}, if xz1 < xu1 .
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Then, in either case, G∗ ∼= K4
n(1, n− 5) or G∗ ∼= K4

n(n− 6, 2). By the results of Case

(i) and Lemma 5, we have λ1(L
1
n) > λ1(G

∗) > λ1(K
4
n(b, c)). �

Let H4
n(1; b−1, c) be the unicyclic graph obtained from K4

n−1(b−1, c) by attaching

one pendent edge to u2 of C4, where c = n − 4 − b and 2 ≤ b ≤ n − 5. We have

Lemma 14 as follows.

Lemma 14. As 2 ≤ b ≤ n− 5 and n ≥ 8, λ1(K
4
n(b, c)) > λ1(H

4
n(1; b− 1, c)).

Proof. By the definition of H4
n(1; b− 1, c), for u1 of H

4
n(1; b− 1, c), we have N(u1) =

{u2, u4, z1, . . . , zb−1}. Let w be the vertex of degree 1 adjacent to u2 in H4
n(1; b−1, c).

Let

G∗ =

⎧⎨
⎩

H4
n(1; b− 1, c)− {u2w}+ {u1w} if xu1 ≥ xu2

H4
n(1; b− 1, c)− {u1z1, . . . , u1zb−1}+ {u2z1, . . . , u2zb−1} if xu1 < xu2 .

Then, in either case, G∗ ∼= K4
n(b, c). By Lemma 5, we have Lemma 14. �

Let Q4
n be the unicyclic graph obtained from C4 by attaching n− 8 pendent edges

and two paths of length two to u1, where n ≥ 8.

Lemma 15. As n ≥ 8, we have

(i) λ1(L
1
n) > λ1(Q

4
n), and

(ii) λ1(L
1
n) > λ1(H

4
n(1;n− 6, 1)).

Proof. By Lemma 1, we have

φ(Q4
n, λ) = λn−8 (λ2 − 1)[(16− 2n)− (16− 3n)λ2

+ (1− n)λ4 + λ6] � λn−8 (λ2 − 1)g3(λ)

φ(H4
n(1;n− 6, 1), λ) = λn−8 [(n− 7)− (4n− 25)λ2

+ (4n− 18)λ4 − nλ6 + λ8] .

We can check g3(
√
0.7) < 0 for n ≥ 15, g3(

√
1) > 0 for n ≥ 6, g3(

√
1.7) > 0 for n ≥ 17,

g3(
√
2) < 0 for n ≥ 6, g3(

√
n− 4) < 0 for n ≥ 6, and g3(

√
n− 3) > 0 for n ≥ 11.

According to the theorem of zero points, we have
√
n− 4 < λ1(Q

4
n) <

√
n− 3 for

n ≥ 17. Similarly, we can check
√
n− 4 < λ1(H

4
n(1;n− 6, 1)) <

√
n− 3.7 for n ≥ 29.
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From (18), we can easily verify that, for n ≥ 8, λ1(L
1
n) >

√
n− 3 + 4/n. Thus,

λ1(L
1
n) > λ1(Q

4
n) for n ≥ 17 and λ1(L

1
n) > λ1(H

4
n(1;n−6, 1)) for n ≥ 29. Calculation

yields λ1(L
1
n) > λ1(Q

4
n) for 16 ≥ n ≥ 8 and λ1(L

1
n) > λ1(H

4
n(1;n−6, 1)) for 28 ≥ n ≥

8. �

Lemma 16. Let G ∈ U+
n \ {L0

n, C
4
n, L

1
n, I

4
n} with l = 4 and n ≥ 8. We have λ1(L

1
n) >

λ1(G).

Proof. Let G ∈ U+
n \ {L0

n, C
4
n, L

1
n, I

4
n}, l = 4, n ≥ 8, and 1 ≤ i ≤ 4. For G ∈ U+

n , we

denote by Ti the tree attached to ui of C4. We say that ui is attached by deg(ui)− 2

subtrees. Namely, Ti can be viewed as the tree obtained by identifying a pendent

vertex of each of the deg(ui)− 2 subtrees with ui. We assume that the vertices of Ti

and of its subtrees include ui. The number of the vertices of Ti is called the order of

Ti and is denoted by ni + 1, where 0 ≤ ni ≤ n− 4.

Applying the EGT to G repeatedly, we obtain λ1(G
�) ≥ λ1(G), where G� ∼=

C4
n(n1, n2, n3, n4). If G

� �= L0
n, C

4
n, L

1
n, then by Lemma 12, we obtain λ1(L

1
n) > λ1(G).

Otherwise, G� ∼= L0
n, C

4
n, L

1
n. Next we consider three cases according to the types of

G�.

Case (i). G� ∼= L0
n .

For G, only one vertex u1 on C4 is attached by T1 .

If all the subtrees of T1 are pendent edges or paths of length 2, then u1 is attached

by at least two paths of length 2 since G �= L0
n, I

4
n. Applying the EGT to G repeatedly,

we obtain λ1(Q
4
n) ≥ λ1(G), with equality holding if and only if G ∼= Q4

n. Furthermore,

by Lemma 15(i), we get λ1(L
1
n) > λ1(G).

In other cases, at least one subtree of T1 has order greater than 4. We suppose

that the order of this subtree is c+ 2. Obviously, 2 ≤ c ≤ n− 5. Applying the EGT

to G repeatedly, we obtain λ1(K
4
n(b, c)) ≥ λ1(G), with equality holding if and only if

G ∼= K4
n(b, c), where b = n − 4 − c. Obviously, 1 ≤ b ≤ n − 6. Thus, by Lemma 13,

we obtain λ1(L
1
n) > λ1(G).

Case (ii). G� ∼= C4
n .

For G, u1 is attached by T1 with 2 ≤ n1 ≤ n− 5 (since n ≥ 8) and u2 is attached

by one pendent edge.
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If all the subtrees of T1 are pendent edges or paths of length 2, then u1 is attached

by at least one path of length 2 since G �= C4
n. Applying the EGT to G repeatedly, we

get λ1(H
4
n(1;n−6, 1)) ≥ λ1(G), with equality holding if and only ifG ∼= H4

n(1;n−6, 1).

Thus, by Lemma 15(ii), we obtain λ1(L
1
n) > λ1(G).

In other cases, at least one subtree of T1 has order greater than 4. We suppose

that the order of this subtree is c+ 2. Obviously, 2 ≤ c ≤ n− 6. Applying the EGT

to G repeatedly, we get λ1(H
4
n(1; b− 1, c)) ≥ λ1(G), with equality holding if and only

if G ∼= H4
n(1; b − 1, c), where b = n − 4 − c. Obviously, 2 ≤ b ≤ n − 6. Thus, by

Lemmas 13 and 14, we get λ1(L
1
n) > λ1(G).

Case (iii). G� ∼= L1
n .

For G, u1 is attached by T1 with 2 ≤ n1 ≤ n− 5 (since n ≥ 8) and u3 is attached

by one pendent edge. Applying the EGT to G repeatedly, we get λ1(L
1
n) > λ1(G)

since G �= L1
n .

In conclusion, we obtain λ1(L
1
n) > λ1(G) for G� ∼= L0

n, C
4
n, L

1
n as n ≥ 8 in Cases

(i)–(iii). Thus, Lemma 16 is proved. �

Lemma 17. Let G ∈ U+
n and l ≥ 6 and n ≥ 8. We have λ1(L

1
n) > λ1(G).

Proof. Bearing in mind that G6,1
n is the graph obtained from C6 by attaching n− 6

pendent edges to u1 of C6, by Lemma 1, we get φ(G6,1
n , λ) = λn−6(λ2− 1)[(3n− 14)−

(n − 1)λ2 + λ4]. Hence, λ1(G
6,1
n ) =

√
1
2
(−1 + n+

√
57− 14n+ n2). From (18), we

can check λ1(L
1
n) > λ1(G

6,1
n ) as n ≥ 8. By Lemma 3(i) and (iii), for G ∈ U+

n with

l ≥ 6 and n ≥ 8, we have λ1(G
6,1
n ) ≥ λ1(G), with equality holding if and only if

G ∼= G6,1
n . Thus, we obtain Lemma 17. �

By Lemmas 8–10, 16, and 17, we get the first four and three unicyclic graphs with

the maximal EIs in U+
n for n ≥ 23 and 22 ≥ n ≥ 8, respectively.

Theorem 1. Let G ∈ U+
n with l ≥ 4 and n ≥ 8. We have

(i) EE(L0
n) > EE(C4

n) > EE(I4n) > EE(L1
n) > EE(G) for n ≥ 23, where

G �= L0
n, C

4
n, I

4
n, L

1
n .

(ii) EE(L0
n) > EE(C4

n) > EE(L1
n) > EE(G) for 22 ≥ n ≥ 8, where G �=

L0
n, C

4
n, L

1
n .
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Proof. As n ≥ 23, Lemmas 9 and 10 yield EE(L0
n) > EE(C4

n) > EE(I4n) > EE(L1
n).

As 22 ≥ n ≥ 8, calculation yields EE(C4
n) > EE(L1

n). Furthermore, by Lemmas 9

and 10, we get EE(L0
n) > EE(C4

n) > EE(L1
n) > EE(I4n) for 22 ≥ n ≥ 8.

Let G ∈ U+
n \ {L0

n, C
4
n, I

4
n, L

1
n} with l ≥ 4 and n ≥ 8. By Lemmas 16 and 17,

we obtain λ1(L
1
n) > λ1(G). Since L1

n has exactly two positive eigenvalues and the

other graphs in U+
n have at least two positive eigenvalues [28], by Lemma 8, we have

EE(L1
n) > EE(G).

Theorem 1 is thus proved. �
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