Unicyclic Graph with Maximal Estrada Indices

Wen-Huan Wang

Department of Mathematics, Shanghai University, Shanghai 200444, China whwang@shu.edu.cn

(Received July 2, 2012)

Abstract

Let \mathcal{U}_n^+ be the set of bipartite unicyclic graphs with n vertices. In \mathcal{U}_n^+ , ordering the unicyclic graphs in terms of their maximal Estrada indices was considered. We deduce the first four and three unicyclic graphs in \mathcal{U}_n^+ for $n \geq 23$ and $22 \geq n \geq 8$, respectively. For two bipartite graphs, we construct a relation between the Estrada index and the largest eigenvalue.

1 Introduction

Let G = (V(G), E(G)) be a simple, connected graph with n vertices, where V(G) and E(G) are the set of vertices and edges of G, respectively. The Estrada index (EI), put forward by Estrada [12,14], is defined as

$$EE(G) = \sum_{i=1}^{n} e^{\lambda_i} \tag{1}$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of G, namely the n roots of $\phi(G, \lambda) = 0$. Here

$$\phi(G,\lambda) = \det[\lambda I - A(G)] \tag{2}$$

is the characteristic polynomial of G [6], where I is the unit matrix of order n and A(G) the adjacency matrix of G. It is obvious that each λ_i $(1 \le i \le n)$ is real since

A(G) is real and symmetric. Without loss of generality, we assume $\lambda_1 \geq \cdots \geq \lambda_n$. Next we also write $\lambda_i = \lambda_i(G)$ for $1 \leq i \leq n$.

The largest eigenvalue $\lambda_1(G)$ is called the spectral radius of G. If G is connected, then A(G) is irreducible. According to the Perron–Frobenius theory of non-negative matrices, $\lambda_1(G)$ has multiplicity one and there exists a unique positive unit eigenvector corresponding to $\lambda_1(G)$. Such an eigenvector is referred to as the Perron vector of G [17].

The EI has already found numerous applications in the last decade, for example, measuring the degree of protein folding [12] and the centrality of complex networks (such as neural, social, metabolic, protein–protein interaction networks, and the World Wide Web) [13]. Some mathematical properties of the EI, including lower and upper bounds may be found in Refs. [1, 3, 5, 8, 15, 16]. The Laplacian– and signless Laplacian–spectral variants of the Estrada index were also studied [2, 25, 31]. For the characterization of graphs with the extremal EI, one can refer to Refs. [7, 9, 10, 20, 23, 24, 30]. More details on the theory of EI and an exhaustive bibliography can be found in the recent survey [19].

For $k \geq 0$, we denote $M_k(G) = \sum_{i=1}^n \lambda_i^k$ and refer to $M_k(G)$ as the k-th spectral moment of G. It is well-known that $M_k(G)$ is equal to the number of closed walks of length k in G [6]. From the Taylor expansion of e^{λ_i} , EE(G) in (1) can be rewritten as

$$EE(G) = \sum_{k=0}^{\infty} \frac{M_k(G)}{k!} . \tag{3}$$

In particular, if G is a bipartite graph, then $M_{2k+1}(G)=0$ for $k\geq 0$. Hence, we have

$$EE(G) = \sum_{k=0}^{\infty} \frac{M_{2k}(G)}{(2k)!} . {4}$$

Let G_1 and G_2 be two bipartite graphs. If $M_{2k}(G_1) \geq M_{2k}(G_2)$ holds for any positive integer k, then $EE(G_1) \geq EE(G_2)$. Moreover, if the strict inequality $M_{2k}(G_1) > M_{2k}(G_2)$ holds for at least one integer k, then $EE(G_1) > EE(G_2)$. By constructing a mapping and using this relation, the characterization of trees with the extremal Estrada indices (EIs) has successfully been obtained. For the trees on n vertices, some results were recently reported [9,10,24,30]. Deng [9] obtained the trees

with the minimal and the maximal EIs. Among the trees with exactly two vertices having the maximum degree, Li et al. [24] deduced the tree with the minimal EI. Among the trees with a given matching number and among the trees with a fixed diameter, Zhang et al. [30] determined the trees with the maximum EIs. Among the trees with a given number of pendent vertices, Du and Zhou [10] determined the tree with the maximum EI.

The set of unicyclic graphs on n vertices is denoted by \mathcal{U}_n , in which each graph has only one cycle C_l of length l with $3 \leq l \leq n$. The set of bipartite unicyclic graphs on n vertices is denoted by \mathcal{U}_n^+ . For the graphs in \mathcal{U}_n , by constructing a mapping, Du and Zhou [11] determined the graph with the maximum EI and showed two candidates with the minimum EI. For the graphs in \mathcal{U}_n^+ , Du and Zhou [11] found the graph with the maximum EI and the graph of a given bipartition with the maximum EI. In this paper, we will study the connected bipartite unicyclic graphs. We construct a relation between the EI and the largest eigenvalue of the graph. Thus, by this relation, the results of Du and Zhou [11] will be extended. We deduce the first four and three unicyclic graphs in \mathcal{U}_n^+ for $n \geq 23$ and $22 \geq n \geq 8$, respectively.

2 Preliminaries

To deduce the main results of the present paper, some definitions and necessary lemmas are simply quoted here.

Let G-v and G-uv be the graphs obtained from G by deleting the vertex $v \in V(G)$ and the edge $uv \in E(G)$, respectively. Similarly, G+uv is a graph obtained from G by adding an edge $uv \notin E(G)$, where $u, v \in V(G)$.

Lemma 1. [6] Let v be a vertex of degree 1 in G and u be the vertex adjacent to v. Then

$$\phi(G,\lambda) = \lambda \, \phi(G-v,\lambda) - \phi(G-u-v,\lambda) \ .$$

Lemma 2. [22] Let G_1 and G_2 be two graphs. If $\phi(G_2, \lambda) > \phi(G_1, \lambda)$ for $\lambda \geq \lambda_1(G_2)$, then $\lambda_1(G_1) > \lambda_1(G_2)$.

Let C_l be a cycle with l vertices, and the vertices of C_l are labelled consecutively by u_1, u_2, \ldots, u_l , where $l \geq 3$. Let $G_n^{l,1}$ be the graph obtained from C_l by attaching n-l pendent edges to u_1 of C_l . Let $G_n^{l,2}$ be the graph obtained from C_l by attaching n-l-1 pendent edges and one pendent edge to u_1 and u_2 of C_l , respectively.

Lemma 3. [4,21] If the length of circle contained in G is l with $l \geq 3$ and $n \geq l$, then we have

- (i) for any $G \in \mathcal{U}_n \{G_n^{l,1}\}, \ \lambda_1(G_n^{l,1}) > \lambda_1(G)$;
- (ii) for any $G \in \mathcal{U}_n \{G_n^{l,1}, G_n^{l,2}\}, \ \lambda_1(G_n^{l,2}) > \lambda_1(G)$;
- (iii) $\lambda_1(G_n^{l,1}) > \lambda_1(G_n^{l+1,1})$.

Lemma 4. [26] Let G be a connected graph, and let G' be a proper spanning subgraph of G. Then $\lambda_1(G) > \lambda_1(G')$.

For $v \in V(G)$, let d(v) and N(v) denote the degree of v and the set of all eighbors of v, respectively.

Lemma 5. [27,29] Let G be a connected graph and u, v be two vertices of G. Suppose that $v_1, v_2, \ldots, v_s \in N(v) \setminus N(u)$ $(1 \le s \le d(v))$ and $x = (x_1, x_2, \ldots, x_n)$ is the Perron vector of A(G), where x_i corresponds to the vertex v_i $(1 \le i \le n)$. Let G^* be the graph obtained from G by deleting the edges vv_i and adding the edges vv_i $(1 \le i \le s)$. If $v_i \ge v_i$, then $v_i \in V_i$ then $v_i \in V_i$ for $v_i \in V_i$ then $v_i \in V_i$ th

Lemma 6. [18] Let G be a connected graph and e = uv be a non-pendent edge of G with $N(u) \cap N(v) = \emptyset$. Let G^* be the graph obtained from G by deleting the edge uv, identifying u with v, and adding a pendent edge to u (= v). Then $\lambda_1(G^*) > \lambda_1(G)$.

The transformation from G to G^* in Lemma 6 is hereinafter called the *edge-growing transformation* (EGT) of G on the edge e.

3 Main results

For simplicity, we refer to the connected graphs having n vertices and m edges as the (n, m)-graphs, where $n \geq 3$. For two bipartite (n, m)-graphs, from Lemma 7, we have Lemma 8, which shows a relationship between the EI and the largest eigenvalue. Lemma 8 will play a key role in the paper.

Lemma 7. Let x, y, a and b be real numbers and k an integer not less than 2.

(i) If
$$a > x > y \ge \frac{a}{2} > 0$$
, then $x^k + (a - x)^k > y^k + (a - y)^k$;

(ii) If
$$x > b > 0$$
, then $x^k > (x - b)^k + b^k$.

Proof. As $a > x > y \ge a/2 > 0$, obviously, it holds that

$$x^{k} - y^{k} = (x - y)(x^{k-1} + x^{k-2}y + \dots + y^{k-1})$$
(5)

$$(a-y)^k - (a-x)^k = (x-y) [(a-y)^{k-1} + (a-y)^{k-2} (a-x) + \cdots + (a-x)^{k-1}].$$
(6)

Since $x > y \ge a/2$, we have x - y > 0, x > a - x, and $y \ge a - y$. Thus, by (5) and (6), we get $x^k - y^k > (a - y)^k - (a - x)^k$. Hence, we have Lemma 7(i).

By methods similar to that for Lemma 7(i), we can get Lemma 7(ii).

Lemma 8. Let G_1 and G_2 be two connected bipartite (n, m)-graphs. If G_1 has exactly two positive eigenvalues and G_2 has at least two positive eigenvalues with $\lambda_1(G_1) > \lambda_1(G_2)$, then $EE(G_1) > EE(G_2)$.

Proof. For an (n, m)-graph G, we have $\sum_{i=1}^{n} \lambda_i^2 = 2m$ [6]. Furthermore, if G is a connected bipartite (n, m)-graph, then it is well known that the eigenvalues of G are symmetric with respect to the origin [6]. Thus G has $t = [n - \eta(G)]/2$ positive eigenvalues and $\sum_{i=1}^{t} \lambda_i^2 = m$, where $\eta(G)$ is the multiplicity of zero eigenvalue of G. By (1) and the Taylor expansion of e^{λ_i} , we have

$$EE(G) = n + m + 2\sum_{k=2}^{\infty} \left(\frac{1}{(2k)!} \sum_{i=1}^{t} \lambda_i^{2k} \right) .$$
 (7)

Let G_1 and G_2 be two connected bipartite (n,m)-graphs, where G_1 has exactly two positive eigenvalues, G_2 has at least two positive eigenvalues, and $\lambda_1(G_1) > \lambda_1(G_2)$. Let $\lambda_i^2(G_1) = x_i$ with i = 1, 2 and $\lambda_i^2(G_2) = y_i$ with $1 \le i \le t$ and $2 \le t \le \frac{n}{2}$. Obviously, $x_1 > y_1$, $x_1 > x_2 > 0$, $y_1 > y_2 \ge \cdots \ge y_t > 0$, and $\sum_{i=1}^2 x_i = \sum_{i=1}^t y_i = m$. The expressions for $EE(G_1)$ and $EE(G_2)$ can be obtained by replacing λ_i^2 in (7) with x_i and y_i , respectively.

Let $k \geq 2$. Next, we prove $x_1^k + x_2^k > y_1^k + \dots + y_t^k$. Two cases are considered as follows.

Case (i) t = 2.

Since $y_1 > y_2$ and $\sum_{i=1}^2 x_i = \sum_{i=1}^2 y_i = m$, we get $m > x_1 > y_1 > m/2$. By Lemma 7(i), we have $x_1^k + x_2^k > y_1^k + y_2^k$. Thus, by (7), we have $EE(G_1) > EE(G_2)$.

Case (ii) $3 \le t \le n/2$.

Two subcases are considered as follows.

Subcase (ii.i) $y_1 \ge m/2$.

Obviously, $m > x_1 > y_1 \ge \frac{m}{2}$. By Lemma 7(i), we get $x_1^k + x_2^k = x_1^k + (m - x_1)^k > y_1^k + (m - y_1)^k$. Since $m - y_1 = y_2 + \dots + y_t$, using Lemma 7(ii) repeatedly, we obtain $(m - y_1)^k > y_2^k + \dots + y_t^k$. Thus, we get $x_1^k + x_2^k > y_1^k + y_2^k + \dots + y_t^k$. Hence, by (7), we get $EE(G_1) > EE(G_2)$.

Subcase (ii.ii) $y_1 < m/2$.

For $y_1 < m/2$ and a fixed k, we prove $x_1^k + x_2^k > y_1^k + \cdots + y_t^k$ by induction on t. As t = 3, we have

$$x_1^k + x_2^k > \left(\frac{m}{2}\right)^k + \left(\frac{m}{2}\right)^k > \left(\frac{m}{2}\right)^k + y_1^k + \left(\frac{m}{2} - y_1\right)^k > y_1^k + y_2^k + y_3^k \ . \tag{8}$$

The first inequality in (8) follows from Lemma 7(i) since $\sum_{i=1}^{2} x_i = m$ and $x_1 > m/2$, the second one in (8) from Lemma 7(ii) since $m/2 > y_1 > 0$, and the third one in (8) from Lemma 7(i) since

$$\frac{m}{2} > y_1 > y_2 \ge \frac{y_2 + y_3}{2}$$
 and $\frac{m}{2} + \left(\frac{m}{2} - y_1\right) = y_2 + y_3$.

As t=p and $p \ge 4$, we suppose $x_1^k + x_2^k > y_1^k + \dots + y_p^k$, where $\sum_{i=1}^2 x_i = \sum_{i=1}^p y_i = m$.

As t=p+1, we have $\sum_{i=1}^{p+1}y_i=m$. Since $y_1>y_2\geq\cdots\geq y_{p+1}>0$ and $p\geq 4$, we have $m/2>y_p+y_{p+1}$. By the induction and Lemma 7(ii), we get

In conclusion, we obtain $x_1^k + x_2^k > y_1^k + \dots + y_t^k$ for $y_1 < m/2$ and $3 \le t \le n/2$. Thus, by (7), we obtain $EE(G_1) > EE(G_2)$.

Lemma 8 is thus proved.

Remark: For those (n, m)-graphs which are not bipartite, Eq. (1) can not be changed into (7) and Lemma 8 is not applicable to obtain the graph with the maximum EI.

Fig. 1: C_8^4 , L_8^2 , $K_8^4(1,3)$, and I_8^4 .

Let $C_n^4(n_1, n_2, n_3, n_4)$ be the unicyclic graph obtained from C_4 by attaching n_i pendent edges to every u_i of C_4 , where $0 \le n_i \le n-4$, $\sum_{i=1}^4 n_i = n-4$ and $1 \le i \le 4$.

Specially, we denote $C_n^4(n-5,0,0,1)$ by C_n^4 with $n \ge 6$ and $C_n^4(n_1,0,n_3,0)$ by $L_n^{n_3}$ with $n_1 = n - 4 - n_3$.

For example, L_{b+4}^0 is the graph obtained from C_4 by attaching b pendent edges to u_1 of C_4 . In L_{b+4}^0 , we denote by $\{z_1, z_2, \ldots, z_b\}$ the set of the b pendent vertices.

Let $K_n^4(b,c)$ be the unicyclic graph obtained by attaching c pendent edges to z_1 of L_{b+4}^0 , where c=n-4-b and $1\leq b\leq n-5$. In $K_n^4(b,c)$, we denote by $\{w_1,w_2,\ldots,w_c\}$ the set of the c pendent vertices adjacent to z_1 .

Specially, we denote $K_n^4(n-5,1)$ by I_n^4 with $n \ge 6$.

For example, C_8^4 , L_8^2 , $K_8^4(1,3)$ and I_8^4 are shown in Fig. 1.

In this paper, for the ordering of the graphs in \mathcal{U}_n^+ in terms of their maximal EIs, we will show that L_n^0 , C_n^4 , I_n^4 , and L_n^1 are the first four graphs for $n \geq 23$ while L_n^0 , C_n^4 , and L_n^1 are the first three ones for $22 \geq n \geq 8$.

We introduce Lemmas 9–17 from which the main results of this paper follows.

Lemma 9. $EE(L_n^0) > EE(C_n^4) > EE(I_n^4)$ for $n \ge 6$.

Proof. Straightforward derivation by Lemma 1 yields

$$\phi(L_n^0, \lambda) = \lambda^{n-4} \left[(2n-8) - n\lambda^2 + \lambda^4 \right] \tag{9}$$

$$\phi(C_n^4,\lambda) = \lambda^{n-6} \left[-(n-5) + (3n-13)\lambda^2 - n\lambda^4 + \lambda^6 \right] \triangleq \lambda^{n-6} g_1(\lambda) \tag{10}$$

$$\phi(I_n^4, \lambda) = \lambda^{n-6} \left[-(2n-12) + (3n-12)\lambda^2 - n\lambda^4 + \lambda^6 \right] \triangleq \lambda^{n-6} g_2(\lambda) . \tag{11}$$

From (9) and (10), we can see that L_n^0 and C_n^4 have two and three positive eigenvalues, respectively. Since $L_n^0 = G_n^{4,1}$, by Lemma 3(i), we have $\lambda_1(L_n^0) > \lambda_1(C_n^4)$ for $n \geq 6$. Since $L_n^0, C_n^4 \in \mathcal{U}_n^+$, by Lemma 8, we get $EE(L_n^0) > EE(C_n^4)$ for $n \geq 6$.

We can check that

$$g_1\left(\sqrt{0.38}\right) = 0.114872 - 0.0044n < 0 \qquad (n \ge 27)$$

$$g_1\left(\sqrt{0.382}\right) = 0.089743 + 0.000076n > 0$$
 $(n \ge 6)$

$$g_1\left(\sqrt{2.6}\right) = -11.224 + 0.04n > 0 \qquad (n \ge 281)$$

$$g_1\left(\sqrt{2.62}\right) = -11.0753 - 0.0044n < 0 \qquad (n \ge 7)$$

$$g_1\left(\sqrt{n-3+5/n}\right) = \frac{125-225n+120n^2-28n^3}{n^3} < 0 \qquad (n \ge 7)$$

$$g_1\left(\sqrt{n-3+8/n}\right) = -55 + \frac{512}{n^3} - \frac{576}{n^2} + \frac{240}{n} + 3n > 0 \qquad (n \ge 14).$$

According to the theorem of zero points, we have, for $n \geq 281$,

$$n-3+\frac{5}{n}<\lambda_1^2(C_n^4)< n-3+\frac{8}{n}, \ 2.6<\lambda_2^2(C_n^4)<2.62, \ 0.38<\lambda_3^2(C_n^4)<0.382 \ . \tag{12}$$

The explicit expressions for $g_j(\cdot)$ with $j \geq 2$ can be obtained by a straightforward calculation and will be omitted hereinafter for the sake of conciseness. One can readily obtain the following expressions: $g_2\left(\sqrt{0.976}\right) < 0$ for $n \geq 50$, $g_2\left(\sqrt{1}\right) > 0$ for $n \geq 6$, $g_2\left(\sqrt{1.91}\right) > 0$ for $n \geq 49$, $g_2\left(\sqrt{2}\right) < 0$ for $n \geq 6$, $g_2\left(\sqrt{n-3+5/n}\right) < 0$ for $n \geq 6$, and $g_2\left(\sqrt{n-3+6/n}\right) > 0$ for $n \geq 28$. According to the theorem of zero points, we have, for $n \geq 50$,

$$n-3+\frac{5}{n}<\lambda_1^2(I_n^4)< n-3+\frac{6}{n}, \quad 1.91<\lambda_2^2(I_n^4)<2, \quad 0.976<\lambda_3^2(I_n^4)<1. \tag{13}$$

As $n \ge 281$, let $\lambda_i^2(C_n^4) = x_i$ and $\lambda_i^2(I_n^4) = y_i$, where i = 1, 2, 3. Since $C_n^4 = G_n^{4,2}$, by Lemma 3(ii), we have $x_1 > y_1$. By (12) and (13), we get $y_1 \ge \frac{x_1 + x_2}{2}$. Hence, by Lemma 7(i), we have, for $k \ge 2$,

$$x_1^k + x_2^k > y_1^k + (x_2 + x_1 - y_1)^k$$
 (14)

Since $x_1 > y_1$ and $x_2 > y_2$, we have $x_2 + x_1 - y_1 > y_2$. Since $x_2 + x_1 - y_1 + x_3 = y_2 + y_3$ and $y_2 > \frac{y_2 + y_3}{2}$, by Lemma 7(i), we get, for $k \ge 2$,

$$(x_2 + x_1 - y_1)^k + x_3^k > y_2^k + y_3^k . (15)$$

It follows from (14) and (15) that $\sum_{i=1}^{3} x_i^k > \sum_{i=1}^{3} y_i^k$ for $n \geq 281$. By (7), we have $EE(C_n^4) > EE(I_n^4)$ for $n \geq 281$. Calculation yields $EE(C_n^4) > EE(I_n^4)$ for $280 \geq n \geq 6$. Therefore, $EE(C_n^4) > EE(I_n^4)$ for $n \geq 6$. \square

Lemma 10. $EE(I_n^4) > EE(L_n^1)$ for $n \ge 23$ and $EE(L_n^1) > EE(I_n^4)$ for $22 \ge n \ge 6$.

Proof. By (1), (11) and (13), we have, for $n \ge 50$,

$$EE(I_n^4) > n - 6 + e^{\sqrt{n-3+5/n}} + e^{\sqrt{1.91}} + e^{\sqrt{0.976}} + e^{-\sqrt{1}} + e^{-\sqrt{2}} + e^{-\sqrt{n-3+6/n}}.$$
 (16)

Straightforward derivation by Lemma 1 yields

$$\phi(L_n^1, \lambda) = \lambda^{n-4} [(3n-13) - n\lambda^2 + \lambda^4] . \tag{17}$$

It follows from (17) that L_n^1 has two positive eigenvalues and

$$\lambda_1(L_n^1) = \sqrt{\frac{1}{2}(n + \sqrt{52 - 12n + n^2})} \ . \tag{18}$$

From (1) and (17), we obtain

$$EE(L_n^1) = n - 4 + e^{\sqrt{1/2(n + \sqrt{52 - 12n + n^2})}} + e^{\sqrt{1/2(n - \sqrt{52 - 12n + n^2})}} + e^{-\sqrt{1/2(n - \sqrt{52 - 12n + n^2})}} + e^{-\sqrt{1/2(n + \sqrt{52 - 12n + n^2})}}.$$
(19)

We can check that the right-hand side of (16) is greater than that of (19) as $n \geq 50$. Therefore, $EE(I_n^4) > EE(L_n^1)$ for $n \geq 50$. Calculation yields $EE(I_n^4) > EE(L_n^1)$ for $49 \geq n \geq 23$ while $EE(L_n^1) > EE(I_n^4)$ for $22 \geq n \geq 6$. \square

We introduce Lemmas 11–15 from which Lemma 16 follows.

Lemma 11. As $n \geq 8$, $\lambda_1(L_n^1) > \lambda_1(C_n^4(n-6,0,0,2))$.

Proof. Straightforward derivation by Lemma 1 yields

$$\phi(C_n^4(n-6,0,0,2),\lambda) = \lambda^{n-6}[-(2n-12) + (4n-20)\lambda^2 - n\lambda^4 + \lambda^6].$$
 (20)

For $n \geq 8$, the union of the star $K_{1,n-4}$ and three isolated vertices is a proper spanning subgraph of $C_n^4(n-6,0,0,2)$. Hence, by Lemma 4, we have $\lambda_1(C_n^4(n-6,0,0,2)) > \lambda_1(K_{1,n-4}) = \sqrt{n-4}$. As $n \geq 8$ and $\lambda \geq \lambda_1(C_n^4(n-6,0,0,2))$, by (17), we have

$$\phi(C_n^4(n-6,0,0,2),\lambda) - \phi(L_n^1,\lambda) = \lambda^{n-6}[-(2n-12) + (n-7)\lambda^2] > 0.$$
 (21)

Thus, by Lemma 2, we have Lemma 11. \square

Lemma 12. Let $G \in \{C_n^4(n_1, n_2, n_3, n_4)\} \setminus \{L_n^0, C_n^4, L_n^1\}$ and $n \ge 8$. We have $\lambda_1(L_n^1) > \lambda_1(G)$.

Proof. Let $G \in \{C_n^4(n_1, n_2, n_3, n_4)\} \setminus \{L_n^0, C_n^4, L_n^1\}$ and $n \geq 8$. In G, we denote by $\{r_1, \ldots, r_{n_1}\}$, $\{s_1, \ldots, s_{n_2}\}$, $\{t_1, \ldots, t_{n_3}\}$, and $\{v_1, \ldots, v_{n_4}\}$ the sets of pendent vertices adjacent to u_1 , u_2 , u_3 , and u_4 , respectively. Since $G \neq L_n^0$, at most two of n_1, n_2, n_3, n_4 are zero. Without loss of generality, we suppose $n_1 \neq 0$. We consider three cases as follows.

Case (i) Two of n_2, n_3, n_4 are zero.

Two subcases are considered.

Subcase (i.i) $n_2 = n_4 = 0, n_3 \neq 0.$

In this subcase, $G \cong C_n^4(n_1, 0, n_3, 0)$. Since $G \neq L_n^1$, $1 \leq n_1, n_3 \leq n - 6$. We suppose $x_{u_1} \geq x_{u_3}$. Let $G^* = G - \{u_3t_2, \dots, u_3t_{n_3}\} + \{u_1t_2, \dots, u_1t_{n_3}\}$. Obviously, $G^* \cong L_n^1$. By Lemma 5, we have $\lambda_1(L_n^1) = \lambda_1(G^*) > \lambda_1(G)$.

Subcase (i.ii) $n_2 = n_3 = 0, n_4 \neq 0.$

In this subcase, $G \cong C_n^4(n_1, 0, 0, n_4)$. Since $G \neq C_n^4$, $2 \leq n_1, n_4 \leq n - 6$. We suppose $x_{u_1} \geq x_{u_4}$. Let $G^* = G - \{u_4v_3, \ldots, u_4v_{n_4}\} + \{u_1v_3, \ldots, u_1v_{n_4}\}$. Obviously, $G^* \cong C_n^4(n-6, 0, 0, 2)$. By Lemmas 11 and 5, we have $\lambda_1(L_n^1) > \lambda_1(C_n^4(n-6, 0, 0, 2)) = \lambda_1(G^*) \geq \lambda_1(G)$.

Case (ii) One of n_2, n_3, n_4 is zero.

Without loss of generality, we may assume that $n_4=0$ and $n_2,n_3\neq 0$. Thus, $G\cong C^4_n(n_1,n_2,n_3,0)$, where $1\leq n_1,n_2,n_3\leq n-6$. Two subcases are considered.

Subcase (ii.i) $n_2 = 1$.

In this subcase, $G \cong C_n^4(n_1, 1, n_3, 0)$. We suppose $n_3 \geq n_1 \geq 1$. Let

$$G^* = \begin{cases} G - \{u_2 s_1\} + \{u_1 s_1\}, & \text{if } x_{u_1} \ge x_{u_2} \\ G - \{u_1 r_1, \dots, u_1 r_{n_1}\} + \{u_2 r_1, \dots, u_2 r_{n_1}\}, & \text{if } x_{u_1} < x_{u_2} \end{cases}$$

Then, in either case, $G^*\cong C_n^4(n_1+1,0,n_3,0)$ or $G^*\cong C_n^4(0,n_1+1,n_3,0)$. By Lemma 5, we have $\lambda_1(G^*)>\lambda_1(G)$. For $n\geq 8$, we have $2\leq n_1+1,n_3\leq n-6$ (If $n_3=1$, then it will contradict with $n_3\geq n_1$). By the results of Subcase (i.i) and (i.ii), we have $\lambda_1(L_n^1)>\lambda_1(G^*)$. Thus, $\lambda_1(L_n^1)>\lambda_1(G)$.

Subcase (ii.ii) $2 \le n_2 \le n - 6$.

Suppose that $x_{u_1} \geq x_{u_3}$. Let $G^* = G - \{u_3t_1, \dots, u_3t_{n_3}\} + \{u_1t_1, \dots, u_1t_{n_3}\}$. Obviously, $G^* \cong C_n^4(n_1 + n_3, n_2, 0, 0)$. Since $2 \leq n_1 + n_3, n_2 \leq n - 6$, by the result of Subcase (i.ii) and Lemma 5, we have $\lambda_1(L_n^1) > \lambda_1(C_n^4(n_1 + n_3, 0, 0, n_2)) = \lambda_1(G^*) > \lambda_1(G)$.

Case (iii) None of n_2, n_3, n_4 is zero.

Without loss of generality, we suppose that $x_{u_1} \geq x_{u_4}$. Let

$$G^* = G - \{u_4v_1, \dots, u_4v_{n_4}\} + \{u_1v_1, \dots, u_1v_{n_4}\}$$
.

Obviously, $G^*\cong C_n^4(n_1+n_4,n_2,n_3,0)$. By the result of Case (ii) and Lemma 5, we have $\lambda_1(L_n^1)>\lambda_1(G^*)>\lambda_1(G)$. \square

Lemma 13. As $1 \le b \le n - 6$ and $n \ge 8$, $\lambda_1(L_n^1) > \lambda_1(K_n^4(b,c))$.

Proof. Let $n \geq 8$. We consider the following two cases.

Case (i) b = 1 and b = n - 6.

Lemma 1 vields

$$\phi(K_n^4(1,n-5),\lambda)=\lambda^{n-4}\left[(4n-18)-n\lambda^2+\lambda^4\right]$$

and

$$\phi(K_n^4(n-6,2),\lambda) = \lambda^{n-6} \, (\lambda^2-2)[(2n-14) - (n-2)\lambda^2 + \lambda^4] \ .$$

Hence

$$\lambda_1(K_n^4(1, n-5)) = \sqrt{\frac{1}{2}(n + \sqrt{72 - 16n + n^2})}$$

$$\lambda_1(K_n^4(n-6, 2)) = \sqrt{\frac{1}{2}(-2 + n + \sqrt{60 - 12n + n^2})}.$$

From (18), we can easily verify that $\lambda_1(L_n^1) > \lambda_1(K_n^4(1, n-5))$ and $\lambda_1(L_n^1) > \lambda_1(K_n^4(n-6,2))$ for $n \geq 8$.

Case (ii) $2 \le b \le n - 7$.

In this case, since b+c=n-4, we have $3 \le c \le n-6$. In $K_n^4(b,c)$, bearing in mind that $N(u_1)=\{u_2,u_4,z_1,\ldots,z_b\}$ and $N(z_1)=\{u_1,w_1,\ldots,w_c\}$, we let

$$G^* = \left\{ \begin{array}{ll} K_n^4(b,c) - \{u_1z_2,\ldots,u_1z_b\} + \{z_1z_2,\ldots,z_1z_b\}, & \text{if } x_{z_1} \geq x_{u_1} \\ \\ K_n^4(b,c) - \{z_1w_3,\ldots,z_1w_c\} + \{u_1w_3,\ldots,u_1w_c\}, & \text{if } x_{z_1} < x_{u_1} \end{array} \right.$$

Then, in either case, $G^*\cong K_n^4(1,n-5)$ or $G^*\cong K_n^4(n-6,2)$. By the results of Case (i) and Lemma 5, we have $\lambda_1(L_n^1)>\lambda_1(G^*)>\lambda_1(K_n^4(b,c))$. \square

Let $H_n^4(1; b-1, c)$ be the unicyclic graph obtained from $K_{n-1}^4(b-1, c)$ by attaching one pendent edge to u_2 of C_4 , where c = n-4-b and $2 \le b \le n-5$. We have Lemma 14 as follows.

Lemma 14. As $2 \le b \le n-5$ and $n \ge 8$, $\lambda_1(K_n^4(b,c)) > \lambda_1(H_n^4(1;b-1,c))$.

Proof. By the definition of $H_n^4(1; b-1, c)$, for u_1 of $H_n^4(1; b-1, c)$, we have $N(u_1) = \{u_2, u_4, z_1, \dots, z_{b-1}\}$. Let w be the vertex of degree 1 adjacent to u_2 in $H_n^4(1; b-1, c)$. Let

$$G^* = \begin{cases} H_n^4(1; b - 1, c) - \{u_2 w\} + \{u_1 w\} & \text{if } x_{u_1} \ge x_{u_2} \\ H_n^4(1; b - 1, c) - \{u_1 z_1, \dots, u_1 z_{b-1}\} + \{u_2 z_1, \dots, u_2 z_{b-1}\} & \text{if } x_{u_1} < x_{u_2} \end{cases}.$$

Then, in either case, $G^* \cong K_n^4(b,c)$. By Lemma 5, we have Lemma 14. \square

Let Q_n^4 be the unicyclic graph obtained from C_4 by attaching n-8 pendent edges and two paths of length two to u_1 , where $n \geq 8$.

Lemma 15. As $n \geq 8$, we have

- (i) $\lambda_1(L_n^1) > \lambda_1(Q_n^4)$, and
- (ii) $\lambda_1(L_n^1) > \lambda_1(H_n^4(1; n-6, 1)).$

Proof. By Lemma 1, we have

$$\begin{split} \phi(Q_n^4,\lambda) &= \lambda^{n-8} \, (\lambda^2-1)[(16-2n)-(16-3n)\lambda^2 \\ &+ (1-n)\lambda^4 + \lambda^6] \triangleq \lambda^{n-8} \, (\lambda^2-1)g_3(\lambda) \\ \\ \phi(H_n^4(1;n-6,1),\lambda) &= \lambda^{n-8} \, [(n-7)-(4n-25)\lambda^2 \\ &+ (4n-18)\lambda^4 - n\lambda^6 + \lambda^8] \, . \end{split}$$

We can check $g_3(\sqrt{0.7}) < 0$ for $n \ge 15$, $g_3(\sqrt{1}) > 0$ for $n \ge 6$, $g_3(\sqrt{1.7}) > 0$ for $n \ge 17$, $g_3(\sqrt{2}) < 0$ for $n \ge 6$, $g_3(\sqrt{n-4}) < 0$ for $n \ge 6$, and $g_3(\sqrt{n-3}) > 0$ for $n \ge 11$. According to the theorem of zero points, we have $\sqrt{n-4} < \lambda_1(Q_n^4) < \sqrt{n-3}$ for $n \ge 17$. Similarly, we can check $\sqrt{n-4} < \lambda_1(H_n^4(1; n-6, 1)) < \sqrt{n-3.7}$ for $n \ge 29$.

From (18), we can easily verify that, for $n \geq 8$, $\lambda_1(L_n^1) > \sqrt{n-3+4/n}$. Thus, $\lambda_1(L_n^1) > \lambda_1(Q_n^4)$ for $n \geq 17$ and $\lambda_1(L_n^1) > \lambda_1(H_n^4(1;n-6,1))$ for $n \geq 29$. Calculation yields $\lambda_1(L_n^1) > \lambda_1(Q_n^4)$ for $16 \geq n \geq 8$ and $\lambda_1(L_n^1) > \lambda_1(H_n^4(1;n-6,1))$ for $28 \geq n \geq 8$. \square

Lemma 16. Let $G \in \mathcal{U}_n^+ \setminus \{L_n^0, C_n^4, L_n^1, I_n^4\}$ with l = 4 and $n \ge 8$. We have $\lambda_1(L_n^1) > \lambda_1(G)$.

Proof. Let $G \in \mathcal{U}_n^+ \setminus \{L_n^0, C_n^4, L_n^1, I_n^4\}$, l = 4, $n \geq 8$, and $1 \leq i \leq 4$. For $G \in \mathcal{U}_n^+$, we denote by T_i the tree attached to u_i of C_4 . We say that u_i is attached by $\deg(u_i) - 2$ subtrees. Namely, T_i can be viewed as the tree obtained by identifying a pendent vertex of each of the $\deg(u_i) - 2$ subtrees with u_i . We assume that the vertices of T_i and of its subtrees include u_i . The number of the vertices of T_i is called the order of T_i and is denoted by $n_i + 1$, where $0 \leq n_i \leq n - 4$.

Applying the EGT to G repeatedly, we obtain $\lambda_1(G^*) \geq \lambda_1(G)$, where $G^* \cong C_n^4(n_1, n_2, n_3, n_4)$. If $G^* \neq L_n^0, C_n^4, L_n^1$, then by Lemma 12, we obtain $\lambda_1(L_n^1) > \lambda_1(G)$. Otherwise, $G^* \cong L_n^0, C_n^4, L_n^1$. Next we consider three cases according to the types of G^* .

Case (i).
$$G^* \cong L_n^0$$
.

For G, only one vertex u_1 on C_4 is attached by T_1 .

If all the subtrees of T_1 are pendent edges or paths of length 2, then u_1 is attached by at least two paths of length 2 since $G \neq L_n^0$, I_n^4 . Applying the EGT to G repeatedly, we obtain $\lambda_1(Q_n^4) \geq \lambda_1(G)$, with equality holding if and only if $G \cong Q_n^4$. Furthermore, by Lemma 15(i), we get $\lambda_1(L_n^1) > \lambda_1(G)$.

In other cases, at least one subtree of T_1 has order greater than 4. We suppose that the order of this subtree is c+2. Obviously, $2 \le c \le n-5$. Applying the EGT to G repeatedly, we obtain $\lambda_1(K_n^4(b,c)) \ge \lambda_1(G)$, with equality holding if and only if $G \cong K_n^4(b,c)$, where b=n-4-c. Obviously, $1 \le b \le n-6$. Thus, by Lemma 13, we obtain $\lambda_1(L_n^1) > \lambda_1(G)$.

Case (ii).
$$G^* \cong C_n^4$$
.

For G, u_1 is attached by T_1 with $2 \le n_1 \le n - 5$ (since $n \ge 8$) and u_2 is attached by one pendent edge.

If all the subtrees of T_1 are pendent edges or paths of length 2, then u_1 is attached by at least one path of length 2 since $G \neq C_n^4$. Applying the EGT to G repeatedly, we get $\lambda_1(H_n^4(1;n-6,1)) \geq \lambda_1(G)$, with equality holding if and only if $G \cong H_n^4(1;n-6,1)$. Thus, by Lemma 15(ii), we obtain $\lambda_1(L_n^1) > \lambda_1(G)$.

In other cases, at least one subtree of T_1 has order greater than 4. We suppose that the order of this subtree is c+2. Obviously, $2 \le c \le n-6$. Applying the EGT to G repeatedly, we get $\lambda_1(H_n^4(1;b-1,c)) \ge \lambda_1(G)$, with equality holding if and only if $G \cong H_n^4(1;b-1,c)$, where b=n-4-c. Obviously, $2 \le b \le n-6$. Thus, by Lemmas 13 and 14, we get $\lambda_1(L_n^1) > \lambda_1(G)$.

Case (iii).
$$G^* \cong L_n^1$$
.

For G, u_1 is attached by T_1 with $2 \le n_1 \le n - 5$ (since $n \ge 8$) and u_3 is attached by one pendent edge. Applying the EGT to G repeatedly, we get $\lambda_1(L_n^1) > \lambda_1(G)$ since $G \ne L_n^1$.

In conclusion, we obtain $\lambda_1(L_n^1) > \lambda_1(G)$ for $G^* \cong L_n^0, C_n^4, L_n^1$ as $n \geq 8$ in Cases (i)–(iii). Thus, Lemma 16 is proved. \square

Lemma 17. Let $G \in \mathcal{U}_n^+$ and $l \geq 6$ and $n \geq 8$. We have $\lambda_1(L_n^1) > \lambda_1(G)$.

Proof. Bearing in mind that $G_n^{6,1}$ is the graph obtained from C_6 by attaching n-6 pendent edges to u_1 of C_6 , by Lemma 1, we get $\phi(G_n^{6,1},\lambda) = \lambda^{n-6}(\lambda^2-1)[(3n-14)-(n-1)\lambda^2+\lambda^4]$. Hence, $\lambda_1(G_n^{6,1}) = \sqrt{\frac{1}{2}(-1+n+\sqrt{57-14n+n^2})}$. From (18), we can check $\lambda_1(L_n^1) > \lambda_1(G_n^{6,1})$ as $n \geq 8$. By Lemma 3(i) and (iii), for $G \in \mathcal{U}_n^+$ with $l \geq 6$ and $n \geq 8$, we have $\lambda_1(G_n^{6,1}) \geq \lambda_1(G)$, with equality holding if and only if $G \cong G_n^{6,1}$. Thus, we obtain Lemma 17. \square

By Lemmas 8–10, 16, and 17, we get the first four and three unicyclic graphs with the maximal EIs in \mathcal{U}_n^+ for $n \geq 23$ and $22 \geq n \geq 8$, respectively.

Theorem 1. Let $G \in \mathcal{U}_n^+$ with $l \geq 4$ and $n \geq 8$. We have

- (i) $EE(L_n^0) > EE(C_n^4) > EE(I_n^4) > EE(L_n^1) > EE(G)$ for $n \ge 23$, where $G \ne L_n^0, C_n^4, I_n^4, L_n^1$.
- (ii) $EE(L_n^0) > EE(C_n^4) > EE(L_n^1) > EE(G)$ for $22 \ge n \ge 8$, where $G \ne L_n^0, C_n^4, L_n^1$.

Proof. As $n \geq 23$, Lemmas 9 and 10 yield $EE(L_n^0) > EE(C_n^4) > EE(I_n^4) > EE(L_n^1)$. As $22 \geq n \geq 8$, calculation yields $EE(C_n^4) > EE(L_n^1)$. Furthermore, by Lemmas 9 and 10, we get $EE(L_n^0) > EE(C_n^4) > EE(L_n^1) > EE(I_n^4)$ for $22 \geq n \geq 8$.

Let $G \in \mathcal{U}_n^+ \setminus \{L_n^0, C_n^4, I_n^4, L_n^1\}$ with $l \geq 4$ and $n \geq 8$. By Lemmas 16 and 17, we obtain $\lambda_1(L_n^1) > \lambda_1(G)$. Since L_n^1 has exactly two positive eigenvalues and the other graphs in \mathcal{U}_n^+ have at least two positive eigenvalues [28], by Lemma 8, we have $EE(L_n^1) > EE(G)$.

Theorem 1 is thus proved. \square

Acknowledgement: The work was supported by the National Natural Science Foundation of China under Grant No. 11001166 and the Shanghai Leading Academic Discipline Project under Project No. S30104.

References

- A. R. Ashrafi, G. H. Fath-Tabar, Bounds on the Estrada index of ipr (4,6)-fullerenes, Appl. Math. Lett. 24 (2011) 337-339.
- [2] S. K. Ayyaswamy, S. Balachandran, Y. B. Venkatakrishnan, I. Gutman, Signless Laplacian Estrada index, MATCH Commun. Math. Comput. Chem. 66 (2011) 785–794.
- [3] H. Bamdad, F. Ashraf, I. Gutman, Lower bounds for Estrada index and Laplacian Estrada index, Appl. Math. Lett. 23 (2010) 739–742.
- [4] A. L. Chen, Order of the unicyclic graphs by their largest eigenvalues, J. Math. Study 36 (2003) 87–94 (in Chinese).
- [5] Z. Chen, Y. Z. Fan, W. X. Du, Estrada index of random graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 825–834.
- [6] D. M. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.
- [7] K. C. Das, S. G. Lee, On the Estrada index conjecture, Lin. Algebra Appl. 431 (2009) 1351–1359.
- [8] J. A. de la Peña, I. Gutman, J. Rada, Estimating the Estrada index, Lin. Algebra Appl. 427 (2007) 70–76.

- [9] H. Deng, A proof of a conjecture on the Estrada index, MATCH Commun. Math. Comput. Chem. 62 (2009) 599-606.
- [10] Z. Du, B. Zhou, The Estrada index of trees, Lin. Algebra Appl. 435 (2011) 2462–2467.
- [11] Z. Du, B. Zhou, The Estrada index of unicyclic graphs, Lin. Algebra Appl. 436 (2012) 3149–3159.
- [12] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319 (2000)713-718.
- [13] E. Estrada, Topological structural classes of complex networks, Phys. Rev. E 75 (2007) 016103.
- [14] E. Estrada, J. A. Rodriguez-Velazquez, Subgraph centrality in complex networks, Phys. Rev. E 71 (2005) 056103.
- [15] G. H. Fath-Tabar, A. R. Ashrafi, New upper bounds for Estrada index of bipartite graphs, Lin. Algebra Appl. 435 (2011) 2607–2611.
- [16] P. W. Fowler, Möbius systems and the Estrada index, MATCH Commun. Math. Comput. Chem. 66 (2011) 751–764.
- [17] S. G. Guo, The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendent vertices, Lin. Algebra Appl. 408 (2005) 78–85.
- [18] S. G. Guo, On the spectral radius of bicyclic graphs with n vertices and diameter d, Lin. Algebra Appl. 422 (2007) 119–132.
- [19] I. Gutman, H. Deng, S. Radenković, The Estrada index: An updated survey, in: D. Cvetković, I. Gutman (Eds.), Selected Topics on Applications of Graph Spectra, Math. Inst., Belgrade, 2011, pp. 155–174.
- [20] I. Gutman, A. Graovac, Estrada index of cycles and paths, Chemical Physics Letters 436 (2007) 294–296.
- [21] Y. Hong, On the spectra of unicyclic graphs, J. East China Normal Univ. (Nat. Sci. Ed.) 1 (1986) 31–34 (in Chinese).
- [22] Y. Hou, J. Li, Bounds on the largest eigenvalues of trees with a given size of matching, Lin. Algebra Appl. 342 (2002) 203–217.

- [23] J. Li, A note on the maximal Estrada index of trees with a given bipartition, MATCH Commun. Math. Comput. Chem. 66 (2011) 765–764.
- [24] J. Li, X. Li, L. Wang, The minimal Estrada index of trees with two maximum degree vertices, MATCH Commun. Math. Comput. Chem. 64 (2010) 799–810.
- [25] J. Li, J. Zhang, On the Laplacian estrada index of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 835–842.
- [26] Q. Li, K. Feng, On the largest eigenvalue of graphs, Acta Math. Appl. Sin. 2 (1979) 167–175 (in Chinese).
- [27] H. Liu, M. Lu, F. Tian, On the spectral radius of graphs with cut edges, Lin. Algebra Appl. 389 (2004) 139–145.
- [28] X. Z. Tan, B. L. Liu, On the nullity of unicyclic graphs, Lin. Algebra Appl. 408 (2005) 212–220.
- [29] B. Wu, E. Xiao, Y. Hong, The spectral radius of trees on k pendent vertices, Lin. Algebra Appl. 395 (2005) 343–349.
- [30] J. Zhang, B. Zhou, J. Li, On Estrada index of trees, Lin. Algebra Appl. 434 (2011) 215–223.
- [31] B. X. Zhu, On the Laplacian Estrada index of graphs, MATCH Commun. Math. Comput. Chem. 66 (2011) 769–776.