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Abstract

Let G be a simple graph and A(G) its adjacency matrix. Based on some results of Rara

(H. M. Rara, Discr. Math. 151 (1996) 213–219), we show that the determinant of A(G) of a

plane graph G which has the property that every face-boundary is a cycle of size divisible by 4,

equals −1, 0 or 1, provided the inner dual graph of G is a tree. As applications, we compute the

algebraic structure count of some polygonal chains.

1. INTRODUCTION

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) =

{e1, e2, . . . , em}. The adjacency matrix of graph G is an n×n (0, 1)-matrix A(G) = (aij),

where aij = 1 if and only if (vi, vj) is an edge of G and aij = 0 otherwise. Let dG(u) be

the degree of vertex u of G. If V1 ⊂ V (G) and E1 ⊂ E(G), we use G− V1 and G−E1 to

denote the subgraphs of G induced by V (G)\V1 and E(G)\E1, respectively. Particulary,

if V1 = {u} and E1 = {e}, we use G− u and G− e to denote G− {u} and G− {e}. Let
G⊥ be the dual graph of a plane graph G and f the vertex of D⊥ corresponding to the

unbounded face of G. Call G⊥ − f to be the inner dual graph of G, denoted by G∗ (see

Figure 1).

Deift and Tomei [5] proved an interesting result: The determinant of the adjacency

matrix of a finite subgraph G of Z×Z equals −1, 0 or 1, provided G has no “hole”. This
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Figure 1: (a). A plane graph G with three faces f, f1 and f2. (b). The dual graph G⊥ of
G. (c). The inner dual graph G∗ of G.

implies that the algebraic structure count of a finite subgraph G of Z× Z equals 0 or 1,

provided G has no “hole” (The algebraic structure count of a bipartite graph G is defined

as the square root of the absolute value of det(A(G)), see [6,13,14]). For some results on

the determinant of the adjacency matrix of graphs (resp. the algebraic structure count of

bipartite graphs) see for example [1, 3, 7, 11, 12]. (resp. [3, 8–10]).

A polyomino system is a finite 2-connected plane graph such that each interior face

is surrounded by a regular square of length one. A special case of the above result by

Deift and Tomei is that if G is a polyomino system whose inner dual is a tree, then

the determinant of A(G) equals −1, 0 or 1. It is natural to ask whether there exists a

similar result for the determinant of A(G) of a plane graph G which has the property

that every face-boundary is a cycle of size divisible by 4, provided the inner dual graph

of G is a tree. The main result of this short note, Theorem 2.6, answers this question

in the affirmative. Finally, as applications we compute the algebraic structure count of

some polygonal chains.

2. Main results

We use Pn and Cn to denote the path and cycle with n vertices. Now, we introduce

some known lemmas.

Lemma 2.1. [12] Let P6 = [1, 2, 3, 4, 5, 6] be an induced subgraph of G with dG(2) =

dG(3) = dG(4) = dG(5) = 2. If H is the graph formed from G − {2, 3, 4, 5} by joining

vertices 1 and 6 with an edge, then

det(A(G)) = det(A(H)) .
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Lemma 2.2. [12] Let C4 = [v1, v2, v3, v4, v1] be a subgraph of G with dG(v1) = 2. If G
′
is

the graph obtained from G by removing the edges v2v3 and v3v4, then

det(A(G
′
)) = det(A(G)) .

Figure 2: The graph G obtained from G1 and G2.

Lemma 2.3. [12] Let G be the graph obtained by joining the vertex x of the graph G1

to the vertex y of the graph G2 by an edge (see Fig. 2). Then

det(A(G)) = det(A(G1)) det(A(G2))− det(A(G1 − x)) det(A(G2 − y)) .

The following lemma is immediate from the lemma above.

Lemma 2.4. Let G be a graph and v be any vertex of G. If G∗ is the graph obtained

from G by joining v to a new vertex u, then

det(A(G∗)) = − det(A(G− v)) .

By induction, the following result follows from Lemma 2.4.

Corollary 2.5. If T is a tree with n vertices, then the determinant of A(T ) equals (−1)n/2

if T has a perfect matching and zero otherwise.

Lemma 2.6. Let G be a plane graph each bounded face of which is a cycle with length

equal to 0 (mod 4). If the inner dual G∗ is a tree, then the determinant of the adjacency

matrix of G equals −1, 0 or 1, i.e.,

det(A(G)) = 0 , ±1 .

Proof. Since each bounded face of G is a cycle with even number of edges, G is a bipartite

graph. First, we prove the following claim.
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Claim. Let G be the graph obtained by joining the vertex x of the bipartite graph G1

to the vertex y of the bipartite graph G2 by an edge. If det(A(Gi)) = 0 , ±1, det(A(G1 −
x)) = 0 , ±1 and det(A(G2 − y)) = 0 , ±1, then det(A(G)) = 0 , ±1. By Lemma 2.3,

det(A(G)) = det(A(G1)) det(A(G2))− det(A(G1 − x)) det(A(G2 − y)) . (1)

If det(A(G1)) det(A(G2)) = 0, then by (1) the claim holds. If det(A(G1)) = ±1 and

det(A(G2)) = ±1, then both |V (G1 − x)| and |V (G2 − y)| are odd, implying det(A(G1 −
x)) = det(A(G2 − y)) = 0. So the det(A(G)) = ±1. Hence the claim follows.

Now we prove the theorem by induction on |V (G)|, the number of vertices of G. If G

contains no cycle, that is, |V (G∗)| = 0, then, by Corollary 2.5, det(A(G)) = 0 , ±1. If G

has a cut edge e = (u, v), then by induction and the claim above, the theorem follows.

Hence we may assume that G is 2-edge connected. Note that the inner dual G∗ is a

tree. If |V (G∗)| = 1, then G is a cycle with 4s vertices for some integer s. Obviously,

det(A(C4s)) = 0. Hence we suppose that |V (G∗)| ≥ 2. Let f be a vertex of degree one

of G∗. Then f can be regarded as a bounded face of G whose boundary is a cycle with

4k vertices for some integer k. Hence G has the form of the graphs illustrated in Figure

3, where G0 is plane graph each bounded face of which is a cycle with length equal to 0

(mod 4) and G∗
0 = G∗ − f is a tree. We distinguish the following two cases.

Figure 3: (a). The graph G1 with a face f whose boundary is a cycle with four vertices.
(b). The graph G2 with a face f whose boundary is a cycle with 4k vertices (k ≥ 2).

Case 1. k = 1.

If k = 1, G is of the form of graph G1 shown in Figure 3(a). Since dG1(1) = 2 and

1 − 2 − 4 − 3 − 1 is a cycle of G = G1, by Lemma 2.2, det(A(G)) = det(A(G1)) =

det(A(G1 − e1 − e2)), where e1 = (2, 4) and e2 = (3, 4). By Lemma 2.4,

det(A(G1 − e1 − e2)) = − det(A(G0 − e1)) .

Note that G0 − e1 is a plane graph each bounded face of which is a cycle with length

equal to 0 (mod 4). Moreover, the inner dual graph of G0 − e1 is a forest. By induction,

det(A(G0 − e1)) = 0 , ±1. Hence det(A(G)) = det(A(G1)) = 0 , ±1.
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Case 2. k ≥ 2.

If k ≥ 2, then by a repeated application of Lemma 2.1, det(A(G)) = det(A(G2)) =

det(A(G1)). By Case 1, det(A(G)) = 0 , ±1.

Hence we have completed the proof of the theorem. �

The following result is immediate from the theorem above.

Corollary 2.7. Let G be a plane graph each bounded face of which is a cycle with length

equal to 0 (mod 4). If the inner dual G∗ is a tree, then the algebraic structure count of G

equals 0 or 1.

3. Applications

As applications of Theorem 2.6, in this section, we compute the determinant of adja-

cency matrices of some polygonal chains.

The following lemma is well-known.

Lemma 3.1. [4] Let G be a simple graph and A(G) the adjacency matrix. Then

det(A(G)) ≡ 0 (mod 2) if and only if G has an even number of perfect matchings.

Lemma 3.2. [2, 4] The spectrum of a bipartite graph is symmetric with respect to zero.

Remark 3.3. By Lemmas 3.1 and 3.2, if a bipartite graph G with n vertices satisfies the

property det(A(G)) = 0 or ±1, then det(A(G)) = 0 if G has an even number of perfect

matchings and det(A(G)) = (−1)n/2 otherwise.

Figure 4: (a). The linear polyomino chain Ln. (b). The zigzag polyomino chain Zn .

Let Ln and Zn denote the linear polyomino chain and zigzag polyomino chain with n

squares, which are illustrated in Figure 4. Let L4k
n and Z4k

n be the linear polygonal chain

and zigzag polygonal chain with n polygons of size 4k, which are illustrated in Figure 5.

Obviously, Ln = L4
n and Zn = Z4

n .
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Figure 5: (a). The linear polygonal chain L4k
n with n polygons of size 4k. (b). The zigzag

polygonal chain Z4k
n with n polygons of size 4k.

Theorem 3.4. The determinants of adjacency matrices of L4k
n and Z4k

n (k ≥ 1) are

det(A(L4k
n )) =

{
0 if n ≡ 1 (mod 3)

(−1)n+1 if n ≡ 0, 2 (mod 3)

det(A(Z4k
n )) =

{ −1 if n ≡ 0 (mod 2)

0 if n ≡ 1 (mod 2) .

Proof. By Theorem 2.6, we know that det(A(L4k
n )) = 0 , ±1 and det(A(Z4k

n )) = 0 , ±1.

Hence by Lemma 3.1 we only need to enumerate perfect matchings of L4k
n and Z4k

n . Let

an and bn be the number of perfect matchings of L4k
n and Z4k

n . It is easy to obtain the

following recurrences:{
an = an−1 + an−2 if n ≥ 3

a1 = 2 , a2 = 3

{
bn = bn−1 + 1 if n ≥ 2

b1 = 2 .

Hence bn = n + 1 and {an} is the Fibonacci sequence. We know easily that an is even if

n ≡ 1 (mod 3) and an is odd otherwise, and bn is even if n ≡ 1 (mod 2) and bn is odd

otherwise. Note that both L4k
n and Z4k

n have (4k − 2)n+ 2 vertices. By Remark 3.2,

det(A(L4k
n )) =

⎧⎨
⎩

0 if n ≡ 1 (mod 3)

(−1)
(4k−2)n+2

2 if n ≡ 0, 2 (mod 3)

det(A(Z4k
n )) =

⎧⎨
⎩

(−1)
(4k−2)n+2

2 if n ≡ 0 (mod 2)

0 if n ≡ 1 (mod 2)

implying the theorem holds. �
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Corollary 3.5. The algebraic structure count of L4k
n and Z4k

n (k ≥ 1) are

det(A(L4k
n )) =

{
0 if n ≡ 1 (mod 3)

1 otherwise.

det(A(Z4k
n )) =

{
1 if n ≡ 0 (mod 2)

0 otherwise.

4. Some remarks

Deift and Tomei [5] proved that the determinant of the adjacency matrix of a subgraph

G of Z×Z equals −1, 0 or 1, provided G contains no “hole”. Note that if G is a subgraph

G of Z× Z and has no “hole”, then each bounded face of G is a cycle C4. So it is nature

to ask whether there exists a similar result for the determinant of the adjacency matrix

of plane graph each bounded face of which is a cycle with length 4k. In Section 2, we

have obtained a more special result by showing that the determinant of A(G) of a plane

graph G which has the property that every face-boundary is a cycle of length of the form

4k (k = 1, 2, · · · ), equals −1, 0 or 1, provided the inner dual graph of G is a tree. But

The following Example 4.1 gives a negative answer for the above question.

Figure 6: The graph G = C4 × P2 .

Example 4.1. Let G be the graph shown in Figure 6, that is, G is the Cartesian product

of C4 and P2. Although each bounded face of G is a cycle C4, G is not a subgraph of

Z× Z. Obviously, det(A(G)) = 9.

The following classifying theorem follows directly form Theorem 2.6 and Remark 3.3.

Theorem 4.2. Let G be a plane graph with n vertices each bounded face of which is a

cycle with length equal to 0 (mod 4). If the inner dual G∗ is a tree, then

(1). The determinant of the adjacency matrix of G equals 0 if G has an even number

of perfect matchings and (−1)n/2 otherwise.
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(2). The algebraic structure count of G equals 0 if G has an even number of perfect

matchings and 1 otherwise.
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