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Abstract

For a graph G without isolated vertices and a real α �= 0, we introduce a new
graph invariant s∗α (G)- the sum of the αth power of the non-zero normalized Lapla-
cian eigenvalues of G. Recently, the cases α = 2 and −1 have appeared in various
problems in the literature. Here, we present some lower and upper bounds of s∗α (G)
for a connected graph G, where α �= 0, 1. We also discuss the case α = −1.

1 Introduction

Topological indices (molecular structure descriptors) based on graph distance are widely

used in theoretical chemistry to establish relations between the structure and the proper-

ties of molecules [26, 27]. They provide correlations with physical, chemical and thermo-

dynamic parameters of chemical compounds.

Let G be a simple connected graph with n vertices and m edges on the vertex set

V (G) = {v1, v2, . . . , vn}. For vi ∈ V (G), the degree of the vertex vi, denoted by d (vi) , is

the number of vertices adjacent to vi. Let d (vi, vj) be the distance (i.e., the length of the

shortest path [17]) between the vertices vi and vj of G.

TheWiener index of a graphG is defined as the sum of all distances between unordered
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pairs of vertices vi and vj, i.e.,

W (G) =
∑

{vi,vj}⊆V (G)

d (vi, vj) . (1)

This molecular structure descriptor is one of the most utilized topological indices in high

correlation with many physical and chemical indices of molecular compounds. For survey

and detailed information, see [1].

The degree distance of a graph G is defined as [2]

D′ (G) =
∑

{vi,vj}⊆V (G)

[d (vi) + d (vj)] d (vi, vj) . (2)

This quantity was mentioned in the paper [28] under the name Schultz index. In fact, in

[23] Schultz put forward a molecular topological index, MTI (G), of G which turns out to

be

MTI (G) = Zg (G) +D′ (G) (3)

where Zg (G) is equal to the sum of squares of the vertex degrees of G, which is also

known as the first Zagreb index in mathematical chemistry [29].

The degree distance of graphs has been studied thoroughly in the literature. For

instance, the minimum degree distance of graphs with given order and size was established

in [41]. In [42] Dankelmann et al. obtained an asymptotically sharp upper bound on degree

distance of graphs with given order and diameter. In [3] bicyclic graphs with maximum

degree distance were determined. In [4] Ilić et al. obtained the degree distance of partial

Hamming graphs. In [5] the minimum degree distance of unicyclic and bicyclic graphs

were determined. In [24] Yuan and An determined the maximum degree distance among

unicyclic graphs with n vertices. In [30] Tomescu reported further properties of the degree

distance.

In [28] Gutman defined the multiplicative variant of the degree distance as

S (G) =
∑

{vi,vj}⊆V (G)

d (vi) d (vj) d (vi, vj) . (4)

He also called S (G) as the Schultz index of the second kind, but for which the name

Gutman index has also been used in [47].

The Gutman index of graphs has attracted great attention recently. In [43] Dankel-

mann et al. obtained an asymptotically upper bound for the Gutman index and also
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established the relations between the edge-Wiener index and Gutman index of graphs.

The maximal and minimal Gutman indices of bicyclic graphs were determined in [35] and

[48], respectively. Some bounds for the Gutman index were also established in [11, 49].

In [16] Klein and Randić proposed a new distance function named resistance distance

based on the theory of electrical networks. They consider the graph G as an electrical

network N by replacing each edge of G with a unit resistor. Then the resistance distance

between the vertices vi and vj of G, denoted by R (vi, vj), is defined to be the effective

resistance distance between the nodes vi and vj in N . The resistance distance concept has

been studied intensely in graph theory, study of Laplacian and of normalized Laplacian,

electric networks and chemistry. For detailed information, see [16, 21, 36, 50].

The Kirchhoff index (or resistance index) of a graph G is defined in analogy to the

Wiener index as [14]

Kf (G) =
∑

{vi,vj}⊆V (G)

R (vi, vj) . (5)

The Kirchhoff index has been studied thoroughly in the literature. For instance, in [12]

the extremal graphs with given matching number, connectivity and minimal Kirchhoff

index were characterized. In unicyclic graphs extremal with respect to the Kirchhoff

index were determined in [51, 52]. Deng examined the Kirchhoff index of fully loaded

unicyclic graphs [45] and graphs with many cut edges [22]. Some lower bounds for the

Kirchhoff index of a connected (molecular) graph in terms of its structural parameters

such as the number of vertices (atoms), the number of edges (bonds), maxmimum vertex

degree (valency), connectivity and chromatic number were also reported in [13].

Recently, Chen and Zhang introduced a new index named degree Kirchhoff index as

[21]

Kf ∗ (G) =
∑

{vi,vj}⊆V (G)

d (vi) d (vj)R (vi, vj) . (6)

The degree Kirchhoff index has also been studied extensively in the literature. In [34] uni-

cyclic graphs having maximum, second-maximum, minimum and second-minimum degree

Kirchhoff index were characterized. In [10, 21] some bounds on the degree Kirchhoff index

and relations between the degree Kirchhoff index and Kirchhoff index were established.

The degree Kirchhoff index was further studied in [32]. From (4) and (6), we can conclude

that the degree Kirchhoff index is the resistance-distance analogue of the Gutman index.

However, there is a strong reason for the introduction of this novel structure descriptor.
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Let L (G) = D (G) − A (G) be the Laplacian matrix of the graph G, where A (G)

and D (G) are the (0, 1)-adjacency matrix and the diagonal matrix of the vertex degrees

of G, respectively. The Laplacian eigenvalues of G are the eigenvalues of L (G). Let

μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ μn = 0 be the Laplacian eigenvalues of G. The multiplicity of

μn = 0 is equal to the number of connected components of G [38]. For more details on

Laplacian eigenvalues, see [46]. A long time known result for the Kirchhoff index is [25]

Kf (G) = n

n−1∑
i=1

1

μi

. (7)

Let L = D (G)−1/2 L (G)D (G)−1/2 be the normalized Laplacian matrix of the graph G,

where D (G)−1/2 is the matrix which is obtained by getting
(
−1

2

)
-power of each entry of

D (G) . The normalized Laplacian eigenvalues of G are the eigenvalues of its normalized

Laplacian matrix. Let λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn = 0 be the normalized Laplacian eigen-

values of G. The multiplicity of λn = 0 is equal to the number of connected components

of G [18]. For detailed information on the normalized Laplacian eigenvalues, see [18, 33].

An interesting analogy between the Kirchhoff and degree Kirchhoff indices is given as

[21]

Kf ∗ (G) = 2m
n−1∑
i=1

1

λi

. (8)

From (7) and (8), we can conclude that the degree Kirchhoff index is the normalized

Laplacian analogue of the ordinary Kirchhoff index.

For a non-zero real number α, in [7] Zhou defined the sum of the αth power of the

non-zero Laplacian eigenvalues, sα (G), of a graph G as

sα (G) =
h∑

i=1

μα
i (9)

where h is the number of non-zero Laplacian eigenvalues of G. The case α = 1 is trivial

as s1 (G) = 2m. Some properties of s 1
2
(G) and s2 (G) were establised in [31] and [39],

respectively. Note that for a connected graph G with n vertices ns−1 (G) is equal to

the Kirchhoff index. Recently, sα (G) and its bounds have been studied intensely. For

instance, in [7] Zhou established some properties of sα (G) for α �= 0, 1. He also discussed

further properties for s 1
2
(G) and s2 (G). The results obtained in [7] were improved in [19]

and [40]. Some bounds for sα (G) related to degree sequences were establised in [8]. In

[9] some bounds of sα (G) for a bipartite graph G were given from which lower and upper
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bounds for incidence energy and lower bounds for Kirchhoff index and Laplacian Estrada

index were also deduced.

Now paralel to Zhou’s definition, we define a new graph invariant s∗α (G)-the sum of

the α-th power of the non-zero normalized Laplacian eigenvalues of a graph G without

isolated vertices as

s∗α (G) =
h∑

i=1

λα
i (10)

where h is the number of non-zero normalized Laplacian eigenvalues of G. The case α =

1 is trivial as s∗1 (G) = n. Note that for a connected graph G, 2ms∗−1 (G) is equal to the

degree Kirchhoff index of G, where m is the number of edges of G. There is an interesting

relation between s∗α (G) and the general Randić index, Rα (G), of G defined by

Rα (G) =
∑
vi∼vj

(d (vi) d (vj))
α (11)

where the summation is over all (unordered) edges vivj in G and α �= 0 is a fixed real

number [6]. Note that s∗2 (G) is equal to the trace of L2, from which it may be shown that

[44]

s∗2 (G) = n+ 2
∑
vi∼vj

1

d (vi) d (vj)
= n+ 2R−1 (G) .

For more information on R−1 (G) and its importance to the normalized Laplacian eigen-

values, see [20, 37].

In this paper, we present some lower and upper bounds of s∗α (G) for a connected graph

G, where α �= 0, 1. We also discuss the case α = −1.

2 Preliminary Lemmas

In this section, we give some working lemmas which will be needed later. Firstly, we

introduce two auxiliary quantities of a graph G on the vertex set V (G) = {v1, v2, . . . , vn}
as

Δ =
n∏

i=1

d (vi) and P = 1 +

√
2

n (n− 1)

∑
vi∼vj

1

d (vi) d (vj)

where d (vi) is the degree of the vertex vi ofG. Recall thatR−1 (G) =
∑

vi∼vj
1/d (vi) d (vj) .

Lemma 2.1 [15] Let G be a graph with n vertices and m edges. Then the number of

spanning trees t of G is given as

t =
Δ

2m

n−1∏
i=1

λi.
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Lemma 2.2 [18] Let G be a graph with n vertices and normalized Laplacian eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn = 0. Then

λ1 ≥
n

n− 1
. (12)

Moreover, the equality holds in (12) if and only if G is a complete graph Kn.

Lemma 2.3 [33] Let G be a graph with n vertices and normalized Laplacian eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn = 0. Then

λ1 ≥ P. (13)

Moreover, the equality holds in (13) if and only if G is a complete graph Kn.

Lemma 2.4 [33] The lower bound (13) is always better than the lower bound (12).

Lemma 2.5 [33] Let G be a connected graph of order n > 2. Then λ2 = λ3 = · · · = λn−1

if and only if G ∼= Kn or G ∼= Kp,q.

Lemma 2.6 [18] Let G be a graph with n vertices and normalized Laplacian eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn = 0. Then

0 ≤ λi ≤ 2.

Moreover, λ1 = 2 if and only if a connected component of G is bipartite and nontrivial.

3 Main Results

Now we present the main results of this paper using the ideas in [7]. Note that Δ and P

were defined earlier in the previous section.

Theorem 3.1 Let α be a real number with α �= 0, 1, and let G be a connected graph with

n ≥ 3 vertices, m edges and t spanning trees. Then

s∗α (G) ≥ Pα + (n− 2)

(
2mt

ΔP

)α/(n−2)

(14)

with equality if and only if G = Kn.
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Proof. By Lemma 2.1, we have
∏n−1

i=1 λi =
2mt
Δ

. Using the arithmetic-geometric mean

inequality, we obtain

s∗α (G) = λα
1 +

n−1∑
i=2

λα
i

≥ λα
1 + (n− 2)

(
n−1∏
i=2

λα
i

)1/(n−2)

= λα
1 + (n− 2)

(
2mt

Δλ1

)α/(n−2)

with equality if and only if λ2 = λ3 = · · · = λn−1. Let

f (x) = xα + (n− 2)

(
2mt

Δx

)α/(n−2)

.

Solving f ′ (x) = α
(
xα−1 −

(
2mt
Δ

) α
n−2 x− α

n−2
−1
)
≥ 0, we can easily see that f (x) is increas-

ing for x ≥
(
2mt
Δ

)1/(n−1)
whether α > 0 or α < 0. Using Lemma 2.3, Lemma 2.4 and the

arithmetic-geometric mean inequality, we get

λ1 ≥ P ≥ n

n− 1
=

n−1∑
i=1

λi

n− 1
≥
(

n−1∏
i=1

λi

)1/(n−1)

=

(
2mt

Δ

)1/(n−1)

.

Therefore we obtain

s∗α (G) ≥ f (P ) = Pα + (n− 2)

(
2mt

ΔP

)α/(n−2)

.

Hence (14) follows and the equality holds in (14) if and only if

λ1 = P and λ2 = λ3 = · · · = λn−1.

Then, by Lemma 2.3 and Lemma 2.5, we conclude that G = Kn.

As mentioned in Section 1, we have Kf ∗ (G) = 2ms∗−1 (G). Considering this informa-

tion and Theorem 3.1, we can give the following result.

Corollary 3.2 Let G be a connected graph with n ≥ 3 vertices, m edges and t spanning

trees. Then

Kf ∗ (G) ≥ 2m

P
+ 2 (n− 2)m

(
ΔP

2mt

)1/(n−2)

(15)

with equality if and only if G = Kn.
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Theorem 3.3 Let G be a connected graph with n ≥ 3 vertices:

(i) If α < 0 or α > 1, then

s∗α (G) ≥ P α +
(n− P )α

(n− 2)α−1 (16)

with equality if and only if G = Kn.

(ii) If 0 < α < 1, then

s∗α (G) ≤ P α +
(n− P )α

(n− 2)α−1 (17)

with equality if and only if G = Kn.

Proof. Note that xα is concave up when x > 0 and α < 0 or α > 1. Therefore we obtain

(
n−1∑
i=2

1

n− 2
λi

)α

≤
n−1∑
i=2

1

n− 2
λα
i

i.e.,
n−1∑
i=2

λα
i ≥ 1

(n− 2)α−1

(
n−1∑
i=2

λi

)α

with equality if and only if λ2 = λ3 = · · · = λn−1. It follows that

s∗α (G) ≥ λα
1 +

1

(n− 2)α−1

(
n−1∑
i=2

λi

)α

= λα
1 +

(n− λ1)
α

(n− 2)α−1 .

Let

g (x) = xα +
(n− x)α

(n− 2)α−1 .

By solving g′ (x) = α
(
xα−1 − (n−x)α−1

(n−2)α−1

)
≥ 0, we can easily see that g (x) is increasing for

x ≥ n
n−1

. By Lemma 2.3 and Lemma 2.4, we have

λ1 ≥ P ≥ n

n− 1
.

Therefore

s∗α (G) ≥ g (P ) = Pα +
(n− P )α

(n− 2)α−1

with equality if and only if λ1 = P and λ2 = λ3 = · · · = λn−1. Then, by Lemma 2.3 and

2.5, we conclude that the equality holds in (16) if and only if G = Kn. Now we suppose

that 0 < α < 1. Note that xα is concave down when x > 0 and 0 < α < 1. Thus we have(
n−1∑
i=2

1

n− 2
λi

)α

≥
n−1∑
i=2

1

n− 2
λα
i
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with equality if and only if λ2 = λ3 = · · · = λn−1. Note further that the function

g (x) = xα + (n−x)α

(n−2)α−1 is decreasing for x ≥ n
n−1

. By similar arguments mentioned above,

we get the second part of the theorem.

From Theorem 3.3 (i), we obtain the following result.

Corollary 3.4 Let G be a connected graph with n ≥ 3 vertices and m edges. Then

Kf ∗ (G) ≥ 2m

P
+

2 (n− 2)2 m

n− P
(18)

with equality if and only if G = Kn.

Now we consider bipartite graphs.

Theorem 3.5 Let α be a real number with α �= 0, 1, and let G be a connected bipartite

graph with n ≥ 3 vertices, m edges and t spanning trees. Then

s∗α (G) ≥ (2)α + (n− 2)

(
mt

Δ

)α/(n−2)

(19)

with equality if and only if G ∼= Kp,q.

Proof. Using the similar arguments in the proof of Theorem 3.1, we derive

s∗α (G) ≥ λα
1 + (n− 2)

(
2mt

Δλ1

)α/(n−2)

.

Since G is a connected bipartite graph, by Lemma 2.6, we have λ1 = 2 and then (19)

follows. The equality holds in (19) if and only if λ2 = λ3 = · · · = λn−1.

Now we suppose that the equality holds in (19). Then, by Lemma 2.5, we conclude

that G ∼= Kp,q.

Conversely, we can easily see that the equality holds in (19) for the complete bipartite

graph Kp,q.

From Theorem 3.5, we get the following result.

Corollary 3.6 Let G be a connected bipartite graph with n ≥ 3 vertices, m edges and t

spanning trees. Then

Kf ∗ (G) ≥ m+ 2 (n− 2)m

(
Δ

mt

)1/(n−2)

(20)

with equality if and only if G ∼= Kp,q.
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Theorem 3.7 Let G be a connected bipartite graph with n ≥ 3 vertices:

(i) If α < 0 or α > 1, then

s∗α (G) ≥ n+ 2
(
2α−1 − 1

)
(21)

with equality if and only if G ∼= Kp,q.

(ii) If 0 < α < 1, then

s∗α (G) ≤ n+ 2
(
2α−1 − 1

)
(22)

with equality if and only if G ∼= Kp,q.

Proof. Using the similar arguments in the proof of Theorem 3.3, we derive

s∗α (G) ≥ λα
1 +

(n− λ1)
α

(n− 2)α−1 .

Since G is a connected bipartite graph, by Lemma 2.6, we have λ1 = 2 and then (21)

follows.

From the proof of Theorem 3.3, we also obtain

s∗α (G) ≤ λα
1 +

(n− λ1)
α

(n− 2)α−1

for 0 < α < 1. Since λ1 = 2, (22) follows.

Either equality in (21) or (22) holds if and only if λ2 = λ3 = · · · = λn−1. By similar

arguments as in the proof of Theorem 3.5, we get G ∼= Kp,q.

From Theorem 3.7 (i), we have the following result.

Corollary 3.8 [10] Let G be a connected bipartite graph with n ≥ 3 vertices and m

edges. Then

Kf ∗ (G) ≥ (2n− 3)m (23)

with equality if and only if G ∼= Kp,q.
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