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Abstract

In this paper we consider the computation of permanental polynomials of some

graphs. By orienting even cycles oddly, explicit expressions for the permanental

polynomials of some basic graphs including a path and a cycle are obtained in terms

of roots. For hexagonal systems, based on reduction procedures, the permanental

polynomials of hexagonal chains and a type of pericondensed hexagonal system

are deduced from product of matrices of order 5. Meanwhile, the permanental

polynomial of a general polygonal chain is also derived.

1 Introduction

This paper deals with the computation of permanental polynomials of some graphs. Sup-

pose G = (V,E) is a finite and simple graph on n vertices. The permanental polynomial

of G is defined as

π(G, x) = per(xI − A(G)) =
n∑

k=0

bkx
n−k,
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where I is the identity matrix of order n, A(G) is the adjacency matrix of G and the

permanent per(Ã) of a matrix Ã = (aij)n×n is given as [18]

per(Ã) =
∑
σ∈Λn

n∏
i=1

aiσ(i)

with Λn denoting the set of all the permutations of {1, 2, · · · , n}. For the permanental

polynomial of a bipartite graph with an even number of vertices, one has b2i+1 = 0

and b2i=
∑

H per(A(H))=
∑

H M2(H), where the summation extends over all induced

subgraphs H with 2i vertices of G and M(H) is the number of perfect matchings of H

[4, 17, 24]. Obviously, the value of the last coefficient is the square of the number of

perfect matchings of G.

As is well known, computing the permanent of a matrix is a #P-complete problem

[23]. So computing the permanental polynomial of a graph is difficult. In the literature,

Merris et al. [17] proved that the coefficient of the permanental polynomial satisfies that

(−1)ibi =
∑
H

2k(H), (1)

where the sum ranges over all subgraphs H on i vertices whose components are single

edges or cycles, and k(H) is the number of cycles. Based on this result, similarly to the

technique of computing the characteristic polynomial of a graph in terms of subgraphs

[20], Borowiecki and Jóźwiak [5] studied the relationship between the permanental poly-

nomial of a dimultigraph (resp. a muligraph) and certain subgraphs. Recently, Belardo

et al. extended these results to characteristic and permanental polynomials of weighted

graphs and matrices in [2] and [3], respectively. For the permanental polynomials of

chemical graphs, in [7] by generating all the coefficients of the permanental polynomial

of fullerenes up through C36, the zeros of these polynomials were dealt with by Cash. It

was shown that of the independent zeros, ten are nearly constant within an isomer series

of constant N , while the remaining (N/2 − 10) zeros vary greatly with structure. This

indicates that the permanental polynomial encodes a variety of structure information. To

determine the coefficients of a permanental polynomial, Gutman and Cash [13] consid-

ered the relation between the permanental polynomial and the characteristic polynomial

of hexagonal systems and fullerenes, and established a formula on a part of coefficients of

these two polynomials. Later by focusing on the orientation graph of a bipartite graph

containing no even subdivision of K2,3, Yan and Zhang [25] proved that the permanental

polynomial of such a bipartite graph can be computed by the characteristic polynomial

of a skew adjacency matrix. Furthermore, in [26] we obtained that only the permanental

polynomials of bipartite graphs containing no even subdivision of K2,3 can be computed

in this way, and a characterization of this kind of graphs is given. For more studies on

the permanental polynomials in chemistry and mathematics, see [4, 6, 8, 9, 14, 15, 16, 22]

and related references.
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To overcome the difficulty of computing permanents, it is reasonable to convert the

computation of permanental polynomials to the computation of matrices and determi-

nants. Motivated by this idea, in this work, we first pay attentions to some basic graphs,

such as a path and a cycle. Instead of computing the permanental polynomials directly,

we assign orientations to graphs, and compute the characteristic polynomials of the cor-

responding skew adjacency matrices. Then we turn to some chemical graphs including

some types of hexagonal systems, which is a natural graph representation of benzenoid

hydrocarbons. The corresponding polynomials are produced by the product of matrices.

The organization of this paper is as follows. In Section 2 we give explicit expressions

of the permanental polynomials of a path, an even cycle, an even n-sun graph and one

subgraph of an n-sun graph. Under these formulas, the roots of the corresponding poly-

nomials follow immediately. Applying the reduction procedures, in Section 3 we obtain

the permanental polynomials of a general polygonal chain Gn and a kind of pericondensed

system Hn by multiplications of matrices. According to this, the permanental polynomial

of a hexagonal chain is provided. As special cases, explicit formulas on the permanental

polynomials of a linear chain, zigzag chain and helix chain are obtained.

2 Explicit expressions for the permanental polyno-

mials of some basic graphs

In this section, we will compute the permanental polynomials of a path, an even cycle, an

even n-sun graph and the subgraph of an n-sun graph. Throughout this paper we denote

by Pn a path on n vertices, Cn a cycle on n vertices and Sn an n-sun graph. An n-sun

graph is the graph on 2n vertices obtained by attaching a pendant edge to each vertex of

a cycle Cn [1]. Particularly, we call Cn (resp. Sn) an even cycle (resp. even n-sun graph)

if n is even.

Using the results of matching polynomials on paths and cycles [11] and formula (1),

it is easy to check that the permanental polynomials of a path and a cycle given as

π(Pn, x) =

�n
2
�∑

k=0

(
n− k

k

)
xn−2k (2)

and

π(Cn, x) =

�n
2
�−1∑

k=0

n

n− k

(
n− k

k

)
xn−2k + b(Cn), (3)

where b(Cn) = 4 if n is even, and b(Cn) = −2 if n is odd. Here by computing the

characteristic polynomial of the skew adjacency matrix of an orientation graph, we will

derive the explicit expressions of the permanental polynomials of a path and an even cycle

in terms of roots. We begin by introducing a few definitions and lemmas.
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A graph G is an even subdivision of a graph H if G is obtained from H by replacing

the edges of H by internally disjoint paths, each containing an even number of vertices

and at least one edge.

For a graph G, an even cycle C is said to be nice if G−V (C) has a perfect matching.

Let Ge be an orientation of G. An even cycle is said to be oddly oriented in Ge if the

number of edges pointing in each direction is odd. Under an orientation Ge, the skew

adjacency matrix A(Ge) = (a′ij)n×n is defined as

a′ij =

⎧⎪⎨
⎪⎩

1 if (vi, vj) is a directed edge from vi to vj,

−1 if (vj, vi) is a directed edge from vj to vi,

0 if no edges connect vi and vj.

Theorem 2.1. [24] Let G be a bipartite graph containing no even subdivision of K2,3.

Then there exists an orientation Ge of G such that

π(G, x) = det(xI − A(Ge)).

Moreover, each cycle of Ge is oddly oriented.

1 2 3 n1n -

(a)

1

2

3

n

(b)

Figure 1: Orientations P e
n and Ce

n of Pn and Cn, respectively.

Lemma 2.2. [21] Define n× n matrices Un and U−1
n with components 1 ≤ k, k′ ≤ n:

(Un)k,k′ =

√
2

n+ 1
ik sin(

kk′π
n+ 1

), (U−1
n )k,k′ =

√
2

n+ 1
(−i)k

′
sin(

kk′π
n+ 1

).

Let Qn be the n×n matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. Then the matrix Q̃n = U−1
n QnUn

has the element (Q̃n)k,k′ = δk,k′ · 2i cos kπ
n+1

for 1 ≤ k, k′ ≤ n and i2 = −1.

Theorem 2.3. The permanental polynomial of a path Pn is

π(Pn, x) =
n∏

t=1

(x+ 2i cos
tπ

n+ 1
). (4)

-874-



Proof. By Theorem 2.1 and according to the orientation P e
n of Pn shown in Figure 1(a),

π(Pn, x) = det(xI − A(P e
n)) = det(xIn + Qn) holds. Following the result of Lemma 2.2,

conjugate thematrix (xIn+Qn) by Un to obtain U−1
n (xIn+Qn)Un = diag(x+2i cos π

n+1
, x+

2i cos 2π
n+1

, · · · , x+ 2i cos nπ
n+1

). So π(Pn, x) =
∏n

t=1(x+ 2i cos tπ
n+1

) is got.

Remark 2.4. Combining the formula for the characteristic polynomial of a path Pn [20]

φ(Pn, x) =
n∏

t=1

(x− 2 cos
tπ

n+ 1
) =

n∏
t=1

(x+ 2 cos
tπ

n+ 1
)

and the theorem presented in [4], the same result as (4) can be obtained.

Lemma 2.5. [25] Define n× n matrices Vn and V −1
n with components 1 ≤ t, j ≤ n:

(Vn)t,j =

√
1

n
ei

(2j−1)tπ
n , (V −1

n )t,j =

√
1

n
e−i

(2t−1)jπ
n .

Let Yn be the n×n matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1

−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Then the matrix Ỹn = V −1

n YnVn

has the element (Ỹn)t,j = δt,j · 2i sin (2t−1)π
n

for 1 ≤ t, j ≤ n and i2 = −1.

Theorem 2.6. The permanental polynomial of an even cycle Cn is

π(Cn, x) =
n∏

t=1

(x+ 2i sin
(2t− 1)π

n
). (5)

Proof. An orientation Ce
n of Cn referring to Figure 1(b) is oddly oriented when n is even.

The matrix xI − A(Ce
n) takes the form Rn, where

Rn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 1 1

−1 x 1

−1 x 1
. . .

. . .
. . .

−1 x 1

−1 −1 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

ConjugatingRn = xIn+Yn by Vn, we obtain that det(Rn) = det(V −1
n RnVn) = det(diag(x+

2i sin π
n
, x+ 2i sin 3π

n
, · · · , x+ 2i sin (2n−1)π

n
)). So π(Cn, x) =

∏n
t=1(x+ 2i sin (2t−1)π

n
) holds.
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Remark 2.7. For n = 4k + 2, using the characteristic polynomial of a cycle Cn [20]

φ(Cn, x) =
n∏

t=1

(x− 2 cos
2tπ

n
) =

n∏
t=1

(x+ 2 sin
(3n− 4t)π

2n
)

and the theorem presented in [4], the same result as (5) can be also obtained. For other

values of n, π(Cn, x) cannot be get in this way.

1

2

3

n

1n +

2n +

3n +

2n

(a)

1

2

3

n

1n +

2n +

3n +

2n

(b)

Figure 2: The n-sun graph Se
n and the graph Se

n − �n1.

Theorem 2.8. The permanental polynomial of an even n-sun graph Sn is

π(Sn, x) =
n∏

t=1

(x2 + x2i sin
(2t− 1)π

n
+ 1). (7)

Proof. Figure 2(a) gives an orientation Se
n of an even n-sun graph Sn with the only cycle

being oddly oriented. Following the labeling of vertices and the orientation graph Se
n

in Figure 2(a), the matrix xI − A(Se
n) takes the form

(
Rn In

−In xIn

)
. Since Rn(−In) =

(−In)Rn, it follows that det(xI−A(Se
n)) = det(Rn(xIn)− (−In)In) = det(Dn), where the

matrix Rn takes the form shown in (6) and

Dn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2 + 1 x x

−x x2 + 1 x

−x x2 + 1 x
. . .

. . .
. . .

−x x2 + 1 x

−x −x x2 + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By Lemma 2.5, conjugate Dn = (x2 + 1)In + xYn by Vn to obtain

V −1
n DnVn = diag(x2 + 1 + x2i sin

π

n
, x2 + 1 + x2i sin

3π

n
, · · · , x2 + 1 + x2i sin

(2n− 1)π

n
).

Then according to Theorem 2.1, π(Sn, x) = det(xI − A(Se
n)) = det(Dn) =

∏n
t=1(x

2 +

1 + 2xi sin (2t−1)π
n

) is obtained with i =
√−1.
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For an edge e of a graph G, G−e is the graph resulting from the remove of e. Choosing

an edge e belonging to the cycle of Sn, the resulting graph Sn − e takes the form shown

in Figure 2(b). By Lemma 2.2 and the discussion in the proof of Theorem 2.8, we have

Theorem 2.9. Let e be an edge belonging to the cycle of an n-sun graph. Then

π(Sn − e, x) =
n∏

t=1

(x2 + x2i cos
tπ

n+ 1
+ 1). (8)

Remark 2.10. By the equations x2 + x2i sin (2t−1)π
n

+1 = 0 and x2 + x2i cos tπ
n+1

+1 = 0,

the roots of π(Sn, x) and π(Sn − e, x) can be obtained, respectively.

3 Recursive expressions for the permanental polyno-

mials of some kinds of graphs

3.1 Identites for permanental polynomials

In [5] Borowiecki and Jóźwiak proved an identity on the permanental polynomial, which

is described in Theorem 3.1.

Theorem 3.1. [5] Let e = (u, v) be an edge of a graph G and Ce(G) the set of cycles

containing e. Then

π(G, x) = π(G− e, x) + π(G− u− v, x) + 2
∑

C∈Ce(G)

(−1)|V (C)|π(G− V (C), x). (9)

Formula (9) provides a general connection between the permanental polynomial of a

graph and the permanental polynomials of its subgraphs. With the help of Theorems 2.3

and 2.6, a different expression comparing with (3) appears immediately.

Theorem 3.2. The permanental polynomial of a cycle Cn on n vertices is

π(Cn, x) =

⎧⎨
⎩
∏n

t=1(x+ 2i sin (2t−1)π
n

), if n is even,∏n
t=1(x+ 2i cos tπ

n+1
) +

∏n−2
t=1 (x+ 2i cos tπ

n−1
)− 2, if n is odd.

Let u1, v1 (resp. u2, v2) be a pair of vertices of a graph G1 (resp. G2). Then the bridge

graph G1 �G2 of G1 and G2 through e1 and e2 is the graph obtained by joining edges e1

between u1 and u2 and e2 between v1 and v2. See Figure 3 for an illustration.

Corollary 3.3. For the bridge graph G = G1 �G2 through e1 = (u1, u2) and e2 = (v1, v2),

the following result holds.

π(G, x) =π(G1, x)π(G2, x) + π(G1 − u1, x)π(G2 − u2, x) + π(G1 − v1, x)π(G2 − v2, x)

+ π(G1 − u1 − v1, x)π(G2 − u2 − v2, x) + 2
∑

C∈Ce1(G)

(−1)|V (C)|π(G− V (C), x).

(10)
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1G 2G

1u 2u

1v
2v

1e

2e

Figure 3: The bridge graph G1 �G2.

Proof. Using Theorem 3.1, we obtain that

π(G, x) = π(G− e1, x) + π(G− u1 − u2, x) + 2
∑

C∈Ce1 (G)

(−1)|V (C)|π(G− V (C), x)

= π(G− e1 − e2, x) + π(G− e1 − v1 − v2, x) + π(G− u1 − u2 − e2, x)

+ π(G− u1 − u2 − v1 − v2, x) + 2
∑

C∈Ce1 (G)

(−1)|V (C)|π(G− V (C), x)

= π(G1, x)π(G2, x) + π(G1 − v1, x)π(G2 − v2, x) + π(G1 − u1, x)π(G2 − u2, x)

+ π(G1 − u1 − v1, x)π(G2 − u2 − v2, x) + 2
∑

C∈Ce1 (G)

(−1)|V (C)|π(G− V (C), x).

3.2 The permanental polynomial of a general polygonal chain

Inspired by the idea given in [19], we now deduce the permanental polynomial of a general

polygonal chain by a recursive procedure. To derive our main results, we give some

definitions and notations.

A general polygonal chain is a polygonal system satisfying (a) each of the two end

polygons has exactly one adjacent polygon and any other polygon has two adjacent poly-

gons; (b) the intersection of any two adjacent polygons is a path whose internal vertices

are of degree two; (c) no three polygons have a vertex in common.

For simple, a general polygonal chain with n polygons (each polygon has at least six

vertices) is denoted by Gn. For the i-th polygon in Gn, i ∈ {1, 2, 3, · · · , n}, two root

vertices ui and vi are prescribed, which are joined by a path Pli of internal vertices of

degree two. In the i+ 1-th polygon, the edge with ui as an endvertex is marked by ei+1.

The path in the i-th polygon joining u′
i (the neighbor of ui−1) and v′i (the neighbor of

vi−1) is denoted by Pri , and the path connecting u′
i (resp. v

′
i) and ui (resp. vi) is denoted

by Psi (resp. Pti). See Figure 4. In addition, we denote by CV (H)(G) the set of cycles of

G containing the vertices of the subgraph H and Ce(G) the set of cycles in G including

the edge e.

Theorem 3.4. For a general polygonal chain Gn+1, let α(Gn) be the column vector

(π(Gn, x), π(Gn−un, x), π(Gn−vn, x), π(Gn−V (Pln), x),
∑

C∈CV (Pln
)(Gn)

(−1)|V (C)|π(Gn−
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l
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Figure 4: Polygonal chains Gn+1 and Gi.

V (C), x))T. Then the permanental polynomial of Gn+1 satisfies the recurrence

α(Gn+1) = An+1 · α(Gn), (11)

where An is a 5× 5 matrix whose i-th row vector is lin for 1 ≤ i ≤ 5. Explicitly,

l1n = (π(Prn , x), π(Prn−1, x), π(Prn−1, x), π(Prn−2, x)π(Pln−1−2, x) + 2(−1)rn+ln−1 ,

2(−1)rn+ln−1π(Pln−1−2, x)),

l2n = (π(Psn−1, x)π(Ptn , x), π(Psn−2, x)π(Ptn , x), π(Psn−1, x)π(Ptn−1, x), π(Psn−2, x)π(Ptn−1, x)

π(Pln−1−2, x), 0),

l3n = (π(Psn , x)π(Ptn−1, x), π(Psn−1, x)π(Ptn−1, x), π(Psn , x)π(Ptn−2, x), π(Psn−1, x)π(Ptn−2, x)

π(Pln−1−2, x), 0),

l4n = (π(Psn−1, x)π(Ptn−1, x), π(Psn−2, x)π(Ptn−1, x), π(Psn−1, x)π(Ptn−2, x), π(Psn−2, x)

π(Ptn−2, x)π(Pln−1−2, x), 0), and

l5n = (0, 0, 0, (−1)rn+ln−1 , (−1)rn+ln−1π(Pln−1−2, x)).

Consequently,

α(Gn) = An · An−1 · · ·A1 · α(G0), (12)

where α(G0) = (x2 + 1, x, x, 1, 0)T.

Proof. We can see that the general polygonal chain Gn+1 is the bridge graph of Gn and

the path Prn+1 . Then by Corollary 3.3,

π(Gn+1, x) =π(Gn, x)π(Prn+1 , x) + π(Gn − un, x)π(Prn+1−1, x)

+ π(Gn − vn, x)π(Prn+1−1, x) + π(Gn − VPln
, x)π(Prn+1−2, x)π(Pln−2, x)

+ 2
∑

C∈Cen+1 (Gn+1)

(−1)|V (C)|π(Gn+1 − V (C), x). (13)
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As the internal vertices of Prn+1 are of degree two, a cycle containing en+1 in Gn+1

must pass through the path Prn+1 . So it follows that

∑
C∈Cen+1 (Gn+1)

(−1)|V (C)|π(Gn+1 − V (C), x)

= (−1)rn+1+lnπ(Gn − VPln
, x)

+ (−1)rn+1+lnπ(Pln−2, x)
∑

C∈CV (Pln
)(Gn)

(−1)|V (C)|π(Gn − V (C), x). (14)

From (13) and (14), we have

π(Gn+1, x) =π(Gn, x)π(Prn+1 , x) + π(Gn − un, x)π(Prn+1−1, x) + π(Gn − vn, x)π(Prn+1−1, x)

+ π(Gn − VPln
, x)[π(Prn+1−2, x)π(Pln−2, x) + 2(−1)rn+1+ln ]

+ 2(−1)rn+1+lnπ(Pln−2, x)
∑

C∈CV (Pln
)(Gn)

(−1)|V (C)|π(Gn − V (C), x).

Thus, π(Gn+1, x) = l1n · α(Gn).

Similarly, we also have π(Gn+1 − un+1, x) = l2n · α(Gn), π(Gn+1 − vn+1, x) = l3n · α(Gn)

and π(Gn+1 − un+1 − vn+1, x) = l4n · α(Gn).

Since

∑
C∈CV (Pln+1

)(Gn+1)

(−1)|V (C)|π(Gn+1 − V (C), x)

= (−1)rn+1+lnπ(Gn − V (Pln), x)

+ (−1)rn+1+lnπ(Pln−2, x)
∑

C∈CV (Pln
)(Gn)

(−1)|V (C)|π(Gn − V (C), x),

we get that
∑

C∈CV (Pln+1
)(Gn+1)

(−1)|V (C)|π(Gn+1 − V (C), x) = l5n · αn.

By now

α(Gn+1) = An+1 · α(Gn)

is established.

For a general polygonal chain, the starting step G0 is an edge (u0, v0). Given this, we

obtain that α(G0) = (x2 + 1, x, x, 1, 0)T. So equation (12) follows.

Remark 3.5. It needs to point out that π(P0, x) = 1 and π(P−1, x) = 0.

As a special case of a general polygonal chain, a polygonal chain is a connected series

of polygons arranged in a linear form satisfying the intersection of two adjacent polygons

is an edge and no three polygons have a vertex in common. For a polygonal chain with

at least six vertices on each polygon (denoted by G′
n), we have the following corollary.
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Corollary 3.6. For a polygonal chain G′
n+1, let α(G

′
n) be the column vector (π(G′

n, x), π(G
′
n

− un, x), π(G
′
n − vn, x), π(G

′
n − un − vn, x),

∑
C∈C(un,vn)(G

′
n)
(−1)|V (C)|π(G′

n − V (C), x))T.

Then

α(G′
n+1) = A′

n+1 · α(G′
n), (15)

where A′
n is the matrix obtained from An with ln−1 = 2 and π(Pln−1−2, x) = 1.

Furthermore,

α(G′
n) = A′

n · A′
n−1 · · ·A′

1 · α(G′
0) (16)

with α(G′
0) = (x2 + 1, x, x, 1, 0)T.
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Figure 5: (a) a hexagonal chain F5, (b) a linear chain L5, (c) a zigzag chain Z5 and (d) a

helix chain T5.

A hexagonal system is a finite connected plane graph without cut vertices in which each

interior region is surrounded by a regular hexagon of side length one. A catacondensed

hexagonal system corresponds to those hexagonal system with no internal vertices, and

a pericondensed hexagonal system has at least one internal vertex. A hexagonal chain

is a catacondensed hexagonal system satisfying each hexagon has at most two adjacent

hexagons and only each of two end hexagons has one adjacent hexagon (refer to Figure

5(a)). For more about hexagonal systems, see [12] and related references.

As an important special case, a hexagonal chain is a polygonal chain with all polygons

being hexagons. Before presenting the permanental polynomial of a hexagonal chain, we

introduce three types of hexagons. A hexagon hi in a hexagonal chain is of type-I if

the minimum length of the path joining ui−1 and ui in hi is two, and of type-II (resp.

type-III ) if the minimum length of the corresponding path is three (resp. one). As shown
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in Figure 5(a), the hexagons h1, h2 and h5 are of type-I, h3 is of type-III and h4 is of

type-II. According to the matrix A′
n in Corollary 3.6, we define three matrices Γ1, Γ2 and

Γ3 as follows

Γ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

x4 + 3x2 + 1 x3 + 2x x3 + 2x x2 + 3 2

x3 + x x2 + 1 x2 x 0

x3 + x x2 x2 + 1 x 0

x2 x x 1 0

0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Γ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

x4 + 3x2 + 1 x3 + 2x x3 + 2x x2 + 3 2

x3 + x x2 x2 + 1 x 0

x3 + 2x x2 + 1 0 0 0

x2 + 1 x 0 0 0

0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Γ3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

x4 + 3x2 + 1 x3 + 2x x3 + 2x x2 + 3 2

x3 + 2x 0 x2 + 1 0 0

x3 + x x2 + 1 x2 x 0

x2 + 1 0 x 0 0

0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Corollary 3.7. Let Fn be a hexagonal chain with hexagons h1, h2, · · · , hn. Then

α(Fn) = W (hn) ·W (hn−1) · · ·W (h1) · α(F0),

where

W (hi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Γ1, if hi is of type-I,

Γ2, if hi is of type-II,

Γ3, if hi is of type-III,

(17)

and α(F0) = (x2 + 1, x, x, 1, 0)T.

Following Corollary 3.7, for the hexagonal chain F5 in Figure 5(a), we have that

α(F5) = Γ1 · Γ2 · Γ3 · Γ2
1 · (x2 + 1, x, x, 1, 0)T. By a simple computation with MAPLE, it

gives that

π(F5, x) =x22 + 26x20 + 287x18 + 1770x16 + 6757x14 + 16708x12 + 27173x10 + 28855x8+

19391x6 + 7720x4 + 1592x2 + 121.

Now we focus on some special hexagonal chains. If all the hexagons in a hexagonal

chain are of type-I, then we call such a hexagonal chain a linear chain (see Figure 5(b)).

Corollary 3.8. Let Ln be a linear chain with n hexagons. Then

α(Ln) = Γn
1 · α(L0)

with α(L0) = (x2 + 1, x, x, 1, 0)T.
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Table 1: The permanental polynomials of linear chain Ln for n = 1, 2, 3, 4, 5.

π(L1, x) = x6 + 6x4 + 9x2 + 4

π(L2, x) = x10 + 11x8 + 41x6 + 65x4 + 43x2 + 9

π(L3, x) = x14 + 16x12 + 98x10 + 296x8 + 473x6 + 392x4 + 148x2 + 16

π(L4, x) = x18 + 21x16 + 180x14 + 822x12 + 2192x10 + 3510x8 + 3321x6 + 1731x4 +

415x2 + 25

π(L5, x) = x22+26x20+287x18+1768x16+6725x14+16498x12+26429x10+27292x8+

17399x6 + 6230x4 + 1009x2 + 36

We compute the permanental polynomials of Ln for n = 1, 2, 3, 4, 5 as exhibited in

Table 1. The permanental polynomials in Tables 1-4 are all determined with MAPLE

using the built-in MatrixVector-Multiply function.

If the hexagons in a hexagonal chain appear with type-II and type-III alternately, then

it is said to be a zigzag chain. An illustration is given in Figure 5(c).

Corollary 3.9. For the zigzag chain Zn with hexagons h1, h2, · · · , hn,

α(Zn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Γ2 · Γ3)
n−1
2 · Γ2 · α(Z0), if h1 and hn are both of type-II,

(Γ3 · Γ2)
n−1
2 · Γ3 · α(Z0), if h1 and hn are both of type-III,

(Γ3 · Γ2)
n
2 · α(Z0), if h1 is of type-II and hn is of type-III,

(Γ2 · Γ3)
n
2 · α(Z0), if h1 is of type-III and hn is of type-II,

where α(Z0) = (x2 + 1, x, x, 1, 0)T.

For the zigzag chains Zn with the starting hexagon h1 of type-III, we show their

permanental polynomials for n = 1, 2, 3, 4, 5 in Table 2.

Table 2: The permanental polynomials of zigzag chain Zn for n = 1, 2, 3, 4, 5.

π(Z1, x) = x6 + 6x4 + 9x2 + 4

π(Z2, x) = x10 + 11x8 + 41x6 + 65x4 + 43x2 + 9

π(Z3, x) = x14 + 16x12 + 98x10 + 297x8 + 479x6 + 407x4 + 166x2 + 25

π(Z4, x) = x18 + 21x16 + 180x14 + 824x12 + 2214x10 + 3605x8 + 3533x6 + 1990x4 +

577x2 + 64

π(Z5, x) = x22+26x20+287x18+1771x16+6773x14+16812x12+27538x10+29618x8+

20364x6 + 8453x4 + 1886x2 + 169

We call a hexagonal chain whose hexagons are all of type-II a helix chain [10]. An

example is provided in Figure 5(d). The same analysis as above, we obtain that

Corollary 3.10. For the helix chain Tn,

α(Tn) = Γn
2 · α(T0),

where α(T0) = (x2 + 1, x, x, 1, 0)T.
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We list the permanental polynomials of Tn for n = 1, 2, 3, 4, 5 in Table 3.

Table 3: The permanental polynomials of helix chain Tn for n = 1, 2, 3, 4, 5.

π(T1, x) = x6 + 6x4 + 9x2 + 4

π(T2, x) = x10 + 11x8 + 41x6 + 65x4 + 43x2 + 9

π(T3, x) = x14 + 16x12 + 98x10 + 297x8 + 479x6 + 407x4 + 166x2 + 25

π(T4, x) = x18 + 21x16 + 180x14 + 824x12 + 2213x10 + 3599x8 + 3518x6 + 1972x4 +

568x2 + 64

π(T5, x) = x22+26x20+287x18+1771x16+6771x14+16791x12+27450x10+29427x8+

20138x6 + 8318x4 + 1856x2 + 169

3.3 The permanental polynomial of a pericondensed system

Figure 6 illustrates a pericondensed system denoted by Hn. As the labeling of vertices,

Hn+1 is the bridge graph of Hn and H1 through e1n = (u2
n, u

1
n+1) and e2n = (v2n, v

1
n+1). Let

H∗
n be the graph obtained from Hn by adding an edge e∗n joining u2

n and v2n. Now, we

devote ourselves to computing the permanental polynomial of Hn in a recursive technique.
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Figure 6: The pericondensed systems H1, H2 and Hn+1.

Theorem 3.11. Let β(Hn) be the column vector (π(Hn, x), π(Hn−u2
n, x), π(Hn−v2n, x), π(Hn−

u2
n − v2n, x),

∑
C∈Ce∗n (H

∗
n)
(−1)|V (C)|π(H∗

n − V (C), x))T. Then

β(Hn+1) = B · β(Hn),

where B is the 5× 5 matrix with row vectors y1, y2, y3, y4 and y5. More precisely,

y1 = (ω1, ω2, ω2, ω3,−2(π(P7, x) + 2π(P3, x) + x)),

y2 = (ω2, π(C6, x)π(P2, x), π(P8, x), π(P5, x)π(P2, x),−2π(P2, x)− 2π(P4, x)π(P2, x)),

y3 = (ω2, π(P8, x), π(C6, x)π(P2, x), π(P5, x)π(P2, x),−2π(P2, x)− 2π(P4, x)π(P2, x)),

y4 = (ω3, π(P5, x)π(P2, x), π(P5, x)π(P2, x), π
3(P2, x),−2xπ2(P2, x)) and

y5 = (−(π(P7, x)+2π(P3, x)+x),−(π(P2, x)+π(P2, x)π(P4, x)),−(π(P2, x)+π(P2, x)π(P4, x)),

−xπ2(P2, x), 2π
2(P2, x)− π(P2, x)),

where ω1 = x10 + 11x8 + 41x6 + 65x4 + 43x2 + 9, ω2 = x9 + 9x7 + 26x5 + 29x3 + 11x and

ω3 = x8 + 7x6 + 14x4 + 8x2.
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Thus

β(Hn) = Bn−1 · β(H1) (18)

with β(H1) = (ω1, ω2, ω2, ω3,−π(P7, x)− 2π(P3, x)− x)T.

Proof. The result of Corollary 3.3 derives

π(Hn+1, x) =π(Hn, x)π(H1, x) + π(Hn − u2
n, x)π(H1 − u1

1, x)

+ π(Hn − v2n, x)π(H1 − v11, x) + π(Hn − u2
n − v2n, x)π(H1 − u1

1 − v11, x)

+ 2
∑

C∈C
e1n+1

(Hn+1)

(−1)|V (C)|π(Hn+1 − V (C), x), (19)

A cycle C using e1n+1 in Hn+1 must contain e2n+1, C
′ − e∗n (C ′ is a cycle belonging to

Ce∗n(H∗
n)) and the path induced by the bold edges as shown in Figure 7. So it implies
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Figure 7: The cases of a part of a cycle containing e1n+1 in Hn+1 .

∑
C∈C

e1n+1
(Hn+1)

(−1)|V (C)|π(Hn+1 − V (C), x)

= [π(P7, x) + 2π(P3, x) + x][−
∑

C∈Ce∗n (H
∗
n)

(−1)|V (C)|π(H∗
n − V (C), x)], (20)

A series of computation leads to

π(H1, x) = ω1, π(H1 − u1
1, x) = π(H1 − v11, x) = ω2 and π(H1 − u1

1 − v11, x) = ω3. (21)

Based on these results, we get that π(Hn+1, x) = y1 · β(Hn).

The same analysis as above, π(Hn+1 − u2
n+1, x) = y2 · β(Hn), π(Hn+1 − v2n+1, x) =

y3 · β(Hn), and π(Hn+1 − u2
n+1 − v2n+1, x) = y4 · β(Hn) are got.
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Now we consider the cycle containing e∗n+1 in H∗
n+1. The following formula is derived.∑

C∈Ce∗n+1
(H∗

n+1)

(−1)|V (C)|π(H∗
n+1 − V (C), x)

= −π(H ′
n+1, x)− π(H1

n, x)− π(H2
n, x)− xπ(Hn, x)

− π(P2, x)
∑

C∈Ce∗n (H
∗
n)

(−1)|V (C)|π(H∗
n − V (C), x), (22)

where the graph H ′
n is the one obtained from Hn by deleting the path of length three

joining u2
n and v2n, and H1

n (resp. H2
n) is the coalescence of Hn and P4 with u2

n (resp. v2n)

as the coalesced vertex. Refer to Figure 8.
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Figure 8: (a) H1
n, (b) H

2
n and (c) H ′

n+1.

By Theorem 3.1,

π(H1
n, x) = π(Hn, x)π(P3, x) + π(Hn − u2

n, x)π(P2, x),

π(H2
n, x) = π(Hn, x)π(P3, x) + π(Hn − v2n, x)π(P2, x). (23)

Using Corollary 3.3 to π(H ′
n+1, x), we have

π(H ′
n+1, x) =π(Hn, x)π(P7, x) + π(Hn − u2

n, x)π(P2, x)π(P4, x)

+ π(Hn − v2n, x)π(P2, x)π(P4, x) + π(Hn − u2
n − v2n, x)π

2(P2, x)x

− 2π2(P2, x)
∑

C∈Ce∗n (H
∗
n)

(−1)|V (C)|π(H∗
n − V (C), x). (24)

The substitution of (23) and (24) into (22) yields∑
C∈Ce∗n+1

(H∗
n+1)

(−1)|V (C)|π(H∗
n+1 − V (C), x) =

− [x+ 2π(P3, x) + π(P7, x)]π(Hn, x)− [π(P2, x) + π(P2, x)π(P4, x)]π(Hn − u2
n, x)

− [π(P2, x) + π(P2, x)π
2(P4, x)]π(Hn − v2n, x)− xπ2(P2, x)π(Hn − u2

n − v2n, x)

+ [2π2(P2, x)− π(P2, x)]
∑

C∈Ce∗n (H
∗
n)

(−1)|V (C)|π(H∗
n − V (C), x).

According to this,
∑

C∈Ce∗n+1
(H∗

n+1)
(−1)|V (C)|π(H∗

n+1−V (C), x) = y5 ·β(Hn) is obtained.

By the discussions above, β(Hn+1) = B · β(Hn) follows. On the other hand, by (21)

and a direct calculation, it gives that β(H1) = (ω1, ω2, ω2, ω3,−π(P7, x)− 2π(P3, x)−x)T.

Thus equation (18) is established.

In Table 4 we list some π(Hn, x) explicitly by the method provided in Theorem 3.11.
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Table 4: The permanental polynomials of Hn for n = 1, 2, 3, 4.

π(H1, x) = x10 + 11x8 + 41x6 + 65x4 + 43x2 + 9

π(H2, x) = x20+24x18+240x16+1314x14+4350x12+9066x10+11993x8+9882x6+

4791x4 + 1178x2 + 81

π(H3, x) = x30 + 37x28 + 608x26 + 5878x24 + 37338x22 + 164826x20 + 521531x18 +

1202331x16 + 2032192x14 + 2512170x12 + 2244727x10 + 1414603x8 +

600378x6 + 156878x4 + 20677x2 + 729

π(H4, x) = x40+50x38+1145x36+15954x34+151566x32+1042672x30+5384511x28+

21354630x26 + 65992566x24 + 160313204x22 + 307464174x20 +

465761312x18 + 555380333x16 + 517220574x14 + 371141426x12 +

200779952x10+79079947x8+21400680x6+3585810x4+298948x2+6561
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[3] F. Belardo, V. De Filippis, S. K. Simić, Computing the permanental polynomial of a

matrix from a combinatorial viewpoint, MATCH Commun. Math. Comput. Chem. 66

(2011) 381–396.

[4] M. Borowiecki, On spectrum and per-spectrum of graphs, Publ. Inst. Math. Beograd

38 (1985) 31–33.
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