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The Hosoya index of a graph is defined as the total number of matchings of the

graph. Ordering of the graphs with perfect matchings having 2n vertices and q edges

according to their minimal Hosoya indices is investigated. We characterize the first

two graphs for q = 2n− 1, 2n and obtain the first three graphs for q = 2n + 1. For

2n+ 2 ≤ q ≤ 3n− 3, we deduce the first two graphs.

1. INTRODUCTION

The Hosoya index for a graph was introduced by Hosoya in 1971 [1] and was sub-

sequently named as the Hosoya index [2]. The Hosoya index of G, denoted by Z(G), is

defined as follows:

Z(G) =

[n/2]∑
k=0

m(G, k), (1)

where n is the number of vertices of G and m(G, k) is the number of k-matchings in G,

k is a positive integer and 0 ≤ k ≤ [n/2]. Obviously, m(G, 1) = n. In addition, it is

consistent to define m(G, 0) = 1.

As is well known, the Hosoya index is closely related with various thermodynamic

indicators for the corresponding hydrocarbon, for example, the boiling point, the absolute

entropy, calculated bond orders, coding of chemical structures, and the total π-electron

energy [2]. It was recently shown that the Hosoya index can be employed to determine

the molecular structure in the so-called inverse structure-property problem [3]. Therefore,
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the ordering of molecular graphs in terms of their Hosoya indices is of interest in chemical

thermodynamics. Several authors dealt with the characterization of the extremal Hosoya

indices for various classes of graphs, for example, acyclic [4–11], unicyclic [3, 12–14],

bicyclic [15–17] graphs, double hexagonal chains [18], and hexagonal spiders [19]. In

2010, Pan et al. [20] characterized the graphs with the minimal Hosoya index among all

graphs of n vertices and q edges, where n + 2 ≤ q ≤ 2n − 3. The characterization of

graphs having perfect matchings with the minimal Hosoya indices, however, has not been

fully elucidated.

In this paper, we will investigate the ordering of the graphs with perfect matchings

according to theirminimal Hosoya indices. For simplicity, we refer to the connected graphs

having n vertices and q edges as the (n, q)-graphs. Let Z2n,q be set of the (2n, q)-graphs

with perfect matchings. In particular, as q = 2n− 1, 2n, 2n + 1, Z2n,q is the set of trees,

unicyclic graphs, and bicyclic graphs, with perfect matchings, respectively.

As a starting point, we introduce a quasi-ordering relation which has important

applications in comparing the Hosoya indices for molecular graphs [21]. Let G1 and G2 be

two graphs. If m(G1, k) � m(G2, k) holds for all k � 0, we denote G1 � G2. Furthermore,

if G1 � G2 and m(G1, k) < m(G2, k) for an arbitrary k, we have G1 ≺ G2. If neither

G1 ≺ G2 nor G1 � G2 holds, then G1 and G2 are m-incomparable. By the definition of

the Hosoya index, we have

G1 � G2 =⇒ Z(G1) � Z(G2), G1 ≺ G2 =⇒ Z(G1) < Z(G2). (2)

It should be noted that the ordering in terms of energy for acyclic graphs investigated

by means of the quasi-ordering relation is the same as that in terms of the Hosoya index

[4, 5, 9]. For the cyclic graphs, the two orderings are not the same [12]. For a survey of

the mathematical properties of the energy one can refer to Ref. [2]. Other recent results

can be found in Refs. [4, 5, 8, 9, 11, 12, 22, 23]

2. PRELIMINARIES

Let G ∈ Z2n,q and Q(G) = L(G) − M(G), where L(G) is the edge set of G and

M(G) the perfect matching of G. Let |M(G)| and |Q(G)| denote the numbers of edges

in M(G) and Q(G) respectively. It is evident that |M(G)| = n and |Q(G)| = q − n. Let

Ĝ = G−M(G)−S0, where M(G) is a perfect matching of G and S0 is the set of isolated
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vertices in G − M(G). We call Ĝ the capped graph of G and G the original graph of

Ĝ. Each k-matching Ω of G can be partitioned into two parts: Ω = Φ
⋃

Ψ, where Φ is

a matching in Ĝ and Ψ ⊆ M(G). On the other hand, any i-matching Φ of Ĝ and k − i

edges Ψ of M(G) that are not adjacent to Φ form a k-matching Ω of G with a partition

Ω = Φ
⋃
Ψ [5].

We denote by j the number of the edges inM(G) which are adjacent to an i-matching

Φ of Ĝ. Obviously, j = 0 for i = 0 while j = 2 for i = 1. Next we assume 2 � i � k

and denote m2i−c(Ĝ, i) the number of the i-matchings of Ĝ for j = 2i− c with 0 � c � i.

Then we have

m(Ĝ, i) = m2i(Ĝ, i) +
i∑

c=1

m2i−c(Ĝ, i). (3)

It follows from (3) that

m(G, k)− p =
k∑

i=2

⎡
⎣m2i(Ĝ, i) ·

⎛
⎝ n− 2i

k − i

⎞
⎠+

i∑
c=1

m2i−c(Ĝ, i) ·

⎛
⎝ n− 2i+ c

k − i

⎞
⎠
⎤
⎦ (4)

=
k∑

i=2

⎧⎨
⎩m(Ĝ, i) ·

⎛
⎝ n− 2i

k − i

⎞
⎠+

i∑
c=1

m2i−c(Ĝ, i) ·

⎡
⎣
⎛
⎝ n− 2i+ c

k − i

⎞
⎠−

⎛
⎝ n− 2i

k − i

⎞
⎠
⎤
⎦
⎫⎬
⎭ ,

(5)

where

p =

⎛
⎝ n

k

⎞
⎠+ (q − n) ·

⎛
⎝ n− 2

k − 1

⎞
⎠ .

To obtain the final results of this paper, we introduce some notations and simply

quote Lemmas 1 and 2.

For n ≥ 3, Pn is a path with n vertices, and the vertices of Pn are labelled consecu-

tively by v1, v2, · · · , vn.
For n ≥ 3, Xn is the star K1,n−1.

For n ≥ 5, Yn is the graph obtained from P4 by attaching n− 4 pendant edges to v2.

For n ≥ 5, Zn is the graph obtained from P4 by attaching n − 5 and one pendant

edges to v2 and v3, respectively.

For n ≥ 5, Wn is the graph obtained from P5 by attaching n − 5 pendant edges to

v2.

Lemma 1 [4] Let T be a tree with n vertices, where n ≥ 5. Then Xn ≺ Yn ≺ Zn ≺ Wn ≺
T , where T �= Xn, Yn, Zn,Wn.
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Lemma 2 [2] Let e = uv be an edge of G and k a positive integer. Then we have

m(G, k) = m(G− e, k) +m(G− u− v, k − 1). (6)

3. MAIN RESULTS

The main results are organized as follows. As q = 2n − 1, we use a new method to

get the first two trees with the minimal Hosoya indices in Subsection 3.1. The results are

the same as those obtained by Zhang and Li [5]. But the method here is very simple.

Next we derive some new results for the cases with q �= 2n−1. As q = 2n and q = 2n+1,

we will characterize the first two and three graphs with the minimal Hosoya indices in

Subsections 3.2 and 3.3, respectively. As 2n + 2 ≤ q ≤ 3n − 3, we will characterize the

first two graphs with the minimal Hosoya indices in Subsection 3.4.

3.1. (2n, 2n− 1)-graphs with a perfect matching

As q = 2n− 1, we denote Z2n,q by T2n. Namely T2n is the set of trees with a perfect

matching having 2n vertices. It is evident that |M(T )| = n and |Q(T )| = n − 1 for

T ∈ T2n.

Let F2n, B2n, and L2n be respectively the trees obtained from Xn, Yn, and Zn by

attaching a pendant edge to every vertex. Let M2n be the tree obtained from P7 by

attaching n−4 paths of length 2 and P2 to v3. Obviously, F̂2n = Xn, B̂2n = Yn, L̂2n = Zn,

and M̂2n = Xn−1 ∪ P2. For example, F12, B12, L12, and M12 are shown in Figs. 1.

Zhang and Li [5] had obtained F2n ≺ B2n ≺ L2n ≺ T for |c(T̂ )| = 1 and F2n ≺ B2n ≺
M2n ≺ T for |c(T̂ )| ≥ 2, where T ∈ T2n and T is a tree that does not occur in the list

that precedes T . In this subsection, we obtain the same results. But the method is much

simpler than that of Zhang and Li [5]. To give our proof, we first introduce a tree T̃ and

Lemma 3, which play a key role.

Let T̃ be the tree obtained from T̂ by coalescing the two vertices in T which are

incident with a common edge in M(T ). Obviously, T̃ is a tree with n vertex and the

edges of T̃ are those of T̂ . For an i-matching Φ of T̂ , if j = 2i, then there do not exist

two edges in the i-matching of T̂ which are adjacent to a common edge in M(T ). Thus,

we obtain m2i(T̂ , i) = m(T̃ , i). Furthermore, by (4) and (5), Wang and Kang [9] obtained

the following Lemma 3.
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(a) F12 (b) B12

(c) L12 (d) M12

Fig. 1:

Lemma 3 [9] Let T1, T2 ∈ T2n and 1 ≤ c ≤ i.

(i) If T̃1  T̃2 and m2i−c(T̂1, i) ≤ m2i−c(T̂2, i), then T1  T2.

(ii) If m(T̂1, i) ≤ m(T̂2, i) and m2i−c(T̂1, i) ≤ m2i−c(T̂2, i), then T1  T2.

m(T1, k) = m(T2, k) holds for all 0 ≤ k ≤ n if and only if (iff) the equalities in the two

conditions hold simultaneously.

Lemma 3 provides us a straightforward method to deduce the first two trees with the

minimal Hosoya indices in T2n, as shown in Theorem 1.

Theorem 1 Let T ∈ T2n and n ≥ 5. We have Z(F2n) < Z(B2n) < Z(T ) for T �=
F2n, B2n.

Proof. Let T ∈ T2n and n ≥ 5. Let c(T̂ ) be the component number of T̂ . We consider

two cases as follows.

Case (i). |c(T̂ )| = 1.

Since c(T̂ ) = 1, any i-matching of T̂ is adjacent to 2i edges of M(T ). Hence we have

m2i−c(T̂ , i) = 0 for 2 ≤ i ≤ n and 1 ≤ c ≤ i. It follows from Lemma 3(ii) that m(T, k)

is a strictly monotonously increasing function of m(T̂ , i). Since F̂2n = Xn, B̂2n = Yn, and

L̂2n = Zn, F2n ≺ B2n ≺ L2n ≺ T follows from Lemmas 1 and 3(ii) for T �= F2n, B2n, L2n.

By (2), we have Z(F2n) < Z(B2n) < Z(L2n) < Z(T ) for |c(T̂ )| = 1 and T �= F2n, B2n, L2n.

Case (ii). |c(T̂ )| ≥ 2.
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Since B̂2n = Yn and M̂2n = Xn−1∪P2, we havem(B̂2n, 2) = n−3 < n−2 = m(M̂2n, 2)

and m(B̂2n, i) = m(M̂2n, i) = 0 for 3 ≤ i ≤ n. In B̂2n, any 2-matching is adjacent to 4

edges of M(B2n). In M̂2n, there are (n− 3) 2-matchings which are adjacent to 4 edges of

M(M2n) and one 2-matching which is adjacent to 3 edges of M(M2n). Namely, we have

m4(B̂2n, 2) = m4(M̂2n, 2) = n−3 and m3(B̂2n, 2) = 0 < 1 = m3(M̂2n, 2). By Lemma 3(ii),

we have B2n ≺ M2n. By (2), we get Z(B2n) < Z(M2n).

Next we prove Z(M2n) < Z(T ) according to the type of T̃ , where |c(T̂ )| ≥ 2 and

T �= M2n. Two subcases are considered.

Subcase (ii.i) T̃ = Xn.

If T̃ = Xn and T �= F2n, in view of the definition of T̃ , we have T̂ = Xy+1 ∪ Xz+1,

where y and z are positive integers, y + z = n − 1 and 1 ≤ y ≤ [(n − 1)/2]. Hence T

is the tree obtained from Xy+1 and Xz+1 by adding an edge between the central vertices

of Xy+1 and Xz+1 and then attaching a pendant edge to each other vertex of Xy+1 and

Xz+1, respectively. We denote this kind of tree T by Hy,z.

Obviously, we get m(Ĥy,z, 2) = m(Xy+1 ∪ Xz+1, 2) = y · z = y · (n − 1 − y) and

m(Ĥy,z, i) = 0 for 3 ≤ i ≤ n. Hence, m(Ĥy,z, 2) is a strictly monotonously increasing

function of y for 1 ≤ y ≤ [(n − 1)/2]. Since H̃y,z = Xn and each 2-matching of Ĥy,z is

adjacent to 3 edges of M(Hy,z), by Lemma 3(i), we obtain H1,n−2 ≺ Hy,z for 2 ≤ y ≤
[(n− 1)/2].

We have m(M̂2n, 2) = m(Ĥ1,n−2, 2) = n − 2 and m3(M̂2n, 2) = 1 < n − 2 =

m3(Ĥ1,n−2, 2). By Lemma 3(ii), we have M2n ≺ H1,n−2.

In conclusion, we have M2n ≺ Hy,z for 1 ≤ y ≤ [(n− 1)/2]. By (2), we get Z(M2n) <

Z(T ) for T̃ = Xn.

Subcase (ii.ii) T̃ �= Xn.

Since T̃ �= Xn, by Lemma 1, we get M̂2n = M̃2n = Yn  T̃ . Since |c(T̂ )| ≥ 2, there

is at least one 2-matching of T̂ which is adjacent to 3 edges in M(T ), namely we have

m3(M̂2n, 2) = 1 ≤ m3(T̂ , 2). Furthermore, we have m2i−c(M̂2n, i) = 0 ≤ m2i−c(T̂ , i) for

3 ≤ i ≤ n and 1 ≤ c ≤ i. The equal signs in all the inequalities in Subcase (ii.ii) hold iff

T = M2n. Thus, by Lemma 3(i), we have M2n ≺ T for T̃ �= Xn and T �= M2n. Hence, by

(2), we have Z(M2n) < Z(T ) for T̃ �= Xn and T �= M2n.

For Case (ii), we obtain Z(B2n) < Z(M2n) < Z(T ) for |c(T̂ )| ≥ 2 and T �= B2n,M2n.

�
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(a) S3
8 (b) R3

10

Fig. 2:

Remark: By direct calculation on (5), we have m(L2n, 2)−m(M2n, 2) = n− 6 > 0

for n ≥ 7 and m(L2n, n − 1) − m(M2n, n − 1) = −1 < 0. Thus, L2n and M2n are

m-incomparable. We can see from Theorem 1 that the candidate tree with the third

minimal Hosoya index in T2n is either L2n or M2n. It is noted that Guo [22] and Wang

and Kang [9] proved that the tree with the third minimal energy in T2n is M2n. However,

a further determination for the tree with the third minimal Hosoya index in T2n remains

a task for the future.

3.2. (2n, 2n)-graphs with perfect matchings

As q = 2n, we denote Z2n,q by K2n. Namely K2n is the set of unicyclic graphs with

perfect matchings having 2n vertices. It is evident that |M(G)| = n and |Q(G)| = n for

G ∈ K2n.

We introduce some notations and the first two graphs with the minimal Hosoya

indices in K2n.

For l ≥ 3, Cl is a cycle with l vertices, and the vertices of Cl are labelled consecutively

by u1, u2, · · · , ul.

Let S3
2n be a graph obtained by attaching one pendant edge and n−2 paths of length

2 to one vertex of C3.

Let R3
2n be a graph obtained by attaching one pendant edge to every vertex of C3

and then by attaching n− 3 paths of length 2 to a vertex of C3.

For example, S3
8 and R3

10 are shown in Figs. 2(a) and 2(b), respectively.

We introduce Lemma 4, from which Theorem 2 can be obtained.

Lemma 4 [23] Let G ∈ K2n with n ≥ 4. If G �= S3
2n, R

3
2n, then m(Ĝ, 2) > n− 3.

Theorem 2 Let G ∈ K2n with n ≥ 4. We have Z(S3
2n) < Z(R3

2n) < Z(G) for G �=
S3
2n, R

3
2n.
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Proof. Since Ŝ3
2n = Xn+1, we have m(Ŝ3

2n, i) = 0 for 2 ≤ i ≤ n. Thus,

m(S3
2n, k) =

⎛
⎝ n

k

⎞
⎠+ n ·

⎛
⎝ n− 2

k − 1

⎞
⎠ � pa. (7)

Obviously, we have m(R̂3
2n, 2) = n − 3 and m(R̂3

2n, i) = 0 for 3 ≤ i ≤ n. Since each

2-matching of R̂3
2n is adjacent to 4 edges of M(R3

2n), we get

m(R3
2n, k) = pa + (n− 3) ·

⎛
⎝ n− 4

k − 2

⎞
⎠ . (8)

Thus, Z(S3
2n) < Z(R3

2n) follows from (7), (8), and (2).

By (5) and Lemma 4, we have

m(G, k) > pa + (n− 3) ·

⎛
⎝ n− 4

k − 2

⎞
⎠ . (9)

It follows from (8), (9), and (2) that Z(R3
2n) < Z(G), where G ∈ K2n and G �= S3

2n, R
3
2n.

�
From Theorem 2 and the results obtained by Wang et al. [23], one can confirm that

for the unicyclic graphs with perfect matchings, the ordering in terms of their minimal

Hosoya index is not the same as that in terms of their minimal energy.

3.3. (2n, 2n+ 1)-graphs with perfect matchings

As q = 2n+1, we denote Z2n,q by B2n. Namely B2n is the set of bicyclic graphs with

perfect matchings having 2n vertices. It is evident that |M(G)| = n and |Q(G)| = n + 1

for G ∈ B2n.

In 2008, Deng [15, 16] characterized the graphs with themaximal andminimal Hosoya

indices among the (n, n+1)-graphs. In Subsection 3.3, we will derive the first three graphs

with the minimal Hosoya indices in B2n. The graph A3
n+1 and the first three graphs are

introduced as follows.

Let A3
n+1 be the unicyclic graph obtained from C3 by attaching n− 2 pendant edges

to u3. The n− 2 pendant vertices of A3
n+1 are labeled by w4, · · ·, wn+1, as shown in Fig.

3(a).

Let S3,3
2n be the graph obtained from Xn+2 (see Fig. 3(b)) by adding an edge between

wi and wi+1 for i = 2, 4 and then attaching a pendant edge to each of the other (n − 2)

vertices in {w6, w7, · · · , wn+2, v1}. Obviously, S3,3
2n ∈ B2n and Ŝ3,3

2n = Xn+2.
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u1 u2

u3

w4 wi wn+1

(a) A3
n+1

w2 wi wn+2

v1
(b) Xn+2

v1 v2 v3

w4 wi wn+2

(c) Yn+2

Fig. 3:

(a) S3,3
10 (b) R3,3

12 (c) Y 3,3
10

Fig. 4:

Let R3,3
2n be the graph obtained from A3

n+1 (see Fig. 3(a)) by adding an edge between

w4 and w5, and then attaching a pendant edge to each of the other n − 1 vertices in

{w6, w7, · · · , wn+1, u1, u2, u3}. Obviously, R3,3
2n ∈ B2n and R̂3,3

2n = A3
n+1.

Let Y 3,3
2n be the graph obtained from Yn+2 (see Fig. 3(c)) by adding an edge between

wi and wi+1 for i = 4, 6 and then attaching a pendant edge to each of the other (n − 2)

vertices in {w8, w9, · · · , wn+2, v1, v2, v3}. Obviously, Y 3,3
2n ∈ B2n and Ŷ 3,3

2n = Yn+2.

For example, S3,3
10 , R

3,3
12 , and Y 3,3

10 are shown in Figs. 4(a), 4(b), and 4(c), respectively.

To obtain the first three graphs with the minimal Hosoya indices in B2n, we introduce

Lemmas 5–8 at first.

Lemma 5 For n � 5, we have Z(S3,3
2n ) < Z(R3,3

2n ) < Z(Y 3,3
2n ).

Proof. Since Ŝ3,3
2n = Xn+2, we have m(Ŝ3,3

2n , i) = 0 for 2 ≤ i ≤ n. Thus, we get

m(S3,3
2n , k) =

⎛
⎝ n

k

⎞
⎠+ (n+ 1) ·

⎛
⎝ n− 2

k − 1

⎞
⎠ � pb. (10)

Since R̂3,3
2n = A3

n+1, we have m(R̂3,3
2n , 2) = n − 2 and m(R̂3,3

2n , i) = 0 for 3 ≤ i ≤ n.

Since each 2-matching of R̂3,3
2n is adjacent to 4 edges of M(R3,3

2n ), we have

m(R3,3
2n , k) = pb + (n− 2) ·

⎛
⎝ n− 4

k − 2

⎞
⎠ . (11)
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Since Ŷ 3,3
2n = Yn+2, we have m(Ŷ 3,3

2n , 2) = n − 1 and m(Ŷ 3,3
2n , i) = 0 for 3 ≤ i ≤ n.

Since each 2-matching of Ŷ 3,3
2n is adjacent to 4 edges of M(Y 3,3

2n ), we get

m(Y 3,3
2n , k) = pb + (n− 1) ·

⎛
⎝ n− 4

k − 2

⎞
⎠ . (12)

It follows from (10), (11), (12), and (2) that Z(S3,3
2n ) < Z(R3,3

2n ) < Z(Y 3,3
2n ) for n �

5. �

Lemma 6 Let G ∈ B2n and n ≥ 5. If Ĝ = Yn+2 and G �= Y 3,3
2n , we have Z(Y 3,3

2n ) < Z(G).

Proof. Let G ∈ B2n and n ≥ 5. If Ĝ = Yn+2, then we can see from Fig. 3(c) that

m(Ĝ, 2) = n−1 and the (n−1) 2-matchings of Ĝ are v1v2 and v3wi, where 4 ≤ i ≤ n+2.

If v1v2 and v3wi (4 ≤ i ≤ n+2) are not adjacent to a common edge in M(G), then j = 4.

Otherwise, j = 3 or j = 2. We consider two cases as follows.

Case (i). All the 2-matchings v1v2 and v3wi (4 ≤ i ≤ n + 2) are not adjacent to a

common edge in M(G).

In G, either v1 or v2 cannot be linked with any of v3 and wi, where 4 ≤ i ≤ n + 2.

Since G ∈ B2n and Ĝ = Yn+2, we can readily verify that G = Y 3,3
2n .

Case (ii). At least one 2-matching of v1v2 and v3wi (4 ≤ i ≤ n + 2) is adjacent to a

common edge in M(G).

In this case, we have m3(Ĝ, 2) ≥ 1 or m2(Ĝ, 2) ≥ 1. Furthermore, since m(Ĝ, 2) =

n− 1 and m(Ĝ, i) = 0 for 3 ≤ i ≤ n, by (5), we get

m(G, k) = pb

+ (n− 1) ·

⎛
⎝ n− 4

k − 2

⎞
⎠+

2∑
c=1

m4−c(Ĝ, 2) ·

⎡
⎣
⎛
⎝ n− 4 + c

k − 2

⎞
⎠−

⎛
⎝ n− 4

k − 2

⎞
⎠
⎤
⎦ . (13)

It follows from (12), (13) and (2) that Z(Y 3,3
2n ) < Z(G) for Ĝ = Yn+2 and G �= Y 3,3

2n . �

Lemma 7 Let G ∈ B2n and n ≥ 5. If Ĝ = A3
n+1 and G �= R3,3

2n , then Z(Y 3,3
2n ) < Z(G).

Proof. As G ∈ B2n and Ĝ = A3
n+1, we can verify that there are only two graphs for this

kind of G. One graph is R3,3
2n , the other graph is Q3,3

2n , where Q3,3
2n is the graph obtained

from A3
n+1 (see Fig. 3(a)) by adding an edge between u1 and w4 and then attaching a

pendant edge to each of the other n − 1 vertices in {w5, w6, · · · , wn+1, u2, u3}. Next we

shall prove Z(Y 3,3
2n ) < Z(Q3,3

2n ).
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We have m(Q̂3,3
2n , 2) = m(A3

n+1, 2) = n − 2 and m(Q̂3,3
2n , i) = m(A3

n+1, i) = 0 for

3 ≤ i ≤ n. In Q̂3,3
2n , there are (n−3) 2-matchings which are adjacent to 4 edges of M(Q3,3

2n )

and one 2-matching which is adjacent to 3 edges of M(Q3,3
2n ). Namely, m4(Q̂

3,3
2n , 2) = n−3

and m3(Q̂
3,3
2n , 2) = 1. Thus, we get

m(Q3,3
2n , k) = pb + (n− 3) ·

⎛
⎝ n− 4

k − 2

⎞
⎠+

⎛
⎝ n− 3

k − 2

⎞
⎠ . (14)

It is well known that ⎛
⎝ n− 3

k − 2

⎞
⎠ =

⎛
⎝ n− 4

k − 2

⎞
⎠+

⎛
⎝ n− 4

k − 3

⎞
⎠ . (15)

Substitution (15) into (14) yields

m(Q3,3
2n , k) = pb + (n− 2) ·

⎛
⎝ n− 4

k − 2

⎞
⎠+

⎛
⎝ n− 4

k − 3

⎞
⎠ . (16)

Since ⎛
⎝ n− 4

k − 3

⎞
⎠ >

⎛
⎝ n− 4

k − 2

⎞
⎠ , (17)

by comparing (12) and (16), we get Y 3,3
2n ≺ Q3,3

2n . By (2), we have Lemma 7. �

Lemma 8 Let G ∈ B2n and n ≥ 7. If Ĝ �= Xn+2, Yn+2, A
3
n+1, then m(Ĝ, 2) > n− 1.

Proof. Let G ∈ B2n and n ≥ 7. Ĝ is classified into two cases as follows.

Case (i). Ĝ is a connected graph with n+ 1 edges.

Subcase (i.i). Ĝ is a tree with n+ 2 vertices.

As Ĝ �= Xn+2, Yn+2, by Lemma 1, we have m(Ĝ, 2) ≥ m(Zn+2, 2) = 2n− 4 > n− 1.

Subcase (i.ii). Ĝ is a unicyclic graph with n+ 1 vertices.

Let Cl be the cycle contained in Ĝ. As l ≥ 4 or l = 3 and Ĝ �= A3
n+1, we can choose

an edge e on Cl such that Ĝ − e is a tree on n + 1 vertices with diameter at least 4.

Therefore, Ĝ− e �= Xn+1, Yn+1, Zn+1 since the diameter of Xn+1, Yn+1, and Zn+1 is 3. By

Lemma 1, we have m(Ĝ, 2) ≥ m(Ĝ− e, 2) ≥ m(Wn+1, 2) = 2n− 5 > n− 1.

Subcase (i.iii). Ĝ is a bicyclic graph with n vertices.

Obviously, Ĝ has either two or three distinct cycles.
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If Ĝ has two distinct cycles, then let the two cycles be Ca and Cb. Obviously, Ca and

Cb are connected by a unique path P or Ca and Cb have exactly one common vertex. We

can choose an edge e1 on Ca and an edge e2 on Cb such that Ĝ − e1 − e2 is a tree on n

vertices with diameter at least 4. By Lemma 1, we have m(Ĝ, 2) ≥ m(Ĝ − e1 − e2, 2) ≥
m(Wn, 2) = 2n− 7 > n− 1.

If Ĝ has three cycles, then any two cycles must have at least one common edge. We

can choose an edge e which is a common edge of Ca and Cb in such a way that Ĝ − e is

a connected unicyclic graph with n vertices and Ĝ− e �= A3
n. By the approach similar to

that for Subcase (i.ii), we have m(Ĝ, 2) ≥ m(Ĝ− e, 2) ≥ m(Wn, 2) = 2n− 7 > n− 1.

Case (ii). Ĝ is an unconnected graph with n+ 1 edges.

Let the components of Ĝ be H1, H2, · · ·, Hk, where k ≥ 2. Without loss of generality,

we can concatenate H2, · · ·, Hk into a connected graph Hc. Suppose that the number of

edges in H1 is a, where 1 ≤ a ≤ n. Then the number of edges in Hc is n+1− a. We have

m(Ĝ, 2) ≥ a · (n+ 1− a) ≥ n > n− 1. �

By Lemmas 5–8, we have the first three graphs with the minimal Hosoya indices in

B2n.

Theorem 3 Let G ∈ B2n and n � 7. We get Z(S3,3
2n ) < Z(R3,3

2n ) < Z(Y 3,3
2n ) < Z(G),

where G �= S3,3
2n , R

3,3
2n , Y

3,3
2n .

Proof. By Lemma 5, we have Z(S3,3
2n ) < Z(R3,3

2n ) < Z(Y 3,3
2n ). Next, we prove Z(Y 3,3

2n ) <

Z(G) for G �= S3,3
2n , R

3,3
2n , Y

3,3
2n .

If Ĝ = Xn+2, then G = S3,3
2n . If Ĝ = Yn+2 and G �= Y 3,3

2n , then by Lemma 6, we have

Z(Y 3,3
2n ) < Z(G). If Ĝ = A3

n+1 and G �= R3,3
2n , then by Lemma 7, we have Z(Y 3,3

2n ) < Z(G).

If Ĝ �= Xn+2, Yn+2, A
3
n+1, then by Lemma 8 and (5), we have

m(G, k) > pb + (n− 1) ·

⎛
⎝ n− 4

k − 2

⎞
⎠ . (18)

It follows from (12), (18), and (2) that Z(Y 3,3
2n ) < Z(G) for Ĝ �= Xn+2, Yn+2, A

3
n+1. �

In Theorems 1–3, we have obtained the first two, two, and three graphs with the

minimal Hosoya indices in Z2n,q for q = 2n − 1, q = 2n, and q = 2n + 1, respectively.

Next, for 2n + 2 ≤ q ≤ 3n − 3, we will further consider the same ordering for graphs in

Z2n,q.
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v1

w2w3

w2q−4n+2 w2q−4n+3

w2q−4n+4

wq−n+1

(a) Sq
2n

u3

u2u1

w2q−4n+2 w2q−4n+3

w2q−4n+4

wq−nw4

w5

(b) Rq
2n

Fig. 5:

3.4. (2n, q)-graphs with perfect matchings for 2n+ 2 ≤ q ≤ 3n− 3

In 2010, Pan et al. [20] characterized the graphs with the minimal Hosoya index

among the (n, q)-graphs for n + 2 ≤ q ≤ 2n − 3. In this subsection, we will characterize

the first two graphs with the minimal Hosoya indices among Z2n,q for 2n+2 ≤ q ≤ 3n−3.

The first two graphs are introduced as follows.

Let Sq
2n be the graph obtained from Xq−n+1 (see Fig. 3(b)) by adding an edge between

wi and wi+1 for i = 2, 4, · · · , 2q − 4n + 2 and then attaching a pendant edge to each of

the other (3n − 1 − q) vertices in {w2q−4n+4, w2q−4n+5, · · · , wq−n+1, v1}, where 2n + 2 ≤
q ≤ 3n− 3. Obviously, Sq

2n ∈ Z2n,q and Ŝq
2n = Xq−n+1. S

q
2n is shown in Figs. 5(a).

Let Rq
2n be the graph obtained from A3

q−n (see Fig. 3(a)) by adding an edge between wi

and wi+1 for i = 4, 6, · · · , 2q−4n+2 and then attaching a pendant edge to each of the other

(3n− q) vertices in {w2q−4n+4, w2q−4n+5, · · · , wq−n, u1, u2, u3}, where 2n+2 ≤ q ≤ 3n− 3.

Obviously, Rq
2n ∈ Z2n,q and R̂q

2n = A3
q−n. R

q
2n is shown in Figs. 5(b).

Lemma 9 is introduced, from which Theorem 4 can be obtained.

Lemma 9 Let H be a graph (connected or unconnected) with b edges and H �= Xb+1,

then m(H, 2) ≥ b− 3, the equality holds iff H = A3
b , where b ≥ 9.

Proof. As H = A3
b , we have m(H, 2) = b− 3. Next, we assume that H �= A3

b and b ≥ 9.

If H is an unconnected graph with b edges, then by the approach similar to that for

Case (ii) in Lemma 8, we have m(H, 2) > b− 3. Next, we assume that H is a connected

graph with b edges and b ≥ 8.

As H is a tree or a unicyclic graph or a bicyclic graph with b edges, by the approach

similar to that for Case (i) in Lemma 8, we have m(H, 2) > b− 3.

As H is a tricyclic graph with b edges, we can choose an edge e = uv on a cycle in

H such that H − e is a connected bicyclic graph with b− 1 edges and H − u− v contains
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at least one edge as its subgraph. We have m(H − e, 2) > b− 4 and m(H − u− v, 1) ≥ 1.

Thus, by Lemma 2, we have m(H, 2) = m(H − e, 2) +m(H − u− v, 1) > b− 3.

As H is a graph not being included in the afore-mentioned cases, the minimal number

of distinct cycles contained in H is not less than 4. Then we can repeat the procedure

similar to that for H being a tricyclic graph and employ a recursive algorithm to get

m(H, 2) > b− 3. �

Theorem 4 Let G ∈ Z2n,q with 2n + 2 ≤ q ≤ 3n − 3 and n ≥ 7. We have Z(Sq
2n) <

Z(Rq
2n) < Z(G) for G �= Sq

2n, R
q
2n.

Proof. Since Ŝq
2n = Xq−n+1, we have m(Ŝq

2n, i) = 0 for 2 ≤ i ≤ n. We obtain

m(Sq
2n, k) =

⎛
⎝ n

k

⎞
⎠+ (q − n) ·

⎛
⎝ n− 2

k − 1

⎞
⎠ � pc. (19)

Since R̂q
2n = A3

q−n, we have m(R̂q
2n, 2) = q − n − 3 and m(R̂q

2n, i) = 0 for 3 ≤ i ≤ n.

Since each 2-matching of R̂q
2n is adjacent to 4 edges of M(Rq

2n), we obtain

m(Rq
2n, k) = pc + (q − n− 3) ·

⎛
⎝ n− 4

k − 2

⎞
⎠ . (20)

It follows from (19), (20), and (2) that Z(Sq
2n) < Z(Rq

2n).

Next we prove Z(Rq
2n) < Z(G), where G ∈ Z2n,q and G �= Sq

2n, R
q
2n.

If Ĝ = Xq−n+1, it can readily be verified that G = Sq
2n.

If Ĝ = A3
q−n, then we have m(Ĝ, 2) = q − n − 3 and m(Ĝ, i) = 0 for 3 ≤ i ≤ n. By

(5), we get

m(G, k) = pc

+ (q − n− 3) ·

⎛
⎝ n− 4

k − 2

⎞
⎠+

2∑
c=1

m4−c(Ĝ, 2) ·

⎡
⎣
⎛
⎝ n− 4 + c

k − 2

⎞
⎠−

⎛
⎝ n− 4

k − 2

⎞
⎠
⎤
⎦ . (21)

Furthermore, as Ĝ = A3
q−n and G �= Rq

2n, it can readily be verified that there is at least

one 2-matching of Ĝ which is adjacent to 3 edges of M(G). Namely, m3(Ĝ, 2) ≥ 1. It

follows from (20), (21), and (2) that Z(Rq
2n) < Z(G) for Ĝ = A3

q−n and G �= Rq
2n.

Next, we assume Ĝ �= Xq−n+1, A
3
q−n. As 2n + 2 ≤ q ≤ 3n − 3 and n ≥ 7, we have

q− n ≥ n+2 ≥ 9. By Lemma 9, we have m(Ĝ, 2) > q− n− 3 since G ∈ Z2n,q and Ĝ has
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q − n edges. Furthermore, by (5), we have

m(G, k) > pc + (q − n− 3) ·

⎛
⎝ n− 4

k − 2

⎞
⎠ . (22)

It follows from (20), (22), and (2) that Z(Rq
2n) < Z(G), where G ∈ Z2n,q and Ĝ �=

Xq−n+1, A
3
q−n. �

Remark: The first two graphs with the minimal Hosoya indices in Z2n,q were char-

acterized in Theorem 4, where 2n+ 2 ≤ q ≤ 3n− 3. The ordering in Z2n,q for q ≥ 3n− 2

remains a task for the future.
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