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Abstract

Let G be a simple graph with n vertices. If μ1, μ2, . . . , μn are the Lapla-

cian eigenvalues of G, then the Laplacian Estrada index is defined as

LEE(G) =
∑n

i=1 e
μi . In this paper, the unicyclic graph on n vertices

with the maximal Laplacian Estrada index is determined.

1 Introduction

Given a simple graph G with vertex set V (G) = {v1, v2, · · · , vn}, the adjacency matrix

A(G) = [aij] of G is an n × n symmetric matrix of 0’s and l’s with aij = 1 if and only

if vi and vj are joined by an edge. Denote the degree of vertex vi by dG(vi). Then the

Laplacian matrix of G is L(G) = D(G) − A(G), where D(G) is the diagonal matrix

diag(dG(v1), dG(v2), . . . , dG(vn)). Since A(G), L(G) are real symmetric matrices, their

eigenvalues λ1(G), λ2(G), · · · , λn(G) and μ1(G), μ2(G), · · · , μn(G), respectively, are real

numbers. The eigenvalues of A(G) and L(G) are called the adjacency eigenvalues and

the Laplacian eigenvalues of G, respectively. In what follows we assume that λ1(G) ≥

λ2(G) ≥ . . . ≥ λn(G) and μ1(G) ≥ μ2(G) ≥ . . . μn−1(G) ≥ μn(G) = 0.

The Laplacian Estrada index of a graph G is defined in [9] as

LEE(G) =

n∑
i=1

eμi(G).
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( Independently of [9], another variant of the Laplacian Estrada index was put forward in

[10], defined as LEE∗(G) =
n∑

i=1

eμi(G)−2m/n). Bounds and various properties of Laplacian

Estrada index were found in [9–14]. For a bipartite graph G with n vertices and m edges,

it is shown [8] that

LEE(G) = n−m+ e2 · EE(L(G)), (1)

where L(G) is the line graph of G, and EE(L(G)) =
n∑

i=1

eλi(L(G)) is the Estrada index

( [5–7]) of L(G). Using the formal (1) and the results of Estrada index, Allić and Zhou [8]

showed that the path Pn has minimal, while the star Sn has maximal Laplacian Estrada

index among trees on n vertices. Obviously, this method is not suited to calculate the

Laplacian Estrada index of the general graphs. So, it is interesting to consider the index

for the non-bipartite graphs.

Let G be a graph with n vertices and m edges. If n = m, then we call G an unicyclic

graph. Let S3
n be the unicyclic graph obtained by adding an edge to the star graph Sn. In

this paper, we will show that S3
n is the unique unicyclic graph on n vertices with maximal

Laplacian Estrada index.

2 Main Results

Let G be a graph with n vertices and let G∗ = G + e be the graph obtained from G by

inserting a new edge e into G.

Lemma 1 [1, 3] The Laplacian eigenvalues of G and G∗ interlace, that is,

μ1(G
∗) ≥ μ1(G) ≥ μ2(G

∗) ≥ μ2(G) ≥ · · · ≥ μn(G
∗) = μn(G) = 0.

Lemma 2 [15] Let G be a graph with vertex set V (G) and edge set E(G), and Nu be the

set of neighbors of u. Then

μ1(G) ≤ max{dG(u) + dG(v)− |Nu ∩Nv| : uv ∈ E(G)}.

Let s(G) = max{dG(u)+dG(v)−|Nu∩Nv| : uv ∈ E(G)} and n(G) = |V (G)|. Clearly,

if G is an unicyclic graph with n vertices, then s(G) ≤ n.

Lemma 3 Let G be an unicyclic graph with n ≥ 8 vertices and s(G) ≤ n(G)− 2. Then

LEE(G) ≤ LEE(S3
n) with equality if and only if G ∼= S3

n.
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Proof. By induction on n to prove it. From the Appendix table of [2], there are 57

unicyclic graphs on 8 vertices of s(G) not greater than 6. We give Table 1 for the LEE

of these graphs, in which we use the same graph labels as the Appendix table of [2]. It

implies that the result holds for n = 8.

· Table 1

Label LEE Label LEE Label LEE Label LEE

1 134.7549405 16 186.9609149 36 262.8445145 59 196.5311973
2 160.1365435 17 196.4996349 40 375.5477041 60 198.9603315
3 162.8695473 18 194.0249743 46 148.2025007 61 255.6831930
4 161.8648960 19 197.9591155 47 171.0874842 63 255.6831930
5 185.7913581 20 196.4996349 48 173.6518698 66 223.4725411
6 167.0367695 21 200.5709879 49 177.5303031 67 255.6831930
7 189.8493511 22 273.2900119 50 180.1005287 68 260.1511708
8 188.8062398 24 221.0273062 51 171.2213615 69 262.4925186
9 187.0786847 25 225.1518983 52 173.6518698 70 266.9692919
10 191.1401409 26 262.3182544 53 204.5253414 72 282.6953428
11 166.9377926 27 229.4185558 54 194.2417996 74 285.1677715
12 249.2718699 28 229.5574315 55 200.5944661 75 289.5528217
13 213.8760808 29 269.3384290 56 232.4648707
14 217.8548022 31 285.4480880 57 200.4566498
15 254.8865204 33 289.9865503 58 239.4760009 S3

8 3015.6384933

We now suppose that n ≥ 9 and the result is true for graphs with vertex number

less than n. Let G be a graph with n vertices. Suppose G ∼= Cn. Then μ1(Cn) ≤ 4

and LEE(G) ≤ ne4. Note that LEE(Sn
3) = en + e3 + e1 + · · · + e1 + e0 > en. Let

f(n) = en − n · e4. Note that f ′(n) = en − n > 0, and f(7) = e7 − 7e4 > e4 > 0. Hence,

LEE(S3
n) > en > ne4 ≥ LEE(G). Suppose G �∼= Cn. Then G must have a pendent

vertex. Let wt ∈ E(G) with dG(w) = 1 and G′ = G− w, then s(G′) ≤ s(G) ≤ n− 2 and

G = G′ ∪ {w} + wt. Let Spec(G′) = {μ1, μ2, · · · , μn−1} be the Laplacian spectra of G′,

then

LEE(G′ ∪ {w}) = eμ1 + eμ2 + · · ·+ eμn−1 + e0.

Note that μ1(H)+μ2(H)+ . . .+μn(H) = 2m for any graph H and m denotes the number

of edges in H . By Lemma 1, then we can assume that the Laplacian spectra of G, is

Spec(G) = {μ1 + x1, μ2 + x2, · · · , μn−1 + xn−1, 0},

where xi ≥ 0 and
n−1∑
i=1

xi = 2.

Case 1. s(G′) ≤ n(G′)− 2 = n− 3. Then

LEE(G) =
n−1∑
i=1

eμi+xi + e0 < eμ1+2 +
n−1∑
i=2

eμi + e0

= eμ1+2 − eμ1 + e0 +
n−1∑
i=1

eμi

= eμ1+2 − eμ1 + e0 + LEE(G′).
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By the induction hypothesis, LEE(G′) ≤ LEE(S3
n−1) with equality if and only if G′ ∼=

S3
n−1. Now by Lemma 2, μ1 ≤ s(G′) ≤ n− 3, and we have

LEE(G) ≤ eμ1+2 − eμ1 + e0 + LEE(S3
n−1)

= eμ1+2 − eμ1 + e0 + (en−1 + e3 + (n− 4)e1 + e0)

= LEE(S3
n)− [en − en−1 + e1 − e0 − (eμ1+2 − eμ1 ]

≤ LEE(S3
n)− [en − en−1 + e1 − e0 − (en−2 − en−3)]

= LEE(S3
n)− (e− 1)en−3(e2 − e− 1)

< LEE(S3
n).

Case 2. For any pendent vertex w, s(G − w) = n − 2. Then s(G) = n − 2 since

n − 2 = s(G − w) ≤ s(G) ≤ n − 2. That is, s(G − w) = s(G) = n − 2 for any pendent

vertex w.

Suppose that uv ∈ E(G) such that dG(u) + dG(v)− |Nu ∩Nv| = s(G).

Subcase 2.1. u, v have no common neighbor. Suppose without loss of generality that

dG(u) = y+ 1 ≥ x+ 1 = dG(v). Then dG(u) + dG(v) = s(G) = n− 2 , x+ y = n− 4, and

G can be viewed as the connected graph obtained from a double star S(x+ 1, y + 1) and

two isolated vertices by adding three edges to them such that each of the three edges is

not incident to u and v, where a double star S(a, b) is the tree obtained from the stars

Sa and Sb by joining their centers an edge. Let dG(z1) = max{dG(z)|z ∈ V (G) \ {u, v}}.

Then dG(z1) ≤ 4.

Suppose x ≥ 4. Then dG(u) ≥ dG(v) ≥ 5, and there must exists a pendent vertex

adjacent to u in G. Let w1 be an any pendent vertex at u, then s(G− w1) = s(G)− 1 =

n− 3, a contradiction.

Suppose x = 3. If dG(z1) = 4, then z1 ∈ V (S(x+ 1, y+ 1)) \ {u, v} and the new three

edges are all incident to z1. Suppose that z1 is adjacent to v, there must exist a pendent

vertex, say w2, adjacent to v, and then s(G − w2) = s(G) − 1 = n − 3, a contradiction.

If dG(z1) ≤ 3, then dG(u) ≥ dG(v) ≥ 4 > dG(z1), and there must exist a pendent vertex,

say w3, that incident to u or v. Clearly, s(G−w3) < s(G) = n− 2, a contradiction again.

Suppose x = 2. Then y = n − 6 ≥ 3 > x. Clearly, there is no pendent vertex w4

adjacent to u in G. Otherwise, s(G− w4) = s(G)− 1. A contradiction. If n ≥ 11, then

y = n− 6 ≥ 5 and there must exist a pendent vertex w5 adjacent to v, and consequently

s(G − w5) = s(G) − 1, a contradiction. So 9 ≤ n ≤ 10. If n = 10, then y = 4. Since

there are no pendent vertices adjacent to u, there exists at least a pendent vertex w6

-838-



adjacent to v. Clearly, s(G−w6) = s(G)−1, a contradiction. If n = 9, note the condition

s(G− w) = s(G) = 7 for any pendent vertex w of G, then G must be H1 or H2 in fig.1.

By direct computation, the result follows.

Suppose x = 1. Then y = n− 4− 1 ≥ 4. If n ≥ 10, then there exists a pendent vertex

w7 at u in G. Clearly, s(G−w7) < s(G), a contradiction. Thus n = 9 and G ∼= H3, where

H3 is shown as in Fig.1. It is easy to prove the result by direct computation.

H1 H2 H3 H4

u u

u

u

v

v

v

v

LEE(H1) = 324.0530532 LEE(H2) = 317.9318890 LEE(H3) = 529.7630855 LEE(H4) = 497.9876358

LEE(S3

9
) = 8140.479156

Figure 1 Graphs H1, H2, H3 and H4.

Subcase 2.2. u, v have a common neighbor. Then dG(u) + dG(v)− 1 = n− 2. Suppose

that dG(v) = x + 1 ≤ y + 1 = dG(u). Then x + y = n − 3, and G can be viewed as the

connected graph obtained from H and two isolated vertices by adding two edges to them

such that the two new edges are not incident to u and v, where H is a graph obtained

from a triangle C3 = uvlu by attaching x − 1 pendent vertices to v and y − 1 pendent

vertices to u.

Suppose y ≥ 4. Then y − 1 ≥ 3, and there exists a pendent vertex w8 adjacent to u

in G. It is easy to see that s(G− w8) = s(G)− 1, which is a contradiction.

Suppose y ≤ 3. If x = 3, then y = 3 and n = 9. By the conditions of case 2, G ∼= H4

(see Fig.1). So the result is true from the Fig.1. If x ≤ 2, then n = x + y + 3 ≤ 8, it

contradict to the condition n ≥ 9.

By combing Cases 1 and 2, the result follows. �

Lemma 4 Let G be an unicyclic graph with n ≥ 8 vertices and s(G) = n − 1. Then

LEE(G) ≤ LEE(S3
n) with equality if and only if G ∼= S3

n.

Proof. Suppose that uv be the edges such that dG(u) + dG(v)− |Nu ∩Nv| = n− 1.

If u and v have no common neighbors, then G can be viewed as the connected graph

obtained from a double star S(a, b)( a+ b = n− 1) and an isolated vertex by adding two
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v v

v
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2 22 2

222222

n1n1

n1n1
n1

n2n2

n2n2n2

G1

G2

G3

G4 G5

n1 ≥ 2, n2 ≥ 0, n1 + n2 = n − 5 n1 > 0, n2 ≥ 0, n1 + n2 = n − 6 n1, n2 ≥ 0, n1 + n2 = n − 6

n1, n2 ≥ 0, n1 + n2 = n − 5 n1, n2 ≥ 0, n1 + n2 = n − 6

Figure 2 Graphs G1, G2, G3, G4 and G5.

edges such that the two new edges are not incident to both u and v. Then G must be one

of graphs in Fig.2 and Fig.3.

1 1

1

1

u u

v

v

2

22

2

n1 n1

n2

n2

G6 G7

n1 ≥ 0, n2 ≥ 1, n1 + n2 = n − 5 n1, n2 ≥ 0, n1 + n2 = n − 5

Figure 3 Graphs G6 and G7.

If u and v have a common neighbor, then G can be viewed as the connected graph

obtained by G′ and an isolated vertex by adding two edges such that the two new edges

are not incident to both u and v, where G′ is the graph obtained from a triangle C3 = zuvz

by joining respectively x and y isolated vertices to u and v, where x + y = n − 4. Thus

G must be one of graphs in Fig.4.

11 11

u uv v

2 2 2 2

n1n1 n2
n2

G8
G9

n1 ≥ 1, n2 ≥ 1, n1 + n2 = n − 4 n1, n2 ≥ 0, n1 + n2 = n − 5

Figure 4 Graphs G8 and G9.

Note the fact that Gi(i = 1, 2, . . . 9) has Laplacian eigenvalues 1 with multiplicity

at least n1 + n2 − 2 and 0 with multiplicity 1. If n1 + n2 = n − 6, then we suppose
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that μ1, μ2, μ3, μ4, μ5, μ6, μ7 are the remaining Laplacian eigenvalues of G, then μ1 +μ2 +

μ3 + μ4 + μ5 + μ6 + μ7 = 2n − (n − 8) · 1 − 0 = n + 8. By Lemma 2, it follows that

μ1 ≤ s(G) = n− 1. So, we have that for n− 1 ≥ 9,

LEE(Gi) = eμ1 + eμ2 + eμ3 + eμ4 + eμ5 + eμ6 + eμ7 + (n− 8)e1 + e0

≤ en−1 + e9 + 5e0 + (n− 8)e1 + e0

< en + e3 + 5e1 + (n− 8)e1 + e0

= LEE(S3
n)

and for n− 1 ≤ 9,

LEE(Gi) ≤ en−1 + en−1 + e10−n + 4e0 + (n− 8)e1 + e0

< en + e3 + e1 + 4e1 + (n− 8)e1 + e0

= LEE(S3
n)

Similarly, we can prove the result for the cases n1 + n2 = n− 4 and n1 + n2 = n− 5, and

then complete the proof. �

1
1

1

1 1
1

u u
u v

v
v

2
2

2

2 2
2

n1

n1 n1

n2

n2
n2

G10 G11 G12

n1, n2 ≥ 0, n1 + n2 = n − 4 n1 ≥ 1, n2 ≥ 0, n1 + n2 = n − 4 n1, n2 ≥ 0, n1 + n2 = n − 3

Figure 5 Graphs G10, G11 and G12.

Lemma 5 Let G be the unicyclic graph with n ≥ 9 vertices and s(G) = n. Then

LEE(G) ≤ LEE(S3
n) with equality if and only if G ∼= S3

n.

Proof. Since s(G) = n, G is a type of graphs in Fig.5. By direct computation we can

obtain that the Laplacian characteristic polynomials of G10, G11 and G12 are respectively

LG10(x) = x(x− 1)n−5[x4 − (n+ 5)x3 + (n1n2 + 6n + 4)x2 − (3n1n2 + 10n− 4)x+ 4n]

LG11(x) = x(x− 1)n−4[x3 − (n+ 2)x2 + (n+ 1 + n1n2 + 2n1)x− n]

LG12(x) = x(x− 1)n−5[x4 − (n+ 5)x3 + (5n+ n1n2 + 7)x2 − (7n+ 2n1n2 + 3)x+ 3n].

Then we can obtain that G10 has Laplacian eigenvalues 1 with multiplicity n− 5, 0 with

multiplicity 1, and the largest Laplacian eigenvalue less than n − 1. By a similar proof

of Lemma 4, it follows that LEE(G10) < LEE(S3
n). Similarly, we also can prove that

LEE(G11) < LEE(S3
n) for n1 ≥ 1, n2 ≥ 0, and LEE(G12) < LEE(S3

n) for n1, n2 ≥ 1 and

n ≥ 9. If n1 = 0, then G12
∼= S3

n. Thus we complete the proof. �
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By Lemmas 3, 4 and 5 it follows

Theorem 1 Let G be a connected graph with n vertices and n edges, where n ≥ 9. Then

LEE(G) ≤ en + e3 + (n− 3)e + 1

with equality if and only if G ∼= S3
n.
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