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Abstract: The Estrada index of a graph G of order n is defined as EE(G) =
∑n

i=1 e
λi ,

where λ1, λ2, . . . , λn are the eigenvalues of the graph G. By the limiting behavior of the
spectrum of random symmetric matrices, we formulate an exact estimate to EE(G) for
almost all graphs G, and establish a lower bound and an upper bound to EE(G) for almost
all multipartite graphs G.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn}. The adjacency
matrix of G is a (0, 1)-matrix A(G) = (aij)n×n, where aij = 1 if there is an edge between

the vertices vi and vj, and 0 otherwise. Evidently, the adjacency matrix A(G) is a real

symmetric matrix and its eigenvalues λ1, λ2, . . . , λn are real numbers. In what follows

we assume that λ1 ≥ λ2 ≥ · · · ≥ λn. The basic properties of graph eigenvalues can be

referred to Cvetković et al. [7]. A graph-spectrum-based invariant, recently put forward

by Estrada [9], is defined as

EE(G) =
n∑

i=1

eλi ,

which was introduced in 2000 as a molecular structure-descriptor. Since then, there were

various applications of the Estrada index. Initially, it was used to quantify the degree
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of folding of long chain polymeric molecules, especially those of proteins [10, 11]. And

later, a connection between EE(G) and the concept of extended atomic branching was

established [14], which was an attempt to apply EE(G) in quantum chemistry. In addition,

Estrada and Rodŕıguez-Velázquez showed that EE(G) provides a measure of the centrality

of complex networks [12, 13]. Recently, a information-theoretical application of EE(G)

was put forward. Carbó-Dorca endeavored to find connections between EE(G) and the

Shannon entropy [6].

In spite of the fact that EE(G) has numerous practical applications, investigations of

its basic properties started only short time ago [16, 18]. It is rather hard, as well-known,

to compute the eigenvalues for a large matrix even for A(G). So, in order to estimate the

invariant, researchers established some lower and upper bounds [4, 17, 24] by algebraic

approaches in the last few years. However, there are, as examples given below, only a

few classes of graphs attaining the equalities of those bounds. Consequently, one can

hardly see the major behavior of EE(G) for most graphs. In this paper, however, we shall

formulate an exact estimate to EE(G) for almost all graphs by investigating the random

graphs constructed from classical Erdös-Rényi model [5]. Furthermore, we explore random

multipartite graphs. As a matter of fact, the adjacency matrix of Erdös-Rényi model is

a random matrix, which has been widely researched and generalized [2, 3, 8]. We shall

use those generalizations to study random multipartite graphs [1]. We finally note that in

[19] the authors have investigated the asymptotic behavior of the Estrada index for trees.

In Section 2, we consider the Erdös-Rényi model Gn(p) and formulate an exact estimate

to EE(Gn(p)) for almost all Gn(p) ∈ Gn(p) where p is a constant with 0 < p < 1. To be

precise, we show that

EE(Gn(p)) = enp
(
eO(

√
n) + o(1)

)
a.s. (1.1)

In Section 3, we investigate random m-partite graph model Gn;ν1,...,νm(p) and establish the

estimate below to EE(Gn;ν1,...,νm(p)) for almost all Gn;ν1,...,νm(p) ∈ Gn;ν1,...,νm(p).

enp(1−max{ν1,ν2,...,νm})
(
eO(

√
n) + o(1)

)
≤ EE(Gn;ν1,...,νm(p)) ≤ enp

(
eO(

√
n) + o(1)

)
a.s.

(1.2)

According to the following three examples, one can readily see that Eq. (1.1) is better

than those established by algebraic approaches.
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Example 1. Let G be a simple graph with n vertices and m edges. Peña et al. [22]

proved √
n2 + 4m ≤ EE(G) ≤ n− 1 + e

√
2m, (1.3)

with equalities on both sides hold if and only if G ∼= Kc
n (the complement of the complete

graph Kn). If G ∈ EE(Gn(p)), then the number of edges of G is m = pn(n−1)
2

a.s. by the

strong law of large numbers (see [23]). Hence the bounds in (1.3) become

√
n2 + 4m =

√
(2p+ 1)n2 − 2pn a.s., n− 1 + e

√
2m = n− 1 + e

√
pn(n−1) a.s.

Consequently √
n2 + 4m

EE(Gn(p))
=

√
(2p+ 1)n2 − 2pn

enp
(
eO(

√
n) + o(1)

) = o(1) a.s.

EE(Gn(p))

e
√
2m + n− 1

=
enp

(
eO(

√
n) + o(1)

)
e
√

pn(n−1) + n− 1
=

enp
(
eO(

√
n) + o(1)

)
enp

(
e(

√
p−p)n + o(1)

) = o(1) a.s.

Example 2. Liu et al. [20] investigated the relations between the Estrada index

EE(G) and the graph energy E(G) of a graph G as follows.

EE(G) ≤ n− 1 + e
E(G)
2 , (1.4)

with equality if and only if E(G) = 0 or equivalently G = Kc
n. By means of Nikiforov’s

result that E(G) = n
3
2

(
4
3π

+ o(1)
)

a.s. in [21], we have

EE(G) ≤ n− 1 + en
3
2 ( 2

3π
+o(1)) a.s.

Therefore

EE(Gn(p))

e
E(G)
2 + n− 1

=
enp

(
eO(

√
n) + o(1)

)
en

3
2 ( 2

3π
+o(1)) + n− 1

=
enp

(
eO(

√
n) + o(1)

)
enp

(
en

3
2 ( 2

3π
+o(1))−np + o(1)

) = o(1) a.s.

Example 3. Let G be a simple graph with n vertices and m edges. Gutman [15]

proved if 2m
n

≥ 1, then

EE(G) ≥ n
e
√

2m
n + e−

√
2m
n

2
, (1.5)

with equality if and only if G is a regular graph of degree 1. If G ∈ EE(Gn(p)), then

the number of edges of G is m = pn(n−1)
2

a.s., and the lower bound in (1.5) becomes

n e
√

p(n−1)+e−
√

p(n−1)

2
a.s. Thus

n
2

(
e
√

2m/n + e−
√

2m/n
)

EE(Gn(p))
=

n
2

(
e
√

p(n−1) + e−
√

p(n−1)
)

enp
(
eO(

√
n) + o(1)

) =
e
√
np
(
n
2
+ o(1)

)
enp

(
eO(

√
n) + o(1)

) = o(1) a.s.
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2 Estrada index of Gn(p)

As well known, the theory of random graphs was founded by Erdös and Rényi in 1950s.

In this section, we shall formulate an exact estimate to the Estrada index for the classical

Erdös-Rényi model. We first recall the definition of the Erdös-Rényi model: Gn(p) consists

of all graphs on n vertices in which the edges are chosen independently with probability

p ∈ (0, 1). Throughout this paper, we use An to denote the adjacency matrix A(Gn(p))

of the random graph Gn(p) ∈ Gn(p). Apparently, An is a symmetric random matrix in

which the diagonal entries are zeros while aij (i < j) is 1 or 0, with probability p or

1−p. Therefore, one can readily evaluate EE(Gn(p)) once the spectral distribution of the

random matrix An is known. By virtue of the following two lemmas, we shall describe the

spectral distribution of the random matrix An based on the centralizing random matrix

An = An − p(Jn − In), where Jn is n×n matrix in which all entries equal 1 and In is the

unit n × n matrix. The limiting behavior of the spectrum of An has been characterized

and extensively researched [2, 3].

Lemma 2.1 (Bai [2]) Let An = An − p(Jn − In). Then

lim
n→∞

‖ n− 1
2An ‖= 2

√
p(1− p) a.s.

where ‖ n− 1
2An ‖ is the spectral radius of the matrix n− 1

2An .

Lemma 2.2 (Weyl inequality [7]) Let λ1(M), . . . , λn(M) be the eigenvalues of a real

symmetric matrix M of order n, where λ1(M) ≥ · · · ≥ λn(M). If X, Y and Z are all

real symmetric matrices of order n, and Z = X+Y, then

max
r+s=j+n

{λr(X) + λs(Y)} ≤ λj(Z) ≤ min
r+s=j+1

{λr(X) + λs(Y)}.

Theorem 2.3 Let Gn(p) be a random graph of Gn(p). Then EE(Gn(p)) enjoys the fol-

lowing

EE(Gn(p)) = enp
(
eO(

√
n) + o(1)

)
a.s.

Proof. Recalling the definition of EE(Gn(p)), we just need to formulate an estimate to

EE(An). For the spectral distribution of An, one can derive from Lemma 2.2 that

pλi(Jn − In) + λn(An) ≤ λi(An) ≤ pλi(Jn − In) + λ1(An).
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Obviously, by Lemma 2.1

−2
√
p(1− p) + o(1) ≤ λi(An)√

n
≤ 2

√
p(1− p) + o(1) a.s.

Together with the fact that λ1(Jn − In) = n− 1, λ2(Jn − In) = · · · = λn(Jn − In) = −1,

we obtain

λ1(An) = np+O(
√
n) a.s., (2.1)

and for i = 2, . . . , n,

λi(An) = O(
√
n) a.s. (2.2)

It is easily seen that

EE(An) =
n∑

i=1

eλi(An)

= eλ1(An) +
n∑

i=2

eλi(An)

= enp+O(
√
n) +

n∑
i=2

eO(
√
n)

= enp+O(
√
n) + (n− 1)eO(

√
n) a.s.

Therefore
EE(An)

enp
= eO(

√
n) + (n− 1)

eO(
√
n)

enp
= eO(

√
n) + o(1) a.s.

Thus

EE(An) = enp
(
eO(

√
n) + o(1)

)
a.s. (2.3)

as desired. �

3 Estrada index of the random multipartite graphs

We begin with the definition of random multipartite graphs. We useKn;ν1,ν2,...,νm to denote

the complete m-partite graph with vertex set V whose parts V1, . . . , Vm (2 ≤ m = m(n) <

n) are such that |Vi| = nνi = nνi(n), i = 1, . . . ,m. Let Gn;ν1,...,νm(p) be the random

m-partite graphs with vertex set V in which the edges are chosen independently with

probability p from the set of edges of Kn;ν1,...,νm . In this section, we denote by An,m the

adjacency matrix A(Gn;ν1,...,νm(p)) = (xij)n×n of random m-partite graph Gn;ν1,...,νm(p) ∈
Gn;ν1,...,νm(p). It is not difficult to verify that An,m satisfies the following properties
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• xijs, 1 ≤ i < j ≤ n, are independent random variables with xij = xji;

• xij = 1 with probability p and xij = 0 with probability 1− p if i ∈ Vl and j ∈ V \Vl,

while xij = 0 if i and j ∈ Vl, where V1, . . . , Vm are the parts of V and l is an integer

with 1 ≤ l ≤ m.

Apparently, in order to evaluate EE(Gn;ν1,...,νm(p)), we only need to investigate the spectral

distribution of the random matrix An,m. The readers can refer to Anderson et al. [1]

for more details on spectral distribution of the random matrix An,m. Unfortunately,

we haven’t found concise results like Theorem 2.3 on the exact form of estimates for

EE(Gn;ν1,...,νm(p)), which appears to be rather hard.

However, in this section we shall establish an upper and lower bound to EE(Gn;ν1,...,νm(p))

for almost allm-partite graphs via the results on spectral distribution ofAn,Anν1 , . . . ,Anνm ,

respectively, constructed from Gn(p), Gnν1(p), . . . , Gnνm(p).

Theorem 3.1 Let Gn;ν1,...,νm(p) be a random graph of Gn;ν1,...,νm(p). Then EE(Gn;ν1,...,νm(p))

enjoys the following

enp(1−max{ν1,ν2,...,νm})
(
eO(

√
n) + o(1)

)
≤ EE(Gn;ν1,...,νm(p)) ≤ enp

(
eO(

√
n) + o(1)

)
a.s.

Proof. From the definition of the random m-partite graph Gn;ν1,...,νm(p), suppose that

Gn;ν1,...,νm(p) has vertex set parts V1, V2, . . . , Vm satisfying |Vi| = nνi, i = 1, 2, . . . ,m. Ob-

viously, the adjacency matrix An,m of the random m-partite graph Gn;ν1,...,νm(p) satisfies

An,m +A
′
n,m = An,

where

A
′
n,m =

⎛
⎜⎜⎜⎝

Anν1

Anν2
. . .

Anνm

⎞
⎟⎟⎟⎠

n×n .

In order to establish a bound to EE(An,m), we fist present bounds for each eigenvalue of

An,m according to the spectral distribution of An and A
′
n,m.

For λ1(An,m), it follows from Lemma 2.2 that

λ1(An)− λ1(A
′
n,m) ≤ λ1(An,m) ≤ λ1(An)− λn(A

′
n,m).
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By Eq. (2.1) and Eq. (2.2),

np(1−max{ν1, . . . , νm}) +O(
√
n) ≤ λ1(An,m) ≤ np+O(

√
n) a.s. (3.1)

Thus

enp(1−max{ν1,...,νm})+O(
√
n) ≤ eλ1(An,m) ≤ enp+O(

√
n) a.s. (3.2)

For λi(An,m), i = 2, 3, . . . , n−m, due to Lemma 2.2, one can deduce that

λi+m(An)− λm+1(A
′
n,m) ≤ λi(An,m) ≤ λi(An)− λn(A

′
n,m).

By Eq. (2.2),

λi(An,m) = O(
√
n) a.s.

Hence
n−m∑
i=2

eλi(An,m) = (n−m− 1)eO(
√
n) a.s. (3.3)

For λj(An,m), j = n−m+ 1, . . . , n, owing to Lemma 2.2, we obtain

λj(An)− λ1(A
′
n,m) ≤ λj(An,m) ≤ λj(An)− λn(A

′
n,m).

One can derive from Eq. (2.1) and Eq. (2.2) that

−npmax{ν1, . . . , νm}+O(
√
n) ≤ λj(An,m) ≤ O(

√
n) a.s.

Therefore

me−npmax{ν1,...,νm}+O(
√
n) ≤

n∑
j=n−m+1

eλj(An,m) ≤ meO(
√
n) a.s.,

which is equivalent to

o(1) ≤
n∑

j=n−m+1

eλj(An,m) ≤ meO(
√
n) a.s. (3.4)

We proceed to establish the bound for EE(An,m) according to (3.2), (3.3) and (3.4),

EE(An,m)

enp(1−max{ν1,...,νm}) =
eλ1(An,m)

enp(1−max{ν1,...,νm}) +
∑n−m

i=2 eλi(An,m)

enp(1−max{ν1,...,νm}) +

∑n
j=n−m+1 e

λj(An,m)

enp(1−max{ν1,...,νm})

≥ enp(1−max{ν1,...,νm})+O(
√
n)

enp(1−max{ν1,...,νm}) +
(n−m− 1)eO(

√
n)

enp(1−max{ν1,...,νm}) +
o(1)

enp(1−max{ν1,...,νm})

= eO(
√
n) + o(1) a.s. (3.5)
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Meanwhile

EE(An,m)

enp
=

eλ1(An,m)

enp
+

∑n−m
i=2 eλi(An,m)

enp
+

∑n
j=n−m+1 e

λj(An,m)

enp

≤ enp+O(
√
n)

enp
+

(n−m− 1)eO(
√
n)

enp
+

meO(
√
n)

enp

= eO(
√
n) + o(1) a.s. (3.6)

Combining (3.5) and (3.6), we have

enp(1−max{ν1,ν2,...,νm})
(
eO(

√
n) + o(1)

)
≤ EE(An,m) ≤ enp

(
eO(

√
n) + o(1)

)
a.s. (3.7)

The theorem follows by (3.7). �

The order of limiting behavior of EE(Gn;ν1,...,νm(p)) is bounded by (3.7). Furthermore,

we would like to know in what cases the equalities in (3.7) hold.

Corollary 3.2 Let Gn;ν1,...,νm(p) be a random graph of Gn;ν1,...,νm(p). Then

EE(Gn;ν1,...,νm(p)) = enp
(
eO(

√
n) + o(1)

)
a.s. (3.8)

if and only if max{nν1, . . . , nνm} = O(
√
n).

Proof. From (3.6) together with (3.3) and (3.4), the equality (3.8) holds if and only if

λ1(An,m) = np+O(
√
n) a.s. (3.9)

and from (3.1) the equality (3.9) holds if and only if max{nν1, . . . , nνm} = O(
√
n). �

Finally we consider the equality case of the lower bound in (3.7). We have the fol-

lowing conjecture, but fail to prove it. However, we compare the numerical value of

EE(Gn;ν1,...,νm(
1
2
)) obtained by the software MATLAB with the value in (3.10) of Conjec-

ture 3.3 (see Table 3.1), where νi =
1
m

for i = 1, 2, . . . ,m. From Table 3.1 we find that

the numerical value of EE(Gn;ν1,...,νm(
1
2
)) is close to the estimate of our conjecture a.s.

Conjecture 3.3 Let Gn;ν1,...,νm(p) be a random graph of Gn;ν1,...,νm(p). Then

EE(Gn;ν1,...,νm(p)) enjoys

EE(Gn;ν1,...,νm(p)) = enp(1−max{ν1,ν2,...,νm})
(
eO(

√
n) + o(1)

)
a.s., (3.10)

if and only if

lim
n→∞

min{nν1, . . . , nνm} → ∞ and lim
n→∞

νi
νj

= 1.
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m=2 m=3 m=5n
Numerical Value Theoretical Value Numerical Value Theoretical Value Numerical Value Theoretical Value

4900 e1277.7813 e1225
(
eO(70.0000) + o(1)

)
e1693.3834 e1633

(
eO(70.0000) + o(1)

)
e2024.8205 e1960

(
eO(70.0000) + o(1)

)
5000 e1302.6120 e1250

(
eO(70.7107) + o(1)

)
e1727.3981 e1667

(
eO(70.7107) + o(1)

)
e2066.5741 e2000

(
eO(70.7107) + o(1)

)
5100 e1328.7111 e1275

(
eO(71.4143) + o(1)

)
e1761.7126 e1700

(
eO(71.4143) + o(1)

)
e2106.5623 e2040

(
eO(71.4143) + o(1)

)
5200 e1354.3134 e1300

(
eO(72.1110) + o(1)

)
e1794.6330 e1733

(
eO(72.1110) + o(1)

)
e2147.2056 e2080

(
eO(72.1110) + o(1)

)
5300 e1379.9684 e1325

(
eO(72.8011) + o(1)

)
e1828.4596 e1767

(
eO(72.8011) + o(1)

)
e2187.5057 e2120

(
eO(72.8011) + o(1)

)
5400 e1405.7796 e1350

(
eO(73.4847) + o(1)

)
e1862.8553 e1800

(
eO(73.4847) + o(1)

)
e2228.4379 e2160

(
eO(73.4847) + o(1)

)
5500 e1431.1669 e1375

(
eO(74.1620) + o(1)

)
e1896.3589 e1833

(
eO(74.1620) + o(1)

)
e2269.1265 e2200

(
eO(74.1620) + o(1)

)

Table 3.1. Estrada index of a random m-partite graph
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