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Abstract

Recently, a new molecular graph matrix, Harary matrix, was defined in honor of Profes-
sor Frank Harary, and new graph invariants (local and global) based on it were also defined
and researched, Harary index is one of these invariants. The Harary matrix can be used
to derive a variant of the Balaban index, Harary index was also successfully tested in sev-
eral structure-property relationships, so it is very meaningful to research their mathematical
properties and chemical applications. As a class of graph energy, Harary energy was in-
troduced not long ago. In this paper, we obtain some results about eigenvalues of Harary
matrix, then by these results, we get some bounds of Harary index. Moreover, we obtain
some bounds of Harary energy.

1. Introduction

As we know, in many instances the distant atoms influence each other much less than near
atoms. To research this interaction, Ivanciuc et al. [1] define a new molecular graph matrix,
Harary matrix (called it initially the reciprocal distance matrix [2]), which was successfully used
in a study concerning computer generation of acyclic graphs based on local vertex invariants and
topological indices [3]. The Harary index is derived from the Harary matrix and has a number

of interesting properties, it has shown a modest success in structure-property correlations [4-8],
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but its use in combination with other molecular descriptors appears to be very efficacious in
improving the QSPR (quantitative structure-property relationship) models [9]. Recently there
has been a tremendous research activity in graph energy, as a class of graph energy, Harary
energy will inevitably arouse the interest of chemists.

Let G = (V,E) be a connected graph with vertex set V(G) = {vy,vs,...,v,} and edge set
E(G), where |V(G)| = n and |E(G)| = m. Let d; ; be the distance between the vertices v; and v;
in G. The Harary matrix RD(G) of G is an n X n matrix (RD; ;) such that [10, 11]

L e
Elfl:ﬁj

0 ifi=j.

RD[,I' =

The Harary index of the graph G, denoted by H(G), defined as
1 n n
HG) =32, ; RD,; = Z} R, .
Let py, oy ooy pty (U = po > -+ > ) be the eigenvalues of RD. The Harary energy of the
graph G, denoted by HE(G), defined as

HEG) =) |l
i=1

Since RD be a real symmetric matrix, its eigenvalues are all real. Ivanciuc et al. [12]
proposes to use the maximum eigenvalues of distance-based matrices as structural descriptors.
The lower and upper bounds of the maximum eigenvalues of Harary matrix, and the Nordhaus-
Gaddum-type results for it were obtained in [13, 14]. Mathematical properties and applications
of Harary index are reported in [15-21]. Some lower and upper bounds for Harary energy of
connected (n, m)-graphs were obtain in [22].

This paper is organized as follows. In the Section 2, we get the Harary matrix spectrum of
some graphs of diameter 2 and 3. In the Section 3, the upper bounds for the maximum RD-
eigenvalues of bipartite graph are obtained. In the Section 4, the upper bounds for the Harary
index of bipartite graph are obtained. In the Section 5, the upper bounds for the Harary energy
of some graphs are obtained.

All graphs considered in this paper are simple. our spectral graph theoretic terminology

follows that of the book [23, 24].
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2. Harary matrix spectrum of graphs of diameter 2 or 3

Moore and Moser showed [25] that almost all graphs are of diameter two. Thus a discussion
of graphs of small diameter pertains to almost all graphs.

Let G be a graph of, its adjacency matrix is A, and the adjacency matrix of its complement
G is A, then d(u,v) = lifuadjvin G, and d(u,v) = 2 if u adj v in G. Thus the Harary matrix

of Gis A + 1A.

Theorem 1. Let G be an r-regular graph of diameter 2, its adjacency spectrum be spec(G) =

{r, A2,...,4,}. Then the RD-spectrum of G is

1 1 1
specRD(G) = {E(n+r— 1),5(/12— 1),...,5(}1,, - ])} .

Proof. Because the Harary matrix of G is A + %Z and A = J — I — A, where J denote the all-1
matrix and / denote the unit matrix, so RD(G) = %(J — I+ A). Note that eigenvectors of A are
also eigenvectors of J and spec(J) = {n, 0, ..., 0}, we can get the result. ]

Before proving the theorem 2, we need follow lemma.

Ay A
Al Ao
be a symmetric 2 X 2 block matrix. Then the spectrum of A is the union of the spectra of Ag+A;

andAO _A1~

Lemma 1.[26] Let

Theorem 2. Let G be an r-regular graph of diameter 1 or 2 with an adjacency matrix A and
spec(G) ={r,A,...,4,}. Then H = G X K, is (r + 1)-regular and of diameter 2 or 3 with

5002, .1 2 11, 1,7 1 7
Sn+sr+c i+ osn+sr—z Ai—z\ .
specRD(H):("’ 13 6 3 ’] 6 6 13 6 3 '1 6),122,...,n.

Proof. Since G is of diameter 1 or 2, its Harary matrix is A + 5A. Then the Harary matric of H

1
2
is of the form

A+iA  J-1A-2A
J-1A-24  A+1A
By lemma 1, the spectrum of RD is the union of the spectra of
iy 1 27 1 17 _5 17,2
A+§A+J—§A—§A—J+§A—EA—6\/+61+§A
and
iy 1 27 -3 iy _ 1 1 7
A+§A—J+§A+§A—§A+EA—J—§A+6J—61.

From this we get the required result. m]
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3. Spectral radius of Harary matrix of bipartite graph

Theorem 3. Let G be a connected bipartite (n, m)-graph with bipartite V(G) = AU B, |A| =
p, |B| = q. Then

w0 (G) < %(n -2+ \/n?+12pq) €))

with equality if and only if G is a complete bipartite graph K, ;.

Proof. Since G is bipartite graph, we can assume that A = {1,2,...,p}, and B = {p + 1, p+
2,...,p+q}, where p+q = n. Let X = (x1,x3,...,x,)" be an eigenvector of RD(G) corre-
sponding to the maximum eigenvalue y;(G). Then we have RD(G)X = u1(G)X. We can assume

that x; = maxiea Xy, and x; = maxiepXy.

Forie A,
P ] ptq 1
#I(G)xi:k;_a.x’(-'— Z a.xksE(p—l)x,~+qx_,~. 2)
=1k#i k=p+1 b
Fori € B,
P 1 ptq 1 1
mGxi =Y — x+ — X < pxi+ (g = D 3)
djk SAjk 2
=1 S k=pt Lk &

Since G is a connected graph, x; > 0 for all kK € V. From (2) and (3), we can get [u; — %(p -

DI[u — 3(g— D] < pq as x;, x; > 0, that is

1 |
K= 5 +q =2+ 70 -p-g-3pg) <0.

From this we get the required result (1).
Now suppose that equality holds in (1). Then all inequalities in the above argument must be

equalities. From equality in (2), we get

X =xjand ik € E(G) forallk € B .
From equality in (3), we get

x; = x; and jk € E(G) forallke A .

Thus each vertex in each set is adjacent to all the vertices on the other set and vice versa. Hence
G is a complete bipartite graph K, , .

Conversely, one can easily to see that (1) hold for K, . a
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Theorem 4. Let G be a connected bipartite (n, m)-graph with bipartite V(G) = A B, |A| = p,
Bl = q, p+ g = n. Let A4 and Ap be maximum degrees among vertices from A and B,

respectively. Then

1 1
mG) < 7(n=2)+ V25 + 902 + 8pay + 8qag + 168,05 — 250 — 5pg

with equality if and only if G is a complete bipartite graph K, , or G is a semi-regular graph
with every vertex eccentricity equal 3.
Proof. Let A ={1,2,....,p},B={p+1,p+2,....,p+1}. LetX = (X1, X2, ..., X,)" be a Perron

eigenvector of RD(G) corresponding to the maximum eigenvalue u(G), such that
Xj = maxgea X, and Xx; = maxiepX .

From the eigenvalue equation RD(G)X = 11(G)X, written for the component x; we have

P ptq

1 1
i (G)x; = Z .Tk'xr'— Z Z}('Xk
k=1k#i " k=p+1 "~
< Ip - Dxi+dix; + 3(g - dx;
< 3p - Dxi + 3(g + 280)x;

Analogously for the component x; we have

m(G)xj = - Xt - Xk
k=1 djx k=p+ Lkt C K

< djxi+ %(p —dj)x; + %(q - 1)x;
<Yg-Dx;+ Xp+20p)x; .
Combining these two inequalities, it follows
(11 = 5(p = DIl = 5(g = DI < 5(g +284)(p +28p),
Since x; >0for 1 <k <p+gq,
1 = 3(p+q =21 + 559+ 5pq = 9p = 9 — 8pas — 8L — 168445) < 0.
From this inequality, we get the result.

For the case of equality, we have x; = x; fork = 1,2,...,pand x; = xy fork = p+ 1,p +
2,...,p+q. This means that eigenvector x has at most two different coordinates, the degrees of
vertices in A are equal to A4, and the degrees of vertices in B are equal to A, implying that G
is a semi-regular graph. If G is not a complete bipartite graph, it follows from pA, = gAp that

A4 < g and Ap < p and the eccentricity of every vertex must be equal to 3. O
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4. Bounds for Harary index of bipartite graph
Recently, the research is intense about bounds of Harary index. The general and Nordhaus-
Gaddum-type bounds for it were obtained in [19], and results of trees also have been given in
[27], here we give bounds for Harary index of bipartite graph.
Lemma 2. (Rayleigh-Ritz) [28] If A is a symmetric n X n matrix with eigenvalues 4; > A, >
-+ > A,, then for any X € R"(X # 0),

X'AX < L, X"X.
Equality holds if and only if X is an eigenvector of A corresponding to the largest eigenvalue
5.
Theorem 5. Let G be a connected bipartite (n, m)-graph with bipartite V(G) = A B, |A|

p. |Bl = g. Then
1
H(G) < gn(n -2+ 4/n?+ 12pg)

with equality if and only if G is a complete bipartite graph K, ;.

Proof. Because RD(G) be a real symmetric matrix, if we choose X = (1,1,...,1) and A

RD(G) in the lemma 2, and combine theorem 3, we can get

|
H(G) < gﬂ(G) < gnln =2+ V7 + 12pg)

Analogously, combining theorem 4 and lemma 2, we can get follow theorem.
Theorem 6. Let G be a connected bipartite (n, m)-graph with bipartite V(G) = A B, |A| = p,
Bl = ¢, p+ g = n. Let A4 and Ap be maximum degrees among vertices from A and B,

respectively. Then

HG) < g(n -2)+ 2”—4 \/25 +9n2 + 8pAs + 8qAp + 162405 — 250 — 5pg
with equality if and only if G is a complete bipartite graph K, , or G is a semi-regular graph
with every vertex eccentricity equal 3.
5. Bounds for Harary energy

Lemma 3.[22] Let G be a connected (n, m)-graph and py, tt, . . .,y (41 = o > -+ - = 1) be the

eigenvalues of RD. Then
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and ., )
2 _ L) ,
Z’ul 21<:Z<J;<n(d“

Lemma 4.[14] Let G be a connected graph with n > 2 vertices, m edges and minimum vertex

degree 6. Then
1
M1 < E\/n— 1+32m-90)
with equality if and only if G is a complete graph K,,.
Theorem 7. Let G be a connected graph with n > 2 vertices. m edges and minimum vertex

degree 0. Then

1 1y 1
HE(G)SE\/n—l+3(2m—6)+J(n—l) 2 Z (d_i-) —Z(n_1)2—3(2m—5)

1<i<j<n

with equality if and only if G is a complete graph K,,.

Proof. By the define of Harary energy, combining Cauchy-Schwartz inequality and lemma 3,

we can get
n 2
(HEG) - m)* = (Z | i |)
=2
sm—n[ ﬁ—ﬁ]
i=1
1 2
=<n—1)[2 (d—) —u%]
I<i<j<n N Y
then

1 2
HEG) < + J(n—l)(z > (;) —u%] @

I<i<j<n
By lemma 4, the theorem follows.
Note that equality holds in lemma 4, one can easily to see that with equality if and only if G

is a complete graph K,,. m]
ij

1V
Remark: In [28], authors give the upper of HE(G) which is 4|2n Z (—) , after simple
1<i<j<n

comparison, the reader can know our result is better than that.

Analogously, combining theorem 3 and the inequality (4) in theorem 7, we can obtain follow
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theorem.
Theorem 8. Let G be a connected bipartite (n, m)-graph with bipartite V(G) = AU B, |A| =
p. |Bl = q. Then

2
HEG) < %(n—2+ i+ 12pg) + J(n— 1)[2 D (di) —l(n—2+ i+ 12pq)

I<i<j<n N\ 16
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