# Construction of Bipartite Graphs Having the Same Randić Energy\*

# Oscar Rojo<sup>a</sup> and Luis Medina<sup>b</sup>

<sup>a</sup> Universidad Católica del Norte, Antofagasta, Chile e-mail: orojo@ucn.cl

<sup>b</sup> Universidad de Antofagasta, Antofagasta, Chile e-mail: luis.medina@uantof.cl

(Received June 9, 2011)

#### Abstract

We recall the notion of the Randić energy of a simple undirected graph. Given a bipartite graph  $\mathcal{G}$ , we construct a sequence of bipartite graphs having the same Randić energy of  $\mathcal{G}$ .

### 1 Introduction

Let  $\mathcal{G}=(V,E)$  be simple undirected graph on n vertices. Let  $M(\mathcal{G})$  be a matrix representation of  $\mathcal{G}$ . Some examples of  $M(\mathcal{G})$  are the adjacency matrix  $A(\mathcal{G})$ , the Laplacian matrix  $L(\mathcal{G})=D(\mathcal{G})-A(\mathcal{G})$  and the signless Laplacian  $Q(\mathcal{G})=D(\mathcal{G})+L(\mathcal{G})$  where  $D(\mathcal{G})$  is the diagonal matrix of vertex degrees. It is well known that  $L(\mathcal{G})$  and  $Q(\mathcal{G})$  are positive semidefinite matrices and that  $(0,\mathbf{e})$  is an eigenpair of  $L(\mathcal{G})$  where  $\mathbf{e}$  is the all ones vector.

We consider here the normalized Laplacian matrix and the Randić matrix of  $\mathcal{G}$ . Let  $v_1, v_2, \ldots, v_n$  be the vertices of  $\mathcal{G}$ . Denote by  $d(v_1), d(v_2), \ldots, d(v_n)$  the degree of  $v_1, v_2, \ldots, v_n$ , respectively. Let  $D^{-\frac{1}{2}}(\mathcal{G})$  be the diagonal matrix whose diagonal entries are

$$\frac{1}{\sqrt{d(v_1)}}, \frac{1}{\sqrt{d(v_2)}}, \dots, \frac{1}{\sqrt{d(v_n)}}$$

<sup>\*</sup>Work supported by Project Fondecyt 1100072, Chile

whenever  $d(v_i) \neq 0$ . If  $d(v_i) = 0$  for some i then the corresponding diagonal entry of  $D^{-\frac{1}{2}}(\mathcal{G})$  is defined to be 0. The normalized Laplacian matrix of  $\mathcal{G}$ , denoted by  $\mathcal{L}(\mathcal{G})$ , was introduced by F. Chung [10] as

$$\mathcal{L}\left(\mathcal{G}\right) = D^{-\frac{1}{2}}L\left(\mathcal{G}\right)D^{-\frac{1}{2}}\left(\mathcal{G}\right) = I - D^{-\frac{1}{2}}\left(\mathcal{G}\right)A\left(\mathcal{G}\right)D^{-\frac{1}{2}}\left(\mathcal{G}\right). \tag{1}$$

The eigenvalues of  $\mathcal{L}(\mathcal{G})$  are called the normalized Laplacian eigenvalues of  $\mathcal{G}$ . From (1), we have

$$D^{\frac{1}{2}}(\mathcal{G}) \mathcal{L}(\mathcal{G}) D^{\frac{1}{2}}(\mathcal{G}) = D(\mathcal{G}) - A(\mathcal{G}) = L(\mathcal{G})$$

and thus

$$D^{\frac{1}{2}}(\mathcal{G}) \mathcal{L}(\mathcal{G}) D^{\frac{1}{2}}(\mathcal{G}) \mathbf{e} = L(\mathcal{G}) \mathbf{e} = 0\mathbf{e}.$$

Hence 0 is an eigenvalue of  $\mathcal{L}(\mathcal{G})$  with eigenvector  $D^{\frac{1}{2}}(\mathcal{G})$  e. It is known that the eigenvalues of  $\mathcal{L}(\mathcal{G})$  lie in the interval [0,2] and 0 is a simple eigenvalue if and only if  $\mathcal{G}$  is connected. Among papers on  $\mathcal{L}(\mathcal{G})$  we mention [3], [4], [8] and [9].

From now on, we assume that  $\mathcal{G}$  is connected graph. Then  $d(v_i) > 0$  for all i. We observe that the matrix  $R(\mathcal{G}) = D^{-\frac{1}{2}}(\mathcal{G}) A(\mathcal{G}) D^{-\frac{1}{2}}(\mathcal{G})$  in (1) is the Randić matrix of  $\mathcal{G}$  in which the (i, j)-entry is

$$R_{i,j} = \left\{ \begin{array}{ll} \frac{1}{\sqrt{d(v_i)d(v_j)}} & \text{if } v_i \text{ and } v_j \text{ are adjacent} \\ 0 & \text{if } v_i \text{ is not adjacent to } v_j \\ 0 & \text{if } i = j \end{array} \right.$$

Moreover

$$I - \mathcal{L}(\mathcal{G}) = R(\mathcal{G}). \tag{2}$$

The eigenvalues of  $R(\mathcal{G})$  are called the Randić eigenvalues of  $\mathcal{G}$ . The Randić matrix was earlier studied in connection with the Randić index [1], [2], [14] and [15].

#### Example 1. Let $\mathcal{G}$ be the graph



Then

$$\mathcal{L}(\mathcal{G}) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & 0\\ 0 & 1 & 0 & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & 0\\ 0 & 0 & 1 & -\frac{1}{\sqrt{9}} & -\frac{1}{\sqrt{9}} & -\frac{1}{\sqrt{3}}\\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{9}} & 1 & 0 & 0\\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{9}} & 0 & 1 & 0\\ 0 & 0 & -\frac{1}{\sqrt{3}} & 0 & 0 & 1 \end{bmatrix}$$

and

$$R\left(\mathcal{G}\right) = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0\\ 0 & 0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0\\ 0 & 0 & 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{9}} & 0 & 0 & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{9}} & 0 & 0 & 0\\ 0 & 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 \end{bmatrix}$$

If M is a Hermitian matrix, let

$$E\left(M\right) = \sum_{j=1}^{n} \left| \lambda_{j}\left(M\right) - \frac{tr\left(M\right)}{n} \right|$$

where  $\lambda_{1}\left(M\right),\lambda_{2}\left(M\right),\ldots,\lambda_{n}\left(M\right)$  are the eigenvalues of M and  $tr\left(M\right)$  is the trace of M.

In particular, if  $M = A(\mathcal{G})$  then E(M) is denoted by  $E(\mathcal{G})$ . That is

$$E\left(\mathcal{G}\right) = \sum_{j=1}^{n} \left| \lambda_{j} \left( A\left(\mathcal{G}\right) \right) \right|.$$

 $E(\mathcal{G})$  is known as the energy of the graph  $\mathcal{G}$  and it was introduced by Gutman in 1978, it is studied in Chemistry and used to to approximate the total  $\pi$ -electron energy of a molecule [11, 12].

If  $M = \mathcal{L}(\mathcal{G})$  then E(M) is denoted by  $\mathcal{E}(\mathcal{G})$ . That is

$$\mathcal{E}(\mathcal{G}) = \sum_{j=1}^{n} |\lambda_{j} (\mathcal{L}(\mathcal{G})) - 1|.$$

 $\mathcal{E}(\mathcal{G})$  is called the normalized Laplacian energy of  $\mathcal{G}$ .

If  $M = R(\mathcal{G})$  then E(M) is denoted by  $RE(\mathcal{G})$ . That is

$$RE(\mathcal{G}) = \sum_{j=1}^{n} |\lambda_{j}(R(\mathcal{G}))|.$$

 $RE(\mathcal{G})$  is called the Randić energy of  $\mathcal{G}$ . Using (2), we obtain

$$RE(\mathcal{G}) = E(R(\mathcal{G})) = \mathcal{E}(\mathcal{G}).$$

Therefore the Randić energy of  $\mathcal{G}$  is the same as the normalized Laplacian energy of  $\mathcal{G}$ . The Randić energy of  $\mathcal{G}$  is the interest for Mathematical Chemistry, recent articles on this energy are [5] and [6].

# 2 Bipartite graphs with the same Randić energy

If  $\alpha_1, \alpha_2, \dots, \alpha_n$  are nonnegative numbers then  $\sum \alpha_j$  denotes the sum over the all positive  $\alpha_j$ .

Let 0 and I be the all zeros matrix and the identity matrix of the appropriate sizes, respectively.

Let  $r \ge 1$  be an integer. Given an  $m \times n$  complex matrix B, we denote by  $B^{(r+1)}$  the  $(r+1) \times (r+1)$  block bordered matrix

$$B^{(r+1)} = \begin{bmatrix} 0 & \frac{1}{\sqrt{r}}B & \cdots & \frac{1}{\sqrt{r}}B \\ \frac{1}{\sqrt{r}}B^* & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{r}}B^* & 0 & \cdots & 0 \end{bmatrix}$$

where  $B^*$  denotes the conjugate transpose matrix of B. Observe that  $B^{(r+1)}$  is an Hermitian matrix of order (m+rn) in which there are r copies de  $\frac{1}{\sqrt{r}}B$ . In particular

$$B^{(2)} = \left[ \begin{array}{cc} 0 & B \\ B^* & 0 \end{array} \right].$$

#### Lemma 1.

$$E\left(B^{(r+1)}\right) = E\left(B^{(2)}\right). \tag{3}$$

*Proof.* Since  $tr\left(B^{(r+1)}\right) = tr\left(B^{(2)}\right) = 0$ , it is sufficient to prove that  $\sum_{j} \left|\lambda_{j}\left(B^{(r+1)}\right)\right| = \sum_{j} \left|\lambda_{j}\left(B^{(2)}\right)\right|$ . We have

$$B^{(r+1)}B^{(r+1)} = \begin{bmatrix} BB^* & 0 & \cdots & 0 \\ 0 & \frac{1}{r}B^*B & \cdots & \frac{1}{r}B^*B \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \frac{1}{r}B^*B & \cdots & \frac{1}{r}B^*B \end{bmatrix}$$
$$= \begin{bmatrix} BB^* & 0 \\ 0 & F \end{bmatrix}$$

where

$$F = \frac{1}{r} \left[ \begin{array}{ccc} B^*B & \cdots & B^*B \\ \vdots & \ddots & \vdots \\ B^*B & \cdots & B^*B \end{array} \right]$$

We recall that the Kronecker product of two matrices  $A=(a_{i,j})$  and  $B=(b_{i,j})$  of sizes  $m\times m$  and  $n\times n$ , respectively, is defined to be the  $(mn)\times (mn)$  matrix  $A\otimes B=(a_{i,j}B)$ . It is known that the eigenvalues of  $A\otimes B$  are  $\lambda_i(A)\lambda_j(B)$  with  $1\leq i\leq m$  and  $1\leq j\leq n$ . We have

$$\begin{bmatrix} B^*B & \cdots & B^*B \\ \vdots & \ddots & \vdots \\ B^*B & \cdots & B^*B \end{bmatrix} = (B^*B) \otimes \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}.$$

The eigenvalues of all ones matrix of order  $r \times r$  are the simple eigenvalue r and 0 with multiplicity (r-1). Then the positive eigenvalues of F are the eigenvalues of  $B^*B$ . Hence the positive eigenvalues of  $B^{(r+1)}B^{(r+1)}$  are the positive eigenvalues of the matrices  $BB^*$  and  $B^*B$ . This is also the case for  $B^{(2)}B^{(2)}$ . In fact

$$B^{(2)}B^{(2)} = \left[ \begin{array}{cc} BB^* & 0\\ 0 & B^*B \end{array} \right].$$

Therefore the semipositive definite matrices  $B^{(r+1)}B^{(r+1)}$  and  $B^{(2)}B^{(2)}$  have the same positive eigenvalues. Finally, using the fact that the absolute value of the eigenvalues of  $B^{(r+1)}$  and  $B^{(2)}$  are the square roots of the eigenvalues of  $B^{(r+1)}B^{(r+1)}$  and  $B^{(2)}B^{(2)}$ , respectively, we obtain

$$E\left(B^{(r+1)}\right) = \sum \left|\lambda_{j}\left(B^{(r+1)}\right)\right| = \sum \left|\lambda_{j}\left(B^{(2)}\right)\right| = E\left(B^{(2)}\right).$$

The proof is complete.

From now on, let  $\mathcal{G}$  a given bipartite graph on n vertices. The vertex set of  $\mathcal{G}$  can be divided into two disjoint sets  $V_1$  with  $n_1$  vertices and  $V_2$  with  $n_2$  vertices such that every edge connects a vertex in  $V_1$  to one in  $V_2$ . Clearly  $n=n_1+n_2$ . Labelling the vertices in  $V_1$  by  $1,2,\ldots,n_1$  and the vertices in  $V_2$  by  $n_1+1,n_1+2,\ldots,n_1+n_2$ , the Randić matrix of  $\mathcal{G}$  becomes

$$R\left(\mathcal{G}\right) = \begin{bmatrix} 0 & B \\ B^{T} & 0 \end{bmatrix} = B^{(2)} \tag{4}$$

where B is an  $n_1 \times n_2$  matrix. Similarly, labelling the vertices in  $V_2$  by  $1, 2, \ldots, n_2$  and the vertices in  $V_1$  by  $n_2 + 1, n_2 + 2, \ldots, n_2 + n_1$ , the Randić matrix of  $\mathcal{G}$  becomes

$$R\left(\mathcal{G}\right) = \left[\begin{array}{cc} 0 & B^T \\ B & 0 \end{array}\right]$$

where  $B^T$  is the transpose of the matrix B in (4).

Following [7] and [13], let  $\mathcal{G}_1^{(2)}$  be the graph obtained from 2 copies of  $\mathcal{G}$  by identifying the vertices in  $V_1$ . In this case, we label the vertices in  $V_1$  by  $1, 2, \ldots, n_1$ . Similarly, let  $\mathcal{G}_2^{(2)}$  be the graph obtained from 2 copies of  $\mathcal{G}$  by identifying the vertices in  $V_2$ . In this last case, we label the vertices in  $V_2$  by  $1, 2, \ldots, n_2$ .

**Example 2.** Let  $\mathcal{G}$  be the bipartite graph in which  $V_1$  has 2 vertices and  $V_2$  has 3 vertices as shown below:



Then  $\mathcal{G}_1^{(2)}$ :



and  $\mathcal{G}_2^{(2)}$ :



Observe that  $\mathcal{G}_1^{(2)}$  is a bipartite graph on  $n_1 + 2n_2$  vertices and  $\mathcal{G}_2^{(2)}$  is a bipartite graph on  $n_2 + 2n_1$  vertices. Labelling the vertices as in Example 2, we have

$$R\left(\mathcal{G}_{1}^{(2)}\right) = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}}B & \frac{1}{\sqrt{2}}B\\ \frac{1}{\sqrt{2}}B^{T} & 0 & 0\\ \frac{1}{\sqrt{2}}B^{T} & 0 & 0 \end{bmatrix}$$

and

$$R\left(\mathcal{G}_{2}^{(2)}\right) = \left[ \begin{array}{ccc} 0 & \frac{1}{\sqrt{2}}B^{T} & \frac{1}{\sqrt{2}}B^{T} \\ \frac{1}{\sqrt{2}}B & 0 & 0 \\ \frac{1}{\sqrt{2}}B & 0 & 0 \end{array} \right]$$

where  $B = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{4}} & 0 & \frac{1}{\sqrt{4}} \end{bmatrix}$ .

**Definition 1.** Let  $\mathcal{G}_1^{(r)}$  be the graph obtained from r copies of  $\mathcal{G}$  by identifying the vertices in  $V_1 = \{1, 2, ..., n_1\}$  and let  $\mathcal{G}_2^{(r)}$  be the graph obtained from r copies of  $\mathcal{G}$  by identifying the vertices in  $V_2 = \{1, 2, ..., n_2\}$ .

Observe that  $\mathcal{G}_1^{(r)}$  is a bipartite graph on  $n_1 + rn_2$  vertices and  $\mathcal{G}_2^{(r)}$  is a bipartite graph on  $n_2 + rn_1$  vertices.

As we illustrated in Example 2, there is a labelling for the vertices of  $\mathcal{G}_1^{(r)}$  such that

$$R\left(\mathcal{G}_{1}^{(r)}\right) = \begin{bmatrix} 0 & \frac{1}{\sqrt{r}}B & \cdots & \frac{1}{\sqrt{r}}B\\ \frac{1}{\sqrt{r}}B^{T} & 0 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \frac{1}{\sqrt{r}}B^{T} & 0 & \cdots & 0 \end{bmatrix}$$

$$(5)$$

and there is a labelling for the vertices of  $\mathcal{G}_2^{(r)}$  such that

$$R\left(\mathcal{G}_{2}^{(r)}\right) = \begin{bmatrix} 0 & \frac{1}{\sqrt{r}}B^{T} & \cdots & \frac{1}{\sqrt{r}}B^{T} \\ \frac{1}{\sqrt{r}}B & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{r}}B & 0 & \cdots & 0 \end{bmatrix}. \tag{6}$$

**Theorem 1.** Let  $\mathcal{G}$  be a bipartite graph. Then

$$RE\left(\mathcal{G}_{1}^{(r)}\right) = RE\left(\mathcal{G}_{2}^{(r)}\right) = RE\left(\mathcal{G}\right).$$
 (7)

*Proof.* Let  $C = B^T$ . From (5) and (6)

$$R\left(\mathcal{G}_{1}^{(r)}\right)=B^{(r+1)}$$
 and  $R\left(\mathcal{G}_{2}^{(r)}\right)=C^{(r+1)}.$ 

We have  $RE\left(\mathcal{G}_{1}^{(r)}\right)=E\left(R\left(\mathcal{G}_{1}^{(r)}\right)\right)$  and  $RE\left(\mathcal{G}_{2}^{(r)}\right)=E\left(R\left(\mathcal{G}_{2}^{(r)}\right)\right)$ . We apply Lemma 1 to obtain

$$E\left(R\left(\mathcal{G}_{1}^{(r)}\right)\right) = E\left(B^{(r+1)}\right) = E\left(B^{(2)}\right)$$

and

$$E\left(R\left(\mathcal{G}_{2}^{(r)}\right)\right) = E\left(C^{(r+1)}\right) = E\left(C^{(2)}\right).$$

Then

$$RE\left(\mathcal{G}_{1}^{(r)}\right) = E\left(B^{(2)}\right) \text{ and } RE\left(\mathcal{G}_{2}^{(r)}\right) = E\left(C^{(2)}\right).$$
 (8)

Finally, using the equalities  $RE(\mathcal{G}) = E(R(\mathcal{G})) = E(B^{(2)})$  and  $RE(\mathcal{G}) = E(R(\mathcal{G})) = E(C^{(2)})$  in (8), the result follows.

Given any bipartite graph  $\mathcal{G}$  and  $r \geq 2$ , we have constructed two graphs  $\mathcal{G}_1^{(r)}$  and  $\mathcal{G}_2^{(r)}$  with the same Randić energy of  $\mathcal{G}$ . Clearly, if  $n_1 \neq n_2$  then  $\mathcal{G}_1^{(r)}$  and  $\mathcal{G}_2^{(r)}$  are graphs of different orders.

Corollary 1. If  $n_1 = n_2$ , then  $R\left(\mathcal{G}_1^{(r)}\right)$  and  $R\left(\mathcal{G}_2^{(r)}\right)$  are cospectral. Proof. Since  $n_1 = n_2$ ,  $R\left(\mathcal{G}_1^{(r)}\right)$  and  $R\left(\mathcal{G}_2^{(r)}\right)$  are matrices of the same order. Then

$$\begin{bmatrix} 0 & \cdots & 0 & I \\ \vdots & 0 & \cdots & 0 \\ 0 & I & \ddots & \vdots \\ I & 0 & \cdots & 0 \end{bmatrix} R \begin{pmatrix} \mathcal{G}_{2}^{(r)} \end{pmatrix} \begin{bmatrix} 0 & \cdots & 0 & I \\ \vdots & 0 & \cdots & 0 \\ 0 & I & \ddots & \vdots \\ I & 0 & \cdots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \cdots & 0 & I \\ \vdots & 0 & \cdots & 0 \\ 0 & I & \ddots & \vdots \\ I & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & B^{T} & \cdots & B^{T} \\ B & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & \cdots & 0 & I \\ \vdots & 0 & \cdots & 0 \\ 0 & I & \ddots & \vdots \\ I & 0 & \cdots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & B & \cdots & B \\ B^T & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B^T & 0 & \cdots & 0 \end{bmatrix} = R\left(\mathcal{G}_1^{(r)}\right).$$

Therefore  $R\left(\mathcal{G}_{1}^{(r)}\right)$  and  $R\left(\mathcal{G}_{2}^{(r)}\right)$  are cospectral.

## 3 Some examples

It is known that if  $\mathcal{G}$  is a graph of order n with no isolated vertices then

$$2 \le RE\left(\mathcal{G}\right) \le 2 \left| \frac{n}{2} \right|. \tag{9}$$

**Remark 1.** If  $\mathcal{G}$  is a bipartite graph of order n such that  $RE\left(\mathcal{G}\right)=2\left\lfloor\frac{n}{2}\right\rfloor$  then the graphs  $\mathcal{G}_{1}^{(r)}$  and  $\mathcal{G}_{2}^{(r)}$  do not attain the upper bound in (9). In fact,  $RE\left(\mathcal{G}_{1}^{(r)}\right)=RE\left(\mathcal{G}\right)=2\left\lfloor\frac{n}{2}\right\rfloor<2\left\lfloor\frac{n_1+rn_2}{2}\right\rfloor$  and  $RE\left(\mathcal{G}_{2}^{(r)}\right)=RE\left(\mathcal{G}\right)=2\left\lfloor\frac{n}{2}\right\rfloor<2\left\lfloor\frac{n_2+rn_1}{2}\right\rfloor$ .

**Example 3.** Let  $m, n \geq 2$ . Let  $P_n$  and  $S_n$  be the path and the star on n vertices, respectively. Let  $K_{m,n}$  be the complete bipartite graph. Clearly  $S_n$  can be obtained from n-1 copies of  $P_2$  identifying one of its vertices. Then, from Theorem 1,  $RE(S_n) = RE(P_2)$ . Since  $R(P_2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ , its follows  $RE(P_2) = 2$ . Thus  $RE(S_n) = 2$  for all  $n \geq 2$ . Moreover, it is easy to see that  $K_{m,n}$  can be obtained from m copies of  $S_{n+1}$  identifying its pendant vertices. From Theorem 1,  $RE(K_{m,n}) = RE(S_{n+1}) = 2$ . For instance,  $K_{3,4}$  is obtained from 3 copies of  $S_5$ :

**Example 4.** Let  $n \geq 2$ . Let  $C_{2n}$  be the cycle on 2n vertices. Clearly,  $C_{2n}$  is a bipartite graph. Labelling the vertices as above the Randić of  $C_{2n}$  becomes

$$R\left(C_{2n}\right) = \left[\begin{array}{cc} 0 & B \\ B^T & 0 \end{array}\right]$$

where B is an  $n \times n$  circulant matrix of the form

$$B = \frac{1}{2} \begin{bmatrix} 1 & 0 & \cdots & 0 & 1 \\ 1 & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 1 \end{bmatrix}.$$

An easy computation shows that

$$R\left(C_{2n}\right)R\left(C_{2n}\right)^{T} = \left[\begin{array}{cc} BB^{T} & 0\\ 0 & B^{T}B \end{array}\right]$$

with

$$BB^T = B^TB = \frac{1}{4} \begin{bmatrix} 2 & 1 & 0 & \cdots & 0 & 1 \\ 1 & 2 & 1 & \ddots & & 0 \\ 0 & 1 & \ddots & \ddots & 0 & \vdots \\ \vdots & & \ddots & \ddots & 1 & 0 \\ 0 & & & 1 & 2 & 1 \\ 1 & 0 & \cdots & \cdots & 1 & 2 \end{bmatrix}.$$

The eigenvalues of the last matrix are  $\frac{1}{2} + \frac{1}{2}\cos\left(\frac{2k\pi}{n}\right)$  for  $k = 1, \ldots, n$ . We have  $\frac{1}{2} + \frac{1}{2}\cos\left(\frac{2k\pi}{n}\right) = \cos^2\left(\frac{k\pi}{n}\right)$ . Then

$$RE(C_{2n}) = 2\sum_{k=1}^{n} \sqrt{\cos^{2}\left(\frac{k\pi}{n}\right)} = 2\sum_{k=1}^{n} \left|\cos\left(\frac{k\pi}{n}\right)\right|$$
$$= 2\left(1 + 2\sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} \cos\left(\frac{k\pi}{n}\right)\right)$$

where  $\left|\frac{n}{2}\right|$  is the largest integer not exceeding  $\frac{n}{2}$ . Applying the Dirichlet kernel

$$D_m = 1 + 2\sum_{k=1}^{m} \cos kx = \frac{\sin((m + \frac{1}{2})x)}{\sin\frac{x}{2}},$$

we get

$$RE\left(C_{2n}\right) = \frac{2\sin\left(\left(\left\lfloor\frac{n}{2}\right\rfloor + \frac{1}{2}\right)\frac{\pi}{n}\right)}{\sin\frac{\pi}{2n}}.$$

Let  $(C_{2n})_1^{(r)}$  be the graph obtained from r copies of  $C_{2n}$  identifying the vertices in  $V_1 = \{1, 2, ..., n\}$ . Applying Theorem 1,

$$RE\left((C_{2n})_{1}^{(r)}\right) = \frac{2\sin\left(\left(\left\lfloor\frac{n}{2}\right\rfloor + \frac{1}{2}\right)\frac{\pi}{n}\right)}{\sin\frac{\pi}{2n}}$$

for any  $r \ge 2$ . In particular,  $RE\left((C_6)_1^{(2)}\right) = RE\left(C_6\right) = 4$ :



### References

- O. Araujo, J. A. de la Peña, The connectivity index of a weighted graph, Lin. Algebra Appl. 283 (1998) 171–177.
- [2] O. Araujo, J. A. de la Peña, Some bounds for the connectivity index of a chemical graph, J. Chem. Inf. Comput. Sci. 38 (1998) 827–831.
- [3] A. Banerjee, J. Jost, On the spetrum of the normalized graph Laplacian, *Lin. Algebra Appl.* 428 (2008) 3015–3022.
- [4] A Banerjee, J. Jost, Graph spectra as a systematic tool in computational biology, Discr. Appl. Math. 157 (2009) 2425–2431.
- [5] S. B. Bozkurt, A. D. Güngör, I. Gutman, A. S. Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 239–250.
- [6] S. B. Bozkurt, A. D. Güngör, I. Gutman, Randić spectral radius and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 321–334.
- [7] S. Butler, A note about cospectral graphs for the adjacency and normalized Laplacian matrices, Lin. Multilin. Algebra 58 (2010) 387–390.
- [8] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index  $R_{-1}$  of graphs, Lin. Algebra Appl. 443 (2010) 172–190.
- [9] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discr. Appl. Math. 155 (2007) 654–661.
- [10] F. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics 92, AMS, Providence, 1997.
- [11] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196–211.
- [12] I. Gutman, O. E. Polansky, Mathetical Concepts in Organic Chemistry, Springer– Verlag, Berlin, 1986.
- [13] O. Rojo, L. Medina, Constructing graphs with energy  $\sqrt{r}E(\mathcal{G})$  where  $\mathcal{G}$  is a bipartite graph, MATCH Commun. Math. Comput. Chem. **62** (2009) 465–472.
- [14] J. A. Rodríguez, A spectral approach to the Randić index, Lin. Algebra Appl. 400 (2005) 339–344.
- [15] J. A. Rodríguez, J. M. Sigarreta, On the Randić index and conditional parameters of a graph, MATCH Commun. Math. Comput. Chem. 54 (2005) 403–416.