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Abstract

We recall the notion of the Randić energy of a simple undirected graph. Given
a bipartite graph G, we construct a sequence of bipartite graphs having the same
Randić energy of G.

1 Introduction

Let G = (V,E) be simple undirected graph on n vertices. Let M (G) be a matrix repre-

sentation of G. Some examples of M (G) are the adjacency matrix A (G) , the Laplacian

matrix L (G) = D (G) − A (G) and the signless Laplacian Q (G) = D (G) + L (G) where

D (G) is the diagonal matrix of vertex degrees. It is well known that L (G) and Q (G) are
positive semidefinite matrices and that (0, e) is an eigenpair of L (G) where e is the all

ones vector.

We consider here the normalized Laplacian matrix and the Randić matrix of G.
Let v1, v2, . . . , vn be the vertices of G. Denote by d (v1) , d (v2) , . . . , d (vn) the degree of

v1, v2, . . . , vn, respectively. Let D− 1
2 (G) be the diagonal matrix whose diagonal entries

are
1√
d (v1)

,
1√
d (v2)

, . . . ,
1√
d (vn)
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whenever d (vi) �= 0. If d (vi) = 0 for some i then the corresponding diagonal entry of

D− 1
2 (G) is defined to be 0. The normalized Laplacian matrix of G, denoted by L (G), was

introduced by F. Chung [10] as

L (G) = D− 1
2L (G)D− 1

2 (G) = I −D− 1
2 (G)A (G)D− 1

2 (G) . (1)

The eigenvalues of L (G) are called the normalized Laplacian eigenvalues of G. From (1),

we have

D
1
2 (G)L (G)D 1

2 (G) = D (G)− A (G) = L (G)

and thus

D
1
2 (G)L (G)D 1

2 (G) e = L (G) e = 0e.

Hence 0 is an eigenvalue of L (G) with eigenvector D
1
2 (G) e. It is known that the eigen-

values of L (G) lie in the interval [0, 2] and 0 is a simple eigenvalue if and only if G is

connected. Among papers on L (G) we mention [3], [4], [8] and [9].

From now on, we assume that G is connected graph. Then d (vi) > 0 for all i. We

observe that the matrix R (G) = D− 1
2 (G)A (G)D− 1

2 (G) in (1) is the Randić matrix of G
in which the (i, j)-entry is

Ri,j =

⎧⎪⎨
⎪⎩

1√
d(vi)d(vj)

if vi and vj are adjacent

0 if vi is not adjacent to vj
0 if i = j

Moreover

I − L (G) = R (G) . (2)

The eigenvalues of R (G) are called the Randić eigenvalues of G. The Randić matrix was

earlier studied in connection with the Randić index [1], [2], [14] and [15].

Example 1. Let G be the graph

1

2

3

4

5

6
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Then

L (G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 − 1√
6

− 1√
6

0

0 1 0 − 1√
6

− 1√
6

0

0 0 1 − 1√
9

− 1√
9

− 1√
3

− 1√
6

− 1√
6

− 1√
9

1 0 0

− 1√
6

− 1√
6

− 1√
9

0 1 0

0 0 − 1√
3

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

R (G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1√
6

1√
6

0

0 0 0 1√
6

1√
6

0

0 0 0 1√
9

1√
9

1√
3

1√
6

1√
6

1√
9

0 0 0
1√
6

1√
6

1√
9

0 0 0

0 0 1√
3

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

If M is a Hermitian matrix, let

E (M) =

n∑
j=1

∣∣∣∣λj (M)− tr (M)

n

∣∣∣∣
where λ1 (M) , λ2 (M) , . . . , λn (M) are the eigenvalues of M and tr (M) is the trace of M.

In particular, if M = A (G) then E (M) is denoted by E (G) . That is

E (G) =
n∑

j=1

|λj (A (G))| .

E (G) is known as the energy of the graph G and it was introduced by Gutman in 1978,

it is studied in Chemistry and used to to approximate the total π-electron energy of a

molecule [11, 12].

If M = L (G) then E (M) is denoted by E (G) . That is
E (G) =

n∑
j=1

|λj (L (G))− 1| .

E (G) is called the normalized Laplacian energy of G.
If M = R (G) then E (M) is denoted by RE (G) . That is

RE (G) =
n∑

j=1

|λj (R (G))| .

RE (G) is called the Randić energy of G. Using (2), we obtain

RE (G) = E (R (G)) = E (G) .
Therefore the Randić energy of G is the same as the normalized Laplacian energy of G.
The Randić energy of G is the interest for Mathematical Chemistry, recent articles on this

energy are [5] and [6].
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2 Bipartite graphs with the same Randić energy

If α1, α2, . . . , αn are nonnegative numbers then
∑

αj denotes the sum over the all positive

αj.

Let 0 and I be the all zeros matrix and the identity matrix of the appropriate sizes,

respectively.

Let r ≥ 1 be an integer. Given an m× n complex matrix B, we denote by B(r+1) the

(r + 1)× (r + 1) block bordered matrix

B(r+1) =

⎡
⎢⎢⎢⎣

0 1√
r
B · · · 1√

r
B

1√
r
B∗ 0 · · · 0
...

...
. . .

...
1√
r
B∗ 0 · · · 0

⎤
⎥⎥⎥⎦

where B∗ denotes the conjugate transpose matrix of B. Observe that B(r+1) is an Hermi-

tian matrix of order (m+ rn) in which there are r copies de 1√
r
B. In particular

B(2) =

[
0 B
B∗ 0

]
.

Lemma 1.

E
(
B(r+1)

)
= E

(
B(2)

)
. (3)

Proof. Since tr
(
B(r+1)

)
= tr

(
B(2)

)
= 0, it is sufficient to prove that

∑
j

∣∣λj

(
B(r+1)

)∣∣ =∑
j

∣∣λj

(
B(2)

)∣∣ . We have

B(r+1)B(r+1) =

⎡
⎢⎢⎢⎣

BB∗ 0 · · · 0
0 1

r
B∗B · · · 1

r
B∗B

...
...

. . .
...

0 1
r
B∗B · · · 1

r
B∗B

⎤
⎥⎥⎥⎦

=

[
BB∗ 0
0 F

]
where

F =
1

r

⎡
⎢⎣

B∗B · · · B∗B
...

. . .
...

B∗B · · · B∗B

⎤
⎥⎦

We recall that the Kronecker product of two matrices A = (ai,j) and B = (bi,j) of sizes

m×m and n×n, respectively, is defined to be the (mn)× (mn) matrix A⊗B = (ai,jB) .

It is known that the eigenvalues of A⊗B are λi (A)λj (B) with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

We have ⎡
⎢⎣

B∗B · · · B∗B
...

. . .
...

B∗B · · · B∗B

⎤
⎥⎦ = (B∗B)⊗

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦ .
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The eigenvalues of all ones matrix of order r × r are the simple eigenvalue r and 0 with

multiplicity (r − 1) . Then the positive eigenvalues of F are the eigenvalues of B∗B. Hence

the positive eigenvalues of B(r+1)B(r+1) are the positive eigenvalues of the matrices BB∗

and B∗B. This is also the case for B(2)B(2). In fact

B(2)B(2) =

[
BB∗ 0
0 B∗B

]
.

Therefore the semipositive definite matrices B(r+1)B(r+1) and B(2)B(2) have the same

positive eigenvalues. Finally, using the fact that the absolute value of the eigenvalues

of B(r+1) and B(2) are the square roots of the eigenvalues of B(r+1)B(r+1) and B(2)B(2),

respectively, we obtain

E
(
B(r+1)

)
=
∑∣∣λj

(
B(r+1)

)∣∣ =∑∣∣λj

(
B(2)

)∣∣ = E
(
B(2)

)
.

The proof is complete.

From now on, let G a given bipartite graph on n vertices. The vertex set of G can be

divided into two disjoint sets V1 with n1 vertices and V2 with n2 vertices such that every

edge connects a vertex in V1 to one in V2. Clearly n = n1 + n2. Labelling the vertices in

V1 by 1, 2, . . . , n1 and the vertices in V2 by n1 + 1, n1 + 2, . . . , n1 + n2, the Randić matrix

of G becomes

R (G) =
[

0 B
BT 0

]
= B(2) (4)

where B is an n1 × n2 matrix. Similarly, labelling the vertices in V2 by 1, 2, . . . , n2 and

the vertices in V1 by n2 + 1, n2 + 2, . . . , n2 + n1, the Randić matrix of G becomes

R (G) =
[

0 BT

B 0

]

where BT is the transpose of the matrix B in (4) .

Following [7] and [13], let G(2)
1 be the graph obtained from 2 copies of G by identifying

the vertices in V1. In this case, we label the vertices in V1 by 1, 2, . . . , n1. Similarly, let

G(2)
2 be the graph obtained from 2 copies of G by identifying the vertices in V2. In this last

case, we label the vertices in V2 by 1, 2, . . . , n2.

Example 2. Let G be the bipartite graph in which V1 has 2 vertices and V2 has 3 vertices

as shown below:
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1

2

3

4

5

Then G(2)
1 :

1

2

3

4

5

6

7

8

and G(2)
2 :

1

2

3

4

5

6

7

Observe that G(2)
1 is a bipartite graph on n1+2n2 vertices and G(2)

2 is a bipartite graph

on n2 + 2n1 vertices. Labelling the vertices as in Example 2, we have

R
(
G(2)
1

)
=

⎡
⎢⎣

0 1√
2
B 1√

2
B

1√
2
BT 0 0

1√
2
BT 0 0

⎤
⎥⎦

and

R
(
G(2)
2

)
=

⎡
⎢⎣

0 1√
2
BT 1√

2
BT

1√
2
B 0 0

1√
2
B 0 0

⎤
⎥⎦

where B =

[
1√
6

1√
3

1√
6

1√
4

0 1√
4

]
.

Definition 1. Let G(r)
1 be the graph obtained from r copies of G by identifying the vertices

in V1 = {1, 2, . . . , n1} and let G(r)
2 be the graph obtained from r copies of G by identifying

the vertices in V2 = {1, 2, . . . , n2} .
Observe that G(r)

1 is a bipartite graph on n1+rn2 vertices and G(r)
2 is a bipartite graph

on n2 + rn1 vertices.

As we illustrated in Example 2, there is a labelling for the vertices of G(r)
1 such that

R
(
G(r)
1

)
=

⎡
⎢⎢⎢⎣

0 1√
r
B · · · 1√

r
B

1√
r
BT 0 · · · 0
...

...
. . .

...
1√
r
BT 0 · · · 0

⎤
⎥⎥⎥⎦ (5)
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and there is a labelling for the vertices of G(r)
2 such that

R
(
G(r)
2

)
=

⎡
⎢⎢⎢⎣

0 1√
r
BT · · · 1√

r
BT

1√
r
B 0 · · · 0
...

...
. . .

...
1√
r
B 0 · · · 0

⎤
⎥⎥⎥⎦ . (6)

Theorem 1. Let G be a bipartite graph. Then

RE
(
G(r)
1

)
= RE

(
G(r)
2

)
= RE (G) . (7)

Proof. Let C = BT . From (5) and (6)

R
(
G(r)
1

)
= B(r+1) and R

(
G(r)
2

)
= C(r+1).

We have RE
(
G(r)
1

)
= E

(
R
(
G(r)
1

))
and RE

(
G(r)
2

)
= E

(
R
(
G(r)
2

))
. We apply Lemma

1 to obtain

E
(
R
(
G(r)
1

))
= E

(
B(r+1)

)
= E

(
B(2)

)
and

E
(
R
(
G(r)
2

))
= E

(
C(r+1)

)
= E

(
C(2)

)
.

Then

RE
(
G(r)
1

)
= E

(
B(2)

)
and RE

(
G(r)
2

)
= E

(
C(2)

)
. (8)

Finally, using the equalities RE (G) = E (R (G)) = E
(
B(2)

)
and RE (G) = E (R (G)) =

E
(
C(2)

)
in (8), the result follows.

Given any bipartite graph G and r ≥ 2, we have constructed two graphs G(r)
1 and G(r)

2

with the same Randić energy of G. Clearly, if n1 �= n2 then G(r)
1 and G(r)

2 are graphs of

different orders.

Corollary 1. If n1 = n2, then R
(
G(r)
1

)
and R

(
G(r)
2

)
are cospectral.

Proof. Since n1 = n2, R
(
G(r)
1

)
and R

(
G(r)
2

)
are matrices of the same order. Then

⎡
⎢⎢⎢⎣

0 · · · 0 I
... 0 · · · 0

0 I
. . .

...
I 0 · · · 0

⎤
⎥⎥⎥⎦R

(
G(r)
2

)
⎡
⎢⎢⎢⎣

0 · · · 0 I
... 0 · · · 0

0 I
. . .

...
I 0 · · · 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 · · · 0 I
... 0 · · · 0

0 I
. . .

...
I 0 · · · 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0 BT · · · BT

B 0 · · · 0
...

...
. . .

...
B 0 · · · 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0 · · · 0 I
... 0 · · · 0

0 I
. . .

...
I 0 · · · 0

⎤
⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎣

0 B · · · B
BT 0 · · · 0
...

...
. . .

...
BT 0 · · · 0

⎤
⎥⎥⎥⎦ = R

(
G(r)
1

)
.

Therefore R
(
G(r)
1

)
and R

(
G(r)
2

)
are cospectral.

3 Some examples

It is known that if G is a graph of order n with no isolated vertices then

2 ≤ RE (G) ≤ 2
⌊n
2

⌋
. (9)

Remark 1. If G is a bipartite graph of order n such that RE (G) = 2
⌊
n
2

⌋
then the graphs

G(r)
1 and G(r)

2 do not attain the upper bound in (9). In fact, RE
(
G(r)
1

)
= RE (G) =

2
⌊
n
2

⌋
< 2

⌊
n1+rn2

2

⌋
and RE

(
G(r)
2

)
= RE (G) = 2

⌊
n
2

⌋
< 2

⌊
n2+rn1

2

⌋
.

Example 3. Let m,n ≥ 2. Let Pn and Sn be the path and the star on n vertices, respec-

tively. Let Km,n be the complete bipartite graph. Clearly Sn can be obtained from n − 1

copies of P2 identifying one of its vertices. Then, from Theorem 1, RE (Sn) = RE (P2).

Since R (P2) =

[
0 1
1 0

]
, its follows RE (P2) = 2. Thus RE (Sn) = 2 for all n ≥ 2.

Moreover, it is easy to see that Km,n can be obtained from m copies of Sn+1 identifying

its pendant vertices. From Theorem 1, RE (Km,n) = RE (Sn+1) = 2. For instance, K3,4

is obtained from 3 copies of S5 :

Example 4. Let n ≥ 2. Let C2n be the cycle on 2n vertices. Clearly, C2n is a bipartite

graph. Labelling the vertices as above the Randić of C2n becomes

R (C2n) =

[
0 B
BT 0

]

where B is an n× n circulant matrix of the form

B =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 1

1
. . . . . . . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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An easy computation shows that

R (C2n)R (C2n)
T =

[
BBT 0
0 BTB

]

with

BBT = BTB =
1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 · · · 0 1

1 2 1
. . . 0

0 1
. . . . . . 0

...
...

. . . . . . 1 0
0 1 2 1
1 0 · · · · · · 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The eigenvalues of the last matrix are 1
2
+ 1

2
cos

(
2kπ
n

)
for k = 1, . . . , n. We have 1

2
+

1
2
cos

(
2kπ
n

)
= cos2

(
kπ
n

)
. Then

RE (C2n) = 2
n∑

k=1

√
cos2

(
kπ

n

)
= 2

n∑
k=1

∣∣∣∣cos
(
kπ

n

)∣∣∣∣
= 2

⎛
⎜⎝1 + 2

�n
2 �∑

k=1

cos

(
kπ

n

)⎞⎟⎠
where

⌊
n
2

⌋
is the largest integer not exceeding n

2
. Applying the Dirichlet kernel

Dm = 1 + 2
m∑
k=1

cos kx =
sin

((
m+ 1

2

)
x
)

sin x
2

,

we get

RE (C2n) =
2 sin

((⌊
n
2

⌋
+ 1

2

)
π
n

)
sin π

2n

.

Let (C2n)
(r)
1 be the graph obtained from r copies of C2n identifying the vertices in V1 =

{1, 2, . . . , n} . Applying Theorem 1,

RE
(
(C2n)

(r)
1

)
=

2 sin
((⌊

n
2

⌋
+ 1

2

)
π
n

)
sin π

2n

for any r ≥ 2. In particular, RE
(
(C6)

(2)
1

)
= RE (C6) = 4 :

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9
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