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Abstract

We recall the notion of the Randié¢ energy of a simple undirected graph. Given
a bipartite graph G, we construct a sequence of bipartite graphs having the same
Randi¢ energy of G.

1 Introduction

Let G = (V, E) be simple undirected graph on n vertices. Let M (G) be a matrix repre-
sentation of G. Some examples of M (G) are the adjacency matrix A (G), the Laplacian
matrix L(G) = D (G) — A(G) and the signless Laplacian Q (G) = D (G) + L (G) where
D (G) is the diagonal matrix of vertex degrees. It is well known that L (G) and Q (G) are
positive semidefinite matrices and that (0,e) is an eigenpair of L (G) where e is the all
ones vector.

We consider here the normalized Laplacian matrix and the Randi¢ matrix of G.

Let vy, vq,...,v, be the vertices of G. Denote by d(v;),d(va),...,d(v,) the degree of

V1, Vg, . .., Uy, respectively. Let D3 (G) be the diagonal matrix whose diagonal entries
are

1 1 1

d(v) d(v) T \/d ()
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whenever d(v;) # 0. If d(v;) = 0 for some ¢ then the corresponding diagonal entry of
D=2 (G) is defined to be 0. The normalized Laplacian matrix of G, denoted by £ (G), was
introduced by F. Chung [10] as

The eigenvalues of £ (G) are called the normalized Laplacian eigenvalues of G. From (1),

we have
and thus

Hence 0 is an eigenvalue of £ (G) with eigenvector D3 (G)e. It is known that the eigen-
values of £ (@) lie in the interval [0,2] and 0 is a simple eigenvalue if and only if G is
connected. Among papers on £ (G) we mention [3], [4], [8] and [9].
From now on, we assume that G is connected graph. Then d (v;) > 0 for all i. We
1 1

observe that the matrix R(G) = D72 (G) A(G) D72 (G) in (1) is the Randi¢ matrix of G

in which the (i, j)-entry is

if v; and v; are adjacent

S S
£/ d(vi)d(vy)

R;; = 1] if v; is not adjacent to v;
0 ifi=3j
Moreover
I-L(G)=R(9). (2)

The eigenvalues of R (G) are called the Randi¢ eigenvalues of G. The Randi¢ matrix was

earlier studied in connection with the Randi¢ index [1], [2], [14] and [15].

Example 1. Let G be the graph



Then L L
1 0 0 f? f@ 0
0 1 0 7% "% 0
0 0 1 -+ L L
ﬁ(g) = 1 1 1 1\/6 6/5 6/5
V6 V69
_1r _1 _1 9 1 0
NG V6 V9
0 0 f% 0 0 1
and . .
0 0 0 @ @ 0
SRS X
R(g): 1 1 1 ? ? ?
V6 V6 VO
11 1 0 0
V6 V69
0 0 % 0 0 O
If M is a Hermitian matrix, let
- tr (M)
E(M) =" |\ (M) - T’

j=1
where Ay (M), Xy (M) ,..., A\, (M) are the eigenvalues of M and ¢r (M) is the trace of M.
In particular, if M = A (G) then E (M) is denoted by E (G). That is

B(G) =3 N (A@).

E (G) is known as the energy of the graph G and it was introduced by Gutman in 1978,
it is studied in Chemistry and used to to approximate the total m-electron energy of a
molecule [11, 12].

If M = L£(G) then E (M) is denoted by £ (G) . That is

£(9) =2 N (£@) -1l

£ (G) is called the normalized Laplacian energy of G.
If M = R(G) then E (M) is denoted by RE (G). That is

RE(G) = le\j (R(9)I

RE (G) is called the Randi¢ energy of G. Using (2), we obtain

RE(G) = E(R(G)) = £(9).
Therefore the Randié energy of G is the same as the normalized Laplacian energy of G.
The Randi¢ energy of G is the interest for Mathematical Chemistry, recent articles on this

energy are [5] and [6].
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2 Bipartite graphs with the same Randi¢ energy

If oy, g, . . ., v, are nonnegative numbers then Y av; denotes the sum over the all positive
C!]'.
Let 0 and I be the all zeros matrix and the identity matrix of the appropriate sizes,

respectively.
Let 7 > 1 be an integer. Given an m x n complex matrix B, we denote by B+ the

(r+1) x (r 4+ 1) block bordered matrix

1 1
10 * 4B LB
B(r+1) _ WB 0 0
\/;

where B* denotes the conjugate transpose matrix of B. Observe that B+ is an Hermi-

tian matrix of order (m + rn) in which there are r copies de \%B . In particular

0 B
@ =
s =] g 0]

Lemma 1.

E (B(r+1)) - E (3(2)) . (3)
Proof. Since tr (BU+Y) = tr (B®) = 0, it is sufficient to prove that > !)\j (B(’“))| =
> |)\j (B(Z))| . We have

BB* 0 0
1o+ 1 s
RO+ gr+1) 0 ;3 B - ;? B
0 ip*p . %B*B
_ | BB 0
B 0 F
where
1 B*B B*B
Pl
r
B*B --- B*B

We recall that the Kronecker product of two matrices A = (a;;) and B = (b; ;) of sizes
m x m and n X n, respectively, is defined to be the (mn) x (mn) matrix A® B = (a;;B) .

It is known that the eigenvalues of A® B are \; (A) A; (B) with 1 <i<mand 1 <j <n.

We have
B*B --- B*B 1 -+ 1

B*B --- B*B 1 -1
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The eigenvalues of all ones matrix of order r x r are the simple eigenvalue r and 0 with
multiplicity (r — 1) . Then the positive eigenvalues of F' are the eigenvalues of B* B. Hence
the positive eigenvalues of BU+D B+ are the positive eigenvalues of the matrices BB*
and B*B. This is also the case for B®B®. In fact
@pge _ | BB* 0
B B { 0 B*B N
Therefore the semipositive definite matrices BU+Y B0+ and B@B® have the same
positive eigenvalues. Finally, using the fact that the absolute value of the eigenvalues
of BU+D and B® are the square roots of the eigenvalues of B+ B+ and B@BA),

respectively, we obtain

B(BO) = 32y (B0 = 30 o, (8)] = 5 (5).
The proof is complete. O

From now on, let G a given bipartite graph on n vertices. The vertex set of G can be
divided into two disjoint sets V} with n; vertices and V5 with ns vertices such that every
edge connects a vertex in Vj to one in V5. Clearly n = n; + ny. Labelling the vertices in
Vi by 1,2,...,n; and the vertices in Vo by ny + 1,ny + 2,...,n; + ng, the Randi¢ matrix

of G becomes

0 B
_ — B®
RO =| g o] =p (W
where B is an n; X ny matrix. Similarly, labelling the vertices in V5 by 1,2,...,ns and
the vertices in Vi by na 4+ 1,m2 + 2,. .., no + nq, the Randi¢ matrix of G becomes
0 BT
ro-| 5 % |

where BT is the transpose of the matrix B in (4).

Following [7] and [13], let g{” be the graph obtained from 2 copies of G by identifying
the vertices in Vj. In this case, we label the vertices in V; by 1,2,...,n;. Similarly, let
g§2) be the graph obtained from 2 copies of G by identifying the vertices in V5. In this last

case, we label the vertices in V5 by 1,2,... ns.

Example 2. Let G be the bipartite graph in which Vi has 2 vertices and Vi has 3 vertices

as shown below:
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Then g{z) :

Observe that g{” is a bipartite graph on n; 4 2ny vertices and QQ(Z) is a bipartite graph

and Qéz) :

on ng + 2n, vertices. Labelling the vertices as in Example 2, we have

1 1
) 0 hB 5B
R( P): BT 00
BT 0 0
and 1 T 1 T
. 0 BT 5B
R(6P)=| 5B 0 0
%B 0 0
I T
where B= | Vo ‘63 V6
Vi Vi

Definition 1. Let gf” be the graph obtained from r copies of G by identifying the vertices
inVi={1,2,...,n} and let QQ(T) be the graph obtained from r copies of G by identifying
the vertices in Vo = {1,2,...,na}.

Observe that gf") is a bipartite graph on nj +rny vertices and Qér) is a bipartite graph

on ng + rny vertices.

As we illustrated in Example 2, there is a labelling for the vertices of QY) such that

1 1
g Yy T
M _ | 7
R(@) =YL )
LBT 9 ... 0

NG
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and there is a labelling for the vertices of Qér) such that

Sy Ty
RN =77 0] (6)
w0
Theorem 1. Let G be a bipartite graph. Then
RE ( {”) = RE (gé”) = RE(G). (7)

Proof. Let C = BT. From (5) and (6)
R (g{’) = Br*Y and R (gé’”)) =+,

We have RE <QY)) =FE (R ( {T))) and RE < ér)> =FE (R (Qér))) . We apply Lemma
1 to obtain

E(R(9")) =B (B") = B (B®)

and

Then

RE (67) = B (B®) and RE (65") = £ (C®). (8)
Finally, using the equalities RE (G) = E(R(G)) = E (B?®) and RE(G) = E(R(G)) =
E (C®) in (8), the result follows.

Given any bipartite graph G and r > 2, we have constructed two graphs gl(” and gé”
with the same Randié¢ energy of G. Clearly, if ny # ny then QY) and g;” are graphs of
different orders.

Corollary 1. If ny = ny, then R <g§r’) and R (gg”) are cospectral.

Proof. Since ny =nq, R < fr)) and R ( y)) are matrices of the same order. Then

[0 0 I 0 0
0 . 0
| ® ()
0 I : 0 I
LI 0 | I 0
[ 0 I7[o BT ... BT 0 I
B 0 0 0
0 : 0
LI 0 oj] B 0 0 I 0 0
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0 B B
BT 0 - 0 "
= : N : = R( 1 ) :
BT 0 --- 0
Therefore R ( Y)) and R ( ér)) are cospectral. |

3 Some examples

It is known that if G is a graph of order n with no isolated vertices then
2 < RE(G) gzgf (9)

Remark 1. If G is a bipartite graph of order n such that RE (G) = 2 L%J then the graphs
QY) and Qér) do not attain the upper bound in (9). In fact, RE( gt ) G) =
22| <2 |24 gnd RE ( ;T)) =RE(G) =2 2] <2|ztm].

Example 3. Let m,n > 2. Let P,, and S,, be the path and the star on n vertices, respec-
tively. Let K,,, be the complete bipartite graph. Clearly S, can be obtained from n — 1
copies of Py identifying one of its vertices. Then, from Theorem 1, RE (S,) = RE (P).
Since R(Py) = |:(1) (1):|, its follows RE (Py) = 2. Thus RE(S,) = 2 for all n > 2.
Moreover, it is easy to see that K, , can be obtained from m copies of S,y1 identifying

its pendant vertices. From Theorem 1, RE (K, ;) = RE (Spt1) = 2. For instance, K4

is obtained from 3 copies of S :

Example 4. Let n > 2. Let Csy, be the cycle on 2n vertices. Clearly, Cs, is a bipartite

graph. Labelling the vertices as above the Randié¢ of Cs, becomes

RCw=| gr o]
where B is an n X n circulant matriz of the form
1 0 0 1
. 1 0
B = 3 0 :
0
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An easy computation shows that

r [ BBT 0
with
21 0 01
12 1 0
1 :
BBT — BTB — 0 1 0 :
4| .
: oo 1
0 1 21
10 1
The eigenvalues of the last matriz are % + ;005 (21”) for k =1,...,n. We have % +

fcos(%”) = cos (’”’). Then

(7))

E(Cy) = QZ 0092
k=1

2 1+2200<

where L%J is the largest integer not exceeding 5. Applying the Dirichlet kernel

. i 1)
Dm:1+2ZCOSk/‘LE: M
k=1

we get .
2sin ((|2|+5)Z
E(CZW,) — ((bliflji 2) n) .
2n

Let (CZn)Y) be the graph obtained from r copies of Cay, identifying the vertices in Vi =
{1,2,...,n}. Applying Theorem 1,

E ((c%)gr)) _2sin(([5]+3) %)

3 5
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