
New Results on the Incidence Energy of
Graphs1

Jianbin Zhang a, Jianping Li a,b

aSchool of Mathematics, South China Normal University,
Guangzhou 510631, P.R. China

bFaculty of Applied Mathematics, Guangdong University of Technology,
Guangzhou 510090, P.R. China

(Received May 16, 2012)

Abstract

For a simple graph G, the incidence energy IE(G) is defined as the sum of all
singular values of its incidence matrix. In this paper, we determine the unique
graph with minimal incidence energy among all connected unicyclic graphs and
bicyclic graphs of order n, respectively. We also determine the unique graph
with maximal incidence energy in the two graph classes, respectively.

1 Introduction

Given a simple graph G with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) =

{e1, e2, . . . , em}, the incidence matrix X(G) = (xij) of G is an n ×m (vertex- edge)

matrix with xij = 1 if vi is incident to ej, and xij = 0 otherwise; the adjacency matrix

A(G) = (aij) of G is an n × n (vertex-vertex) symmetric matrix with aij = 1 if vi

and vj are adjacent, and aij = 0 otherwise. Denote the degree of vertex vi by d(vi),

the signless Laplacian matrix Q(G) of G is defined as Q(G) = D(G) + A(G), where

D(G) = diag(d(v1), d(v2), . . . , d(vn)) is the diagonal matrix of the degrees of G.

Let σ1, σ2, . . . , σn be the singular values of X(G), i. e., the square roots of the

eigenvalues of X(G)XT (G), where XT (G) is the transpose of X(G). Denote by

q1(G), q2(G), . . . , qn(G) the eigenvalues of Q(G). Then the incidence energy of the
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graph G is defined as [14]

IE(G) =
n∑

i=1

σi . (1)

Since the equality X(G)XT (G) = D(G) + A(G) = Q(G) always holds for a simple

graph G, the incidence energy of a graph G is also defined as [6]

IE(G) =
n∑

i=1

√
qi(G) . (2)

Let μ1, μ2, . . . , μn be the eigenvalues of the laplacian matrix L(G) = D(G)−A(G).

The Laplacian-like energy of G proposed by Liu and Liu [17] is defined as LEL(G) =∑n
i=1

√
μi. If G is a bipartite graph, then the spectra of L(G) and Q(G) coincide.

Thus IE(G) = LEL(G) for a bipartite graph G.

Let G be a connected graph with n vertices and m edges. Let S(G) be the

subdivision graph of G, that is, S(G) is obtained from G by inserting a new vertex in

each edge. Clearly, S(G) is a bipartite graph with n+m vertices and 2m edges. Let

QG(x) =
n∑

j=0

pj(G) xn−j and PS(G)(x) =

�n+m
2

	∑
j=0

a2j (S(G)) xn+m−2j

be the Q-polynomial of G and characteristic polynomial of S(G), respectively. It was

proved in [19] that

PS(G)(x) = xm−n QG(x
2) . (3)

From Eq.(3) we know that a2j(S(G)) = pj(G) for 0 ≤ j ≤ n, a2j(G) = 0 for

n < j ≤ �n+m
2

�, and±√q1(G),±√q2(G), . . . ,±√qn(G) and 0m−n are the eigenvalues

of S(G). Thus the incidence energy of G is also equal to [14]

IE(G) =
1

2
E(S(G)) (4)

where E(G) denotes the energy of G is defined as the sum of the absolute values of

all the eigenvalues of G. Details on E(G) can be found in [5, 8, 9, 15].

Let b2i(S(G)) = (−1)i a2i(S(G)). Then [2] b2i(S(G)) ≥ 0 for all i = 1, . . . , �n+m
2

�.
Further, b0(S(G)) = 1 and b2(S(G)) equals the number of edges of S(G). If G is

an acyclic graph, then b2i(G) = m(G, i), where m(G, i) denotes the number of i

independent edges in G.
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It is known [4,9] that for the bipartite graph S(G), E(S(G)) can be also expressed

as the Coulson integral formula

E(S(G)) =
2

π

∫ +∞

0

1

x2
ln

⎡
⎣1 + �(n+m)/2	∑

i=1

b2i(S(G)) x2i

⎤
⎦ dx . (5)

Thus for m ≥ n, we have [6]

IE(G) =
1

π

∫ +∞

0

1

x2
ln

[
1 +

n∑
i=1

(−1)i pi(G) x2i

]
dx . (6)

If for two bipartite graphs G1 and G2, the inequalities b2i(G1) ≤ b2i(G2) hold for all

i = 1, 2, . . . , �n/2�, then we say that G1 is smaller than G2, and write G1 � G2 or

G2 � G1. Moreover, if b2i(G1) < b2i(G2) holds for some i, we write G1 ≺ G2 or

G2 � G1. From Eq.(5) and Eq.(6) we know that for two bipartite graphs S(G1) and

S(G2),

S(G1) � S(G2) ⇒ IE(G1) ≤ IE(G2)

S(G1) ≺ S(G2) ⇒ IE(G1) < IE(G2) .

A spanning subgraph of G whose components are trees or unicyclic graphs is

called a TU-subgraph of G. Suppose that a TU-subgraph H of G contains c(H)

unicyclic graphs and s trees T1, T2, . . . , Ts. Then the weight W (H) of H is defined by

W (H) = 4c(H)
∏s

i=1(1+ |E(Ti)|). Clearly, the isolated vertices in H do not contribute

to W (H). It is known that [3]

(−1)i pi(G) =
∑
Hi

W (Hi)

where the summation runs over all TU-subgraphs Hi of G with i edges. The Sachs

theorem [2, 9] states that for i ≥ 1,

a2i(S(G)) =
∑
F∈L2i

(−1)p(F ) 2c(F )

where L2i denotes the set of Sachs graphs of S(G) with 2i vertices, that is, the graphs

in which every component is either a K2 or a cycle, p(F ) is the number of components

of F and c(F ) is the number of cycles contained in F . Thus we have

b2i(S(G)) =
∑
Hi

W (Hi) = (−1)i
∑
F∈L2i

(−1)p(F ) 2c(F )
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where Hi is the TU-subgraph of G with i edges and L2i is the set of the Sachs graph

of S(G) with 2i vertices.

Lemma 1. Let G be a simple graph, T be a tree with t edges, and u ∈ V (G), v ∈ V (T ).

Let G1 be the graph obtained from G and T by identifying the vertices u of G and v

of T , G2 be the graph obtained from G and the star St+1 by identifying the vertex u

of G and the unique central vertex of St+1. Then

IE(G1) ≥ IE(G2)

with equality if and only if T ∼= St+1 and v is its central vertex.

Proof. We label the edges of G1 and G2 such that the edges in G have the same

labels in the two graphs and E(T ) = E(St+1). Set E(G) = {et+1, et+2, . . . , em} and

E(T ) = {e1, e2, . . . , et} = E(St+1). Let Hi be an any TU-subgraph of G1, then

we can find a unique TU-subgraph H ′
i of G2 such that E(Hi) = E(H ′

i). Clearly,

c(Hi) = c(H ′
i). Let ei and ej be any two edges of E(Hi) (or E(H ′

i)). If ei and ej are

adjacent in Hi, then they must be adjacent in H ′
i, and the inverse assertion is not

true. It thus follows that

Claim 1: the edge set of each component of H ′
i must be the union of the edge set of

some components of Hi.

Here we denote by U the unicyclic graph, by T the tree. Let U ′
1, U

′
2, . . . , U

′
t , T

′
1,

T ′
2, . . . , T

′
x be the nontrivial components of H ′

i, then by Claim 1 we can suppose that

U1, U2, . . . , Ut, T
11, T 12, . . . , T 1i1 , T 21, T 22, . . . , T 2i2 , . . . , T t1, T t2, . . . , T tit ,

T11, T12, . . . , T1j1 , T21, T22, . . . , T2j2 , . . . , Tx1, Tx2, . . . , Txjx

are the components of Hi such that E(U ′
s) = E(Us)

is⋃
l=1

E(T sl)(1 ≤ s ≤ t), E(T ′
k) =

jk⋃
y=1

E(Tky) (1 ≤ k ≤ x), where Ui, U
′
i contain the same edge set in G. Thus we have

W (H ′
i) = 4t

x∏
i=1

(1 + |E(T ′
i )|) ≤ 4t

x∏
i=1

(
ji∏
l=1

(1 + |E(Til|)
)

= W (Hi)

with equality if and only if E(U ′
i) = E(Ui) (1 ≤ i ≤ t), and j1 = j2 = · · · = jx = 1.

Thus b2i(S(G1)) ≥ b2i(S(G2)) for 0 ≤ i ≤ n, with equalities if and only if G1
∼= G2.
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That is, S(G1) � S(G2) with equality if and only if T ∼= St+1 and v is its central

vertex.

By Lemma 1 it is easy to prove that the star Sn is the unique tree on n vertices

with minimum incidence energy. Note that [4, 8] Pn is the unique tree on n vertices

with maximum energy and the subdivision of a tree is still a tree. Thus, for any tree

T on n vertices, we have [6, 7, 14, 18]

IE(Sn) ≤ IE(T ) ≤ IE(Pn)

with left (right, respectively) equality if and only if G ∼= Sn (T ∼= Pn, respectively).

If G1 is a subgraph of G2, then the TU-subgraph H of G1 is also that of G2. Thus

S(G1) � S(G2). Thus, for any simple connected graph G with n vertices, we have [14]

IE(Sn) ≤ IE(G) ≤ IE(Kn)

with left (right, respectively) equality if and only if G ∼= Sn (G ∼= Kn, respectively).

In order to obtain our main results we need the following lemmas.

Lemma 2. [16] Let uv be an edge of a bipartite graph G, then

b2i(G) = b2i(G− uv) + b2i−2(G− u− v) + 2
∑

Cl∈C(uv)
(−1)1+

l
2 b2i−l(G− Cl)

where C(uv) is the set of cycles containing uv. In particular, if uv is a pendant edge

of G with the pendent vertex v, then

b2i(G) = b2i(G− v) + b2i−2(G− u− v) .

By means of Lemma 2 it is easy to prove:

Lemma 3. [10] Let Xn,i be the graph obtained from the bipartite graph X and the

path Pn = v1v2 . . . vn by identifying the vertex u of X and vi of Pn. Then

Xn,1 � Xn,3 � Xn,5 � · · · � Xn,4 � Xn,2 .

-781-



2 The incidence energy of a unicyclic graph

Let G be a unicyclic graph on n vertices, S(G) the subdivision graph of G. It is easy to

prove that S(G) contains a perfect matching. Let P l
n be the unicyclic graph obtained

by connecting a vertex of Cl with a pendent vertex of Pn−l . Hou et al. [11] proved

that P 6
n has the largest energy among all unicyclic bipartite n-vertex graphs except

possibly the cycle Cn . Huo et al. [13] and Andriantiana [1] showed independently

that the energy of P 6
n is greater than that of Cn for even number n ≥ 16. Since S(G)

is a bipartite graph and S(P 3
n)

∼= P 6
2n, combining the above results and Eq.(4), we

get:

Theorem 1. Let G be a unicyclic graph with n vertices, n ≥ 8. Then IE(G) ≤
IE(P 3

n) with equality if and only if G ∼= P 3
n .

Let U s
k(l1, l2, . . . , lk) be the graph obtained from Cs by attaching k pendent paths

of respectively lengths l1, l2, . . . , lk at a vertex of Cs. Let U s
n be the graph obtained

from Cs by adding n − s pendent vertices adjacent to a vertex of Cs. Clearly, U s
n
∼=

U s
n−s(

n−s︷ ︸︸ ︷
1, . . . , 1) and U l

1(n − l) ∼= P l
n. Let Tk(l1, l2, . . . , lk) be the star-like tree with k

pendent paths of respectively lengths l1, l2, . . . , lk. Clearly, Tn−1(

n−1︷ ︸︸ ︷
1, . . . , 1) ∼= Sn .

Lemma 4. Let G be a unicyclic graph on n vertices with girth g ≥ 4. Then IE(G) ≥
IE(U4

n) with equality if and only if G ∼= U4
n .

Proof. It suffices to prove that b2k(S(G)) ≥ b2k(S(U
4
n)) for any positive integer k, and

the equalities always hold if and only if G ∼= U4
n. We use induction on n to prove it.

If n = g, then G ∼= Cg, and by Lemma 2 it follows that b2g(C2g) = 2 + (−1)g+1 · 2 ≥
0 = b2g(S(U

4
n)). Suppose now 1 ≤ k ≤ g − 1. Then by Lemma 2, we have

b2k(C2g) = m(P2g, k) +m(P2g−2, k − 1),

b2k(S(U
4
n)) = m(Tn−2(4, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), k) +m(Tn−2(3,

n−3︷ ︸︸ ︷
2, . . . , 2), k − 1)− 2

(
n− 4

k − 4

)
.

In [4] it was shown that m(Pn, k) ≥ m(T, k) for any tree T on n vertices, and

these equalities hold if and only if T ∼= Pn. Thus b2k(S(Cg)) > b2k(S(U
4
n)) for all

1 ≤ k ≤ g − 1. Hence the result is true for n = g. Suppose now n ≥ g + 1. Then
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G �∼= Cn and G contains many pendent vertices. By Lemma 1 we can assume that

all vertices of G except those in Cg are pendent vertices, each of which is adjacent to

some vertex of Cg. Let uv be a pendent edge with pendent vertex u, and u′ be the

new vertex of S(G) inserted in uv. From the fact that S(G)− v − u′ is a forest and

Lemma 2, we have

b2k(S(G)) = b2k(S(G)− vu′) + b2k−2(S(G)− v − u′, k − 1)

= b2k(S(G)− vu′) +m(S(G)− v − u′, k − 1)

= b2k(S(G− u) ∪ P2) +m(S(G)− v − u′, k − 1)

b2k(S(U
4
n)) = b2k(S(U

4
n−1) ∪ P2) +m(P1 ∪ (n− 5)P2 ∪ P7, k − 1) .

By the induction hypothesis, b2k(S(G− u) ∪ P2) ≥ b2k(S(U
4
n−1) ∪ P2). Therefore,

b2k(S(G))− b2k(S(U
4
n))

≥ m(S(G)− v − u′, k − 1)−m(P1 ∪ (n− 5)P2 ∪ P7, k − 1) .

Let M be a perfect matching of S(G), and e1, e2 ∈ M , where e1(e2) is incident with

v(u′). Then M − e1 − e2 is a maximal matching of S(G) − v − u′. It saturates all

vertices of S(G)− {V (C2g)} − u′ − u. Since g ≥ 4, P1 ∪ (n− 5)P2 ∪ P7 is a spanning

subgraph of S(G)−v−u′. So m(S(G)−v−u′, k−1) ≥ m(P1∪ (n−5)P2∪P7, k−1),

i. e., b2k(S(G)) ≥ b2k(S(U
4
n)). These equalities hold if and only if G− u ∼= U4

n−1 and

S(G)− v − u′ ∼= P1 ∪ (n− 5)P2 ∪ P7, i. e., G ∼= U4
n .

Lemma 5. Let G be a unicyclic graph on n vertices with girth 3. Then IE(G) ≥
IE(U3

n) with equality if and only if G ∼= U3
n .

Proof. Similarly, we can assume that all vertices of G except these in C3 are all

pendent vertices. We prove it by induction on n. The case n = 3 or 4 is obvious since

in these cases G ∼= U3
n. Suppose, now n ≥ 5. Using the Sachs theorem we obtain

b2k(S(G)) = m(S(G), k) + 2m(S(G)− C6, k − 3)

and

b2k(S(U
3
n)) = m(U3

n, k) + 2

(
n− 3

k − 3

)
.
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Note that S(G)− V (C6) ∼= (n− 3)P2 . Then we have

b2k(S(G))− b2k(S(U
3
n)) = m(S(G), k)−m(U3

n, k) .

Suppose u, v, u′ are the same vertices as the proof of Lemma 4. Then

m(S(G), k) = m(S(G− u) ∪ uu′, k) +m(S(G)− v − u′, k − 1)

and

m(U3
n, k) = m(S(U3

n−1) ∪ P2, k) +m(P5 ∪ (n− 3)P2, k − 1) .

Combining the induction hypothesis and the fact thematching number of S(G)−v−u′

is n−2 and P5∪(n−3)P2 is its subgraph of S(G)−v−u′, it follows that m(S(G), k) ≥
m(S(U3

n), k) for any positive integer k. If b2k(S(G)) = b2k(S(U
3
n)) for any positive

integer k, then P5∪(n−3)P2
∼= S(G)−v−u′, which implies that G has n−3 pendent

vertices adjacent to v of C3, i. e., G ∼= U3
n .

Theorem 2. (i) Let G be a unicyclic graph with n vertices, 6 ≤ n ≤ 27. Then

IE(G) ≥ IE(U4
n) with equality if and only if G ∼= U4

n .

(ii) Let G be a unicyclic graph with n ≥ 28 vertices. Then IE(G) ≥ IE(U3
n) with

equality if and only if G ∼= U3
n .

Proof. By Lemmas 4 and 5 we only need to compare the energies of S(U3
n) and S(U4

n) .

By simple computation it follows that the characteristic polynomials of S(U3
n) and

S(U4
n) are

PS(U3
n)
(x) = (x2 − 1)n−3[x6 − (n+ 3)x4 + 3nx2 − 4]

PS(U4
n)
(x) = x2(x2 − 2)(x2 − 1)n−5[x6 − (n+ 3)x4 + (4n− 2)x2 − 2n] .

Let x1, x2, x3 (x1 ≥ x2 ≥ x3) be the three positive roots of f(x) = x6 − (n +

3)x4 + 3nx2 − 4, and y1, y2, y3 (y1 ≥ y2 ≥ y3) be the three positive roots of g(x) =

x6 − (n+ 3)x4 + (4n− 2)x2 − 2n. Then we get

1

2
E(S(U3

n)) = n− 3 + x1 + x2 + x3

1

2
E(S(U4

n)) =
√
2 + n− 5 + y1 + y2 + y3 .
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By using Maple we can easily obtain the result for 6 ≤ n < 200. Assume that n ≥ 200.

By direct calculation we have that for n ≥ 200,

f(0) = −4 < 0, f(0.085) = −4.000156225 + 0.02162279938n > 0

f(1.73) = −4.06359790 + 0.02124959n > 0, f(
√
3) = −4 < 0

f(
√
n) = −4 < 0

f(
√
n− 1 + 0.2) = 3.3424n+ 3.34592

√
n− 1− 0.64n2 − 3.3872n

√
n− 1

+ 0.4n2
√
n− 1− 4.708736

> (0.4n− 3.872)n
√
n− 1− 0.64n2

> (0.3
√
n− 1− 0.64)n2 > 0 .

These inequalities imply that x1 <
√
n− 1+0.2, x2 <

√
3 and x3 < 0.085 for n ≥ 200.

Similarly, we have that g(0.76) = −1.963365351 − 0.02322176n < 0, g(0.8) =

−2.246656 + 0.1504n > 0, g(1.845) = −2.12645629 + 0.0287138n > 0, g(1.9) =

0.729381 − 0.5921n < 0, g(
√
n− 1) < 0, g(

√
n) > 0. So we have y1 >

√
n− 1, y2 >

1.845, y3 > 0.76. Thus it follows that

1

2
E(S(U4

n)) =
√
2 + n− 5 + y1 + y2 + y3

>
√
2 + n− 5 + 2.605 +

√
n− 1

> n− 3 +
√
3 + 0.085 + 0.2 +

√
n− 1

>
1

2
E(S(U3

n))

as desired.

3 The incidence energies of bicyclic graphs

Let P 6,6
n be the graph obtained from two copies of C6 joined by a path Pn−10, and

P 3,3
n be the graph obtained from two copies of C3 joined by a path Pn−4. Clearly,

S(P 3,3
n ) ∼= P 6,6

2n+1. Let Bn denote the class of all bipartite bicyclic graphs but not

the graph Ra;b, which is obtained from joining two cycles Ca and Cb(a, b ≤ 10 and

a ≡ b ≡ 2(mod 4)) by an edge. Li et al. [16] proved that P 6,6
n is the unique graph on

n vertices with maximal energy in Bn. Huo et al. [12] proved that E(P 6,6
n ) > E(Ra,b).

Thus we get:
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Theorem 3. Let G be a bicyclic graph with n vertices, where n ≥ 6. Then IE(G) ≤
IE(P 3,3

n ) with equality if and only if G ∼= P 3,3
n .

Let θ(a, b, c) be the graph obtained by connecting isolated vertices u and v by

three paths of respectively lengths a, b, c. Let θ∗n(a, b, c) be the graph obtained from

θ(a, b, c) by adding n− (a+ b+ c) + 1 pendent vertices adjacent to v.

Lemma 6. Let G be a bicyclic graph on n vertices, which has a subgraph isomorphic

to θ(a, b, c). Then S(G) � S(θ∗n(a, b, c)) with equality if and only if G ∼= θ∗n(a, b, c).

Proof. The proof is by induction on n. The case n = a+ b+ c− 1 is obvious since in

this case G ∼= θ∗n(a, b, c). Thus, assume n ≥ a + b + c. By Lemma 1 we can suppose

that all vertices of G except the vertices in θ(a, b, c) are all pendent vertices. Let wr

be a pendent edge, where w be a vertex of θ(a, b, c). Let w′ be the vertex of S(G)

adjacent to w and r. Using Lemma 2 we get

b2k(S(G)) = b2k(S(G)− ww′) + b2k−2(S(G)− w − w′)

= b2k(S(G− r) ∪ w′r) + b2k−2(S(G)− w − w′)

and

b2k(S(θ
∗
n(a, b, c))) = b2k(S(θ

∗
n−1(a, b, c)) ∪ P2))

+ m(T3(2a− 1, 2b− 1, 2c− 1) ∪ (n− a− b− c)P2 ∪ P1, k − 1)

Clearly, G− r satisfies the inductive hypothesis, and so

b2k(S(G)) − b2k(S(θ
∗
n(a, b, c))) ≥ b2k−2(S(G)− w − w′)

− m(T3(2a− 1, 2b− 1, 2c− 1) ∪ (n− a− b− c)P2 ∪ P1, k − 1) .

If w is the vertex of degree 3 in θ(a, b, c), then T3(2a − 1, 2b − 1, 2c − 1) ∪ (n − a −
b− c)P2 ∪ P1 is a spanning subgraph of S(G)− w − w′, and b2k−2(S(G)− w − w′) ≥
m(T3(2a − 1, 2b − 1, 2c − 1) ∪ (n − a − b − c)P2 ∪ P1, k − 1). Equalities always hold

if and only if T3(2a − 1, 2b − 1, 2c − 1) ∪ (n − a − b − c)P2 ∪ P1
∼= S(G) − w − w′,

that is, G ∼= θ∗n(a, b, c). Hence S(G) � S(θ∗n(a, b, c)) with equality if and only if

G ∼= θ∗n(a, b, c).
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Otherwise, without loss of generality we suppose w is an inner vertex of Pa+1 in

θ(a, b, c). Let C2b+2c(x, y) be the graph obtained by connecting isolated vertices u and

v by two paths of lengths 2b, 2c, respectively, and by identifying a pendent vertex of

the path Px+1 and u, and a pendent vertex of the path Py+1 and v, respectively. Let

G be a graph with unique cycle C2l, and m∗(G, k) denote the number of k-matching

in G, each of which contains at most l − 1 edges of C2l. Then

b2k−2(S(G)− w − w′) ≥ m∗(S(G)− w − w′, k − 1)

≥ m∗(C2b+2c(x, y) ∪ (n− a− b− c)P2 ∪ P1, k − 1)

where x, y ≥ 1, x ≡ y ≡ 1 (mod 2) and x+ y = 2a− 2. Note that for all positive s,

m∗(C2b+2c(x, y), s) = m∗(U2b+2c
1 (y), s) +m(T3(y, 2b− 1, 2c− 1) ∪ Px−1, s− 1)

= m∗(C2b+2c ∪ Py ∪ Px, s) +m(P2b+2c−1 ∪ Py−1 ∪ Px, s− 1)

+ m(T3(y, 2b− 1, 2c− 1) ∪ Px−1, s− 1)

and

m(T3(2a− 1, 2b− 1, 2c− 1), s)

= m(T3(y + 1, 2b− 1, 2c− 1) ∪ Px, s) +m(T3(y, 2b− 1, 2c− 1) ∪ Px−1, s− 1)

= m(T3(1, 2b− 1, 2c− 1) ∪ Py ∪ Px, s) +m(P2b+2c−1 ∪ Py−1 ∪ Px, s− 1)

+ m(T3(y, 2b− 1, 2c− 1) ∪ Px−1, s− 1) .

Further, m∗(C2b+2c, t) ≥ m(P2b+2c, t) ≥ m(T3(1, 2b−1, 2c−1), t) for 2 ≤ t ≤ b+ c−1,

m∗(C2b+2c, b + c) = m(T3(1, 2b− 1, 2c− 1), b + c) = 0 and m∗(C2b+2c, 1) = 2b + 2c >

m(T3(1, 2b− 1, 2c− 1), 1) = 2b+ 2c− 1. So we have

b2k−2(S(G)− w − w′)

≥ m∗(C2b+2c(x, y) ∪ (n− a− b− c)P2 ∪ P1, k − 1)

≥ m(T3(2a− 1, 2b− 1, 2c− 1) ∪ (n− a− b− c)P2 ∪ P1, k − 1) .

The last inequality is strict for k = 2. Hence the result follows.

Lemma 7. Let G be a bicyclic graph on n vertices with girth g ≥ 4 and containing

θ-subgraph. Then IE(G) ≥ IE(θ∗n(2, 2, 2)) with equality if and only if G ∼= θ∗n(2, 2, 2).

-787-



Proof. LetG be a bicyclic graph with n vertices, and θ(a, b, c) be its induced subgraph.

By Lemma 6, it suffices to prove to S(θ∗n(a, b, c)) � S(θ∗n(2, 2, 2)), where n ≥ a+b+c−1

and g(θ∗n(a, b, c)) ≥ 4. By induction on n to prove it. We first suppose that n =

a + b + c− 1 i. e., G ∼= θ(a, b, c). Then S(θ(a, b, c)) = θ(2a, 2b, 2c). We will consider

the following three cases.

Case 1: c+ a ≡ c+ b ≡ 1 (mod 2).

Subcase 1: c = 1. Then a, b are two even number of greater than 3. Using Lemma

2 we get

b2k(θ(2a, 2b, 2)) = b2k(U
2b+2
1 (2a− 1)) +m(T3(2a− 2, 2b− 1, 1), k − 1)

− 2m(P1, k − a− b) + 2m(P2b−1, k − a− 1)

≥ b2k(U
2b+2
1 (2a− 1)) +m(T3(2a− 2, 2b− 1, 1), k − 1)

and

b2k(S(θ
∗
n(2, 2, 2))) = b2k(U

8
n−4(3,

n−5︷ ︸︸ ︷
2, . . . , 2)) +m(Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), k − 1)

− 4m(P3 ∪ (n− 5)P2, k − 4).

So we have

b2k(θ(2a, 2b, 2))− b2k(S(θ
∗
n(2, 2, 2)))

≥ b2k(U
2b+2
1 (2a− 1)) +m(T3(2a− 2, 2b− 1, 1), k − 1)

− [b2k(U
8
n−4(3,

n−5︷ ︸︸ ︷
2, . . . , 2)) +m(Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), k − 1)]

= b2k(U
2b+2
1 (2a− 1))− b2k(U

8
n−4(3,

n−5︷ ︸︸ ︷
2, . . . , 2))

+

⎡
⎣m(T3(2a− 2, 2b− 1, 1), k − 1)−m(Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), k − 1)

⎤
⎦ .

We look at the last two parts separately. The first part is

b2k(U
2b+2
1 (2a− 1))− b2k(U

8
n−4(3,

n−5︷ ︸︸ ︷
2, . . . , 2))

=
[
b2k(U

2b+2
1 (2a− 4) ∪ P3) + b2k−2(U

2b+2
1 (2a− 5) ∪ P2)

]
− [

b2k(S(U
4
n−1) ∪ P3) +m(P7 ∪ (n− 4)P2, k − 1)

]
≥ b2k−2(U

2b+2
1 (2a− 5) ∪ P2)−m(P7 ∪ (n− 4)P2, k − 1) (from Lemma 4)
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≥ m(P2n−3 ∪ P2, k − 1)−m(P7 ∪ (n− 4)P2, k − 1) (since b+ 1 ≡ 1 (mod 2))

≥ 0,

the second inequality is strict for k = 2. The second part is

m(T3(2a− 2, 2b− 1, 1), k − 1)−m(Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), k − 1)

≥ m(T3(2a+ 2b− 8, 5, 1), k − 1)−m(Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), k − 1) (by Lemma 3)

= m(T3(2n− 8, 5, 1), k − 1)−m(Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), k − 1) (since a+ b = n).

Claim 2: For n ≥ 6, T3(2n− 8, 5, 1), s) � Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2).

Proof. The proof is by induction on n. Suppose that n = 6, we can compute that

PT3(4,5,1)(x) = x11 − 10x9 + 35x7 − 51x5 + 28x3 − 4x

PT4(3,3,2,2)(x) = x11 − 10x9 + 33x7 − 46x5 + 26x3 − 4x .

Comparing their coefficients the claim follows. Suppose that n ≥ 7 and the result is

true for less than n. By Lemma 2 it follows that

m(T3(2n− 8, 5, 1), s) = m(T3(2n− 10, 5, 1) ∪ P2, s) +m(T3(2n− 11, 5, 1) ∪ P1, s− 1)

and

m(Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), s) = m(Tn−3(3, 3,

n−5︷ ︸︸ ︷
2, . . . , 2) ∪ P2, s)

+ m(2P3 ∪ (n− 5)P2 ∪ P1, s− 1) .

Note that 2P3 ∪ (n− 5)P2 ∪ P1 is a proper subgraph of T3(2n− 11, 5, 1) ∪ P1 and by

the induction hypothesis the inequality

m(T3(2n− 10, 5, 1) ∪ P2, s) ≥ m(Tn−3(3, 3,

n−5︷ ︸︸ ︷
2, . . . , 2) ∪ P2, s)

holds. So the Claim follows.

From Claim 2, T3(2a− 2, 2b− 1, 1) � Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), k− 1) for n ≥ 6. There-

fore, for c = 1, we can get that θ(2a, 2b, 2)) � S(θ∗n(2, 2, 2)), i. e., IE(θ(a, b, 1)) >

IE(θ∗n(2, 2, 2)).
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Subcase 2: c ≥ 2. Then

b2k(θ(2a, 2b, 2c)) = b2k(U
2a+2b
1 (2c− 1)) +m(T3(2a− 1, 2b− 1, 2c− 2), k − 1)

+ 2b2k−2a−2c(P2b−1) + 2b2k−2b−2c(P2a−1)

≥ b2k(U
2a+2b
1 (2c− 1)) +m(T3(2a− 1, 2b− 1, 2c− 2), k − 1) .

Similarly, we have that

b2k(θ(2a, 2b, 2c))− b2k(S(θ
∗
n(2, 2, 2)))

≥ [b2k(U
2a+2b
1 (2c− 1))− b2k(U

8
n−4(3,

n−5︷ ︸︸ ︷
2, . . . , 2))]

+ [m(T3(2a− 1, 2b− 1, 2c− 2), k − 1)−m(Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2), k − 1)] .

By a similar argument as above, we can prove that for n ≥ 6 U2a+2b
1 (2c − 1)) �

U8
n−4(3,

n−5︷ ︸︸ ︷
2, . . . , 2) and T3(2a−1, 2b−1, 2c−2) � Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2) for a = 1 or b = 1.

Hence θ(2a, 2b, 2c)) � S(θ∗n(2, 2, 2)) for n ≥ 6 and a = 1 or b = 1. Suppose now

a, b ≥ 2, and by Lemma 3 it follows that for n ≥ 6

T3(2a− 1, 2b− 1, 2c− 2) � T4(2a− 3, 2b− 1, 2c− 2, 2) � . . . � Tn−2(3, 3,

n−4︷ ︸︸ ︷
2, . . . , 2) .

So θ(2a, 2b, 2c)) � S(θ∗n(2, 2, 2)) for a, b ≥ 2 and completes the proof of this subcase.

Case 2: c+ a ≡ 0, c+ b ≡ 1 (mod 2). Then b+ a ≡ 1, c+ b ≡ 1 (mod 2). This case is

reduced to above case.

Case 3: c+a ≡ 0, c+ b ≡ 0 (mod 2), then a ≡ b ≡ c (mod 2). Assume that c ≥ b ≥ a.

Using Lemma 2 we obtain

b2k(S(θ(a, b, c)) = b2k(θ(2a, 2b, 2c)

= b2k(U
2a+2b
1 (2c− 1)) +m(T3(2c− 2, 2a− 1, 2b− 1), k − 1)

− 2m(P2b−1, k − a− c)− 2m(P2a−1, k − b− c)

and

b2k(θ
∗
a+b+c−1(a, b, c− 2)

= b2k(U
2a+2b
3 (2c− 5, 2, 2) +m(T5(2c− 6, 2a− 1, 2b− 1, 2, 2), k − 1)
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− 2m(P2b−1 ∪ 2P2, k − a− c+ 2)− 2m(P2a−1 ∪ 2P2, k − b− c+ 2) .

Clearly, −2m(P2b−1, k− a− c)− 2m(P2a−1, k− b− c) ≥ −2m(P2b−1 ∪ 2P2, k− a− c+

2)− 2m(P2a−1 ∪ 2P2, k− b− c+2). And by Lemma 3, it follows that b2k(U
2a+2b
1 (2c−

1)) ≥ b2k(U
2a+2b
3 (2c − 5, 2, 2) and b2k−2(T3(2c − 2, 2a − 1, 2b − 1)) ≥ b2k−2(T5(2c −

6, 2a − 1, 2b − 1, 2, 2)). Each of the two inequalities is strict for some k. Hence

S(θ(a, b, c)) � S(θ∗a+b+c−1(a, b, c−2)). Similarly, we can prove that S(θ∗a+b+c−1(a, b, c−
2)) � S(θ∗a+b+c−1(a, b, c − 4)). Thus we have that S(θ(a, b, c)) � S(θ∗a+b+c−1(1, 3, 3))

for odd numbers a, b, c, and S(θ(a, b, c)) � S(θ∗a+b+c−1(2, 2, 2)) for even numbers a, b, c.

So we only need to prove that S(θ∗a+b+c−1(1, 3, 3)) � S(θ∗a+b+c−1(2, 2, 2)). By direct

computation we can prove S(θ(1, 3, 3)) � S(θ∗6(2, 2, 2), the remain proof is reduce to

following proof for the graph with at least one pendent vertex. So the result is true

for n = a+ b+ c− 1. We suppose that n ≥ a+ b+ c.

If a, b, c ≥ 2, then by Lemma 2 it follows that

b2k(S(θ
∗
n(a, b, c))) = b2k(S(θ

∗
n−1(a, b, c)) ∪ P2)

+ m(T3(2a− 1, 2b− 1, 2c− 1) ∪ (n− a− b− c)P2 ∪ P1, k − 1)

and

b2k(S(θ
∗
n(2, 2, 2))) = b2k(S(θ

∗
n−1(2, 2, 2)) ∪ P2)

+ m(T3(3, 3, 3) ∪ (n− 6)P2 ∪ P1, k − 1) .

From the induction hypothesis and the fact that T3(3, 3, 3)∪ (n− 6)P2 ∪P1 is the

spanning subgraph of T3(2a − 1, 2b − 1, 2c − 1) ∪ (n − a − b − c)P2 ∪ P1, it follows

that b2k(S(θ
∗
n−1(a, b, c)) ∪ P2) ≥ b2k(S(θ

∗
n−1(2, 2, 2)) ∪ P2) and b2k−2(T3(2a − 1, 2b −

1, 2c − 1) ∪ (n − a − b − c)P2 ∪ P1) ≥ b2k−2(T3(3, 3, 3) ∪ (n − 6)P2 ∪ P1). Hence

b2k(S(θ
∗
n(a, b, c))) ≥ b2k(S(θ

∗
n(2, 2, 2))). The second equality for k = 2 holds if and

only if a = 2, b = 2, c = 2, that is, G ∼= θ∗n(2, 2, 2).

If a = 1, then b, c ≥ 3. By Lemma 2 we have

b2k(S(θ
∗
n(1, b, c))) = b2k(S(θ

∗
n−1(1, b, c)) ∪ P2)

+ m(T3(2b− 1, 2c− 1, 1) ∪ (n− b− c− 1)P2 ∪ P1, k − 1)

≥ b2k(S(θ
∗
n−1(1, b, c)) ∪ P2)
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+ m(T3(5, 5, 1) ∪ (n− 7)P2 ∪ P1, k − 1) .

The last inequality holds since T3(5, 5, 1) ∪ (n − 7)P2 ∪ P1 is a subgraph of T3(2b −
1, 2c− 1, 1)∪ (n− b− c− 1)P2 ∪P1. By the induction hypothesis, it suffices to prove

that m(T3(5, 5, 1)∪ (n− 7)P2∪P1, k− 1) ≥ m(T3(3, 3, 3)∪ (n− 6)P2∪P1, k− 1), that

is, T3(5, 5, 1) � T3(3, 3, 3) ∪ P2. By direct computation it follows that

PT3(5,5,1)(x) = x12 − 11x10 + 44x8 − 78x6 + 59x4 − 15x2

PT3(3,3,3)∪P2(x) = x12 − 10x10 + 36x8 − 59x6 + 44x4 − 12x2 .

Comparing the coefficients we can obtain T3(5, 5, 1) � T3(3, 3, 3)∪P2, i. e., T3(5, 5, 1)∪
(n− 7)P2 ∪ P1 � T3(3, 3, 3) ∪ (n− 6)P2 ∪ P1. So S(θ∗n(a, b, c)) � S(θ∗n(2, 2, 2)).

Lemma 8. Let a ≥ 3 be an odd number. Then S(Ua+2
n )) � S(Ua

n).

Proof. The proof is by induction on n. If n = a+2, then Ua+2
n = Ca+2. Using Lemma

2 we get

b2k(S(U
a+2
n )) = m(P2a+4, k) +m(P2a+2, k − 1) + 2Ak

where

Ak =

{
1 if k = a+ 2

0 otherwise

and

b2k(S(U
a
n)) = m(T3(2a− 1, 2, 2), k) +m(P2a−2 ∪ 2P2, k − 1) + 2m(2P2, k − a)

where

m(2P2, k − a) =

⎧⎪⎪⎨
⎪⎪⎩

1 if k = a or k = a+ 2

2 if k = a+ 1

0 otherwise.

Note that m(P2a+4, k) ≥ m(T3(2a− 1, 2, 2), k). Then

b2k(S(U
a+2
n )) − b2k(S(U

a
n)) ≥ m(P2a+2, k − 1)

+ 2Ak −m(P2a−2 ∪ 2P2, k − 1)− 2m(2P2, k − a)

If k ≤ a − 1 or k = a + 2, then m(P2a+2, k − 1) ≥ m(T3(2a − 2, 2, 2), k − 1), and

2Ak = 2m(2P2, k − a). And so b2k(S(U
a+2
n ))− b2k(S(U

a
n)) ≥ 0.

If k = a, then

m(P2a+2, k − 1) + 2Ak − (m(P2a−2 ∪ 2P2, k − 1) + 2m(2P2, k − a))
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= m(P2a+2, k − 1)− [m(P2a−2 ∪ 2P2, k − 1) + 2]

=

(
a+ 3

a− 1

)
−
[(

a− 1

a− 1

)
+ 2

(
a

a− 2

)
+

(
a+ 1

a− 3

)
+ 2

]

=
2a3 − 3a2 + 7a− 18

6
> 0 (for a ≥ 3) .

If k = a+ 1, then

m(P2a+2, k − 1) + 2Ak − (m(P2a−2 ∪ 2P2, k − 1) + 2m(2P2, k − a))

= m(P2a+2, k − 1)− [m(P2a−2 ∪ 2P2, k − 1) + 4]

=

(
a+ 2

a

)
−
[(

a− 2

a

)
+ 2

(
a− 1

a− 1

)
+

(
a

a− 2

)
+ 4

]

=
4a− 10

2
> 0 (for a ≥ 3) .

So the result is true for n = a+ 2.

Suppose now n > a+ 2. Then by Lemma 2 we have

b2k(S(U
a+2
n ))) = b2k(S(U

a+2
n−1) ∪ P2) +m(P2a+3 ∪ (n− a− 3)P2 ∪ P1, k − 1)

and

b2k(S(U
a
n))) = b2k(S(U

a
n−1) ∪ P2) +m(P2a−1 ∪ (n− a− 1)P2 ∪ P1, k − 1) .

Note that P2a+3∪ (n−a−3)P2∪P1 is a proper subgraph of P2a−1∪ (n−a−1)P2∪P1.

Then m(P2a+3∪ (n−a−3)P2∪P1, k−1) ≥ m(P2a−1∪ (n−a−1)P2∪P1, k−1), which

is strict for k = 2. By the induction hypothesis, it follows that S(Ua+2
n ) � S(Ua

n).

Lemma 9. Let G be a bicyclic graph with n vertices containing θ(1, 2, a)-subgraph,

where a is an even number of greater than 2. Then IE(G) > IE(θ∗n(1, 2, 2)).

Proof. By Lemma 6, we only need to prove that IE(θ∗n(1, 2, a)) > IE(θ∗n(1, 2, 2)) for

even number a > 2. Using Lemma 2 we have

b2k(S(θ
∗
n(1, 2, a+ 2)))

= b2k(U
2a+6
n−a−3(3,

n−a−4︷ ︸︸ ︷
2, . . . , 2)) +m(Tn−a−1(2a+ 3,

n−a−3︷ ︸︸ ︷
2, . . . , 2, 1), k − 1)
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+ 2m(P2a+3 ∪ (n− a− 4)P2, k − 3)− 2m(P1 ∪ (n− a− 4)P2, k − a− 4)

and

b2k(S(θ
∗
n(1, 2, a)))

= b2k(U
2a+2
n−a−1(3,

n−a−2︷ ︸︸ ︷
2, . . . , 2)) +m(Tn−a+1(2a− 1,

n−a−1︷ ︸︸ ︷
2, . . . , 2, 1), k − 1)

+ 2m(P2a−1 ∪ (n− a− 2)P2, k − 3)− 2m(P1 ∪ (n− a− 2)P2, k − a− 2) .

Clearly, m(P2a+3 ∪ (n − a − 4)P2, k − 3) ≥ m(P2a−1 ∪ (n − a − 2)P2, k − 3) and

m(P1 ∪ (n− a− 4)P2, k − a− 4) < m(P1 ∪ (n− a− 2)P2, k − a− 2). From Lemma 2

we have m(Tn−a−1(2a + 3,

n−a−3︷ ︸︸ ︷
2, . . . , 2, 1), k − 1) ≥ m(Tn−a+1(2a − 1,

n−a−1︷ ︸︸ ︷
2, . . . , 2, 1), k − 1).

So we can get that

b2k(S(θ
∗
n(1, 2, a+ 2)))− b2k(S(θ

∗
n(1, 2, a)))

≥ b2k(U
2a+4
n−a−3(3,

n−a−4︷ ︸︸ ︷
2, . . . , 2))− b2k(U

2a
n−a−1(3,

n−a−2︷ ︸︸ ︷
2, . . . , 2))

= [b2k(S(U
a+3
n−2) ∪ P2) +m(P2a+3 ∪ (n− a− 4)P2 ∪ P1, k − 1)]

− [b2k(S(U
a+1
n−2) ∪ P2) +m(P2a−1 ∪ (n− a− 2)P2 ∪ P1, k − 1)] (from Lemma 2)

≥ m(P2a+3 ∪ (n− a− 4)P2 ∪ P1, k − 1)−m(P2a−1 ∪ (n− a− 2)P2 ∪ P1, k − 1)

(from Lemma 8)

≥ 0 (it is strict for k = 2).

It follows that S(θ∗n(1, 2, a+ 2)) � S(θ∗n(1, 2, a)), and hence IE(G) > IE(θ∗n(1, 2, 2)).

Lemma 10. Let G be a bicyclic graph with n vertices containing θ(1, 2, a)-subgraph,

where a is an odd number of greater than 3, then IE(G) > IE(θ∗n(1, 2, 3)).

Proof. By Lemma 6, we only need to prove that IE(θ∗n(1, 2, a)) > IE(θ∗n(1, 2, 3))

holds for odd number a > 3. Note that by the Sachs theorem, b0(S
∗
n(1, 2, a)) =

b0(S
∗
n(1, 2, 3)) = 1 and b2n(S(θ

∗
n(1, 2, a)) = 0 = b2n(S(θ

∗
n(1, 2, 3)). Now, we assume

that 1 ≤ k < n. By Lemma 2 we have

b2k(S(θ
∗
n(1, 2, a))

= b2k(U
6
n−a−1(2a− 1,

n−a−2︷ ︸︸ ︷
2, . . . , 2)) +m(Tn−a+1(2a− 2, 3,

n−a−2︷ ︸︸ ︷
2, . . . , 2, 1), k − 1)
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− 2m(P3 ∪ (n− a− 2)P2, k − a− 1) + 2m(P1 ∪ (n− a− 2)P2, k − a− 2)

and

b2k(S(θ
∗
n(1, 2, 3)) = b2k(U

6
n−4(5,

n−5︷ ︸︸ ︷
2, . . . , 2)) +m(Tn−2(4, 3,

n−5︷ ︸︸ ︷
2, . . . , 2, 1), k − 1)

− 2m(P3 ∪ (n− 5)P2, k − 4) + 2m(P1 ∪ (n− 5)P2, k − 5) .

By Lemmas 3 and 5 it is easy to prove that

b2k(U
6
n−a−1(2a− 1,

n−a−2︷ ︸︸ ︷
2, . . . , 2)) ≥ b2k(U

6
n−4(5,

n−5︷ ︸︸ ︷
2, . . . , 2))

and

m(Tn−a+1(2a− 2, 3,

n−a−2︷ ︸︸ ︷
2, . . . , 2, 1), k − 1) ≥ m(Tn−2(4, 3,

n−5︷ ︸︸ ︷
2, . . . , 2, 1), k − 1) .

Let

A = −2m(P3 ∪ (n− a− 2)P2, k − a− 1) + 2m(P1 ∪ (n− a− 2)P2, k − a− 2),

B = −2m(P3 ∪ (n− 5)P2, k − 4) + 2m(P1 ∪ (n− 5)P2, k − 5) .

Then we have

b2k(S(θ
∗
n(1, 2, a))− b2k(S(θ

∗
n(1, 2, 3)) ≥ A− B

= −2

[(
n− a− 2

k − a− 2

)
+

(
n− a− 2

k − a− 1

)]
+ 2

[(
n− 5

k − 5

)
+

(
n− 5

k − 4

)]

= 2

{[(
n− 5

k − 5

)
−
(
n− a− 2

k − a− 2

)]
+

[(
n− 5

k − 4

)
−
(
n− a− 2

k − a− 1

)]}
> 0 .

The proof is thus complete.

Let B(a, b) be the bicyclic graph obtained from two vertex-disjoint cycles Ca and

Cb by identifying vertices u of Ca and v of Cb, and B∗
n(a, b) be the graph obtained

from B(a, b) by adding n−a− b+1 pendent vertices adjacent to the vertex of degree

4 in B(a, b).

Lemma 11. Let G be a bicyclic graph on n vertices containing exactly two cycles,

say Ca and Cb. If a ≥ b ≥ 4, then S(G) � S(B∗
n(4, 4)) with equality if and only if

G ∼= B∗
n(4, 4).
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Proof. Let w1 ∈ V (Ca), w2 ∈ V (Cb), if Ca and Cb are connected by a tree T with

pendent vertices w1 and w2 in G. Let G′ be the graph obtained from G − {V (T ) \
{w1, w2}} by identifying w1 and w2 (the new vertex is denoted by w), and adding

|V (T )| − 2 pendent vertices adjacent to w. By a similar proof of Lemma 1, we can

prove that S(G) � S(G′). So, assume that the two cycles Ca and Cb of G have a

common vertex w, and By Lemma 1 we also suppose that all vertices not in cycles

are pendent vertices.

Claim 3: S(G) � S(B∗
n(a, b)) for a ≥ b ≥ 4.

Proof. The proof is by induction on n. If n = a+ b− 1, then the result is true since

G ∼= B(a, b) ∼= B∗
n(a, b). Suppose now n > a + b − 1. Then G has a pendent edge,

denoted by ur, where r be a pendent vertex of G. Let u′ be the vertex of S(G)

adjacent to u and r. From Lemma 3, we have

b2k(S(G)) = b2k(S(G)− uu′) + b2k−2(S(G)− u− u′)

= b2k(S(G− r) ∪ u′r) + b2k−2(S(G)− u− u′)

and

b2k(S(B
∗
n(a, b))) = b2k(S(B

∗
n−1(a, b)) ∪ P2)

+ m(P2a−1 ∪ P2b−1 ∪ (n− a− b)P2 ∪ P1, k − 1) .

By the induction hypothesis, b2k(S(G− r) ∪ u′r) ≥ b2k(S(B
∗
n−1(a, b)) ∪ P2). Then

b2k(S(G))− b2k(S(B
∗
n(a, b))) ≥ b2k−2(S(G)− u− u′)

− m(P2a−1 ∪ P2b−1 ∪ (n− a− b)P2 ∪ P1, k − 1) .

If u = w, then P2a−1 ∪ P2b−1 ∪ (n− a− b)P2 ∪ P1 is a subgraph of S(G)− u− u′ and

S(G)−u−u′ is a forest. And then b2k−2(S(G)−u−u′) = m(S(G)−u−u′, k− 1) ≥
m(P2a−1 ∪P2b−1 ∪ (n− a− b)P2 ∪P1, k− 1). If the equalities hold for all k if and only

if S(G) − u − u′ ∼= P2a−1 ∪ P2b−1 ∪ (n − a − b)P2 ∪ P1, that is, G ∼= B∗
n(a, b). Hence

the result is true for u = w. Suppose now u �= w. Without loss of generality, we

suppose u ∈ V (Ca), and wa,wb ∈ C2b in S(G)− u− u′. Then b2k−2(S(G)− u− u′) ≥
m∗(S(G)− u− u′, k− 1) ≥ m((S(G)− u− u′ −wa−wb, k− 1) ≥ m(P2a−1 ∪ P2b−1 ∪
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(n− a− b)P2 ∪ P1, k − 1). If k = 2, then b2(S(G)− u− u′) = |E((S(G)− u− u′)| >
|E(P2a−1 ∪ P2b−1 ∪ (n − a − b)P2 ∪ P1)| = m(P2a−1 ∪ P2b−1 ∪ (n − a − b)P2 ∪ P1, 1).

Hence the result is also true for u �= w. The proof of Claim 3 is complete.

Claim 4: S(B∗
n(a, b)) � S(B∗

n(4, 4)) for a ≥ b ≥ 4, with equality if and only if

a = b = 4.

Proof. We will consider the following two cases.

Case 1: 2a ≡ 2 (mod 4) or 2b ≡ 2 (mod 4). Without loss of generality, we suppose a

is odd. For any positive integer k, from Lemma 2, we have

b2k(S(B
∗
n(a, b)) = b2k(U

2b
n−a−b+2(2a− 1,

n−a−b+1︷ ︸︸ ︷
2, . . . , 2))

+ m(P2b−1 ∪ P2a−2 ∪ (n− a− b+ 1)P2, k − 1)

+ 2m(P2b−1 ∪ (n− a− b+ 1)P2, k − a)

and

b2k(S(B
∗
n(4, 4)) = b2k(U

8
n−6(7,

n−7︷ ︸︸ ︷
2, . . . , 2)) +m(P7 ∪ P6 ∪ (n− 7)P2, k − 1)

− 2m(P7 ∪ (n− 7)P2, k − 4) .

Using Lemma 2 again, we have

b2k(U
2b
n−a−b+2(2a− 1,

n−a−b+1︷ ︸︸ ︷
2, . . . , 2))

= b2k(U
2b
n−a−b+2(2a− 8,

n−a−b+1︷ ︸︸ ︷
2, . . . , 2) ∪ P7) + b2k−2(U

2b
n−a−b+2(2a− 9,

n−a−b+1︷ ︸︸ ︷
2, . . . , 2) ∪ P6)

= b2k(S(U
b
n−a−b+2(a− 4,

n−a−b+1︷ ︸︸ ︷
1, . . . , 1)) ∪ P7) + b2k−2(U

2b
n−a−b+2(2a− 9,

n−a−b+1︷ ︸︸ ︷
2, . . . , 2) ∪ P6)

and

b2k(U
8
n−6(7,

n−7︷ ︸︸ ︷
2, . . . , 2)) = b2k(S(U

4
n−3) ∪ P7) +m(P7 ∪ P6 ∪ (n− 7)P2, k − 1) .

Note that the inequality m(P2b−1 ∪ P2a−2 ∪ (n − a − b + 1)P2, k − 1) ≥ m(P7 ∪
P6 ∪ (n − 7)P2, k − 1) holds for any k and by the induction hypothesis, we have

b2k(S(U
b
n−a−b+2(a− 4,

n−a−b+1︷ ︸︸ ︷
1, . . . , 1)) ∪ P7) ≥ b2k(S(U

4
n−3) ∪ P7). Hence, we can get that

b2k(S(B
∗
n(a, b))− b2k(S(B

∗
n(4, 4))
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≥ b2k(U
2b
n−a−b+2(2a− 1,

n−a−b+1︷ ︸︸ ︷
2, . . . , 2))− b2k(U

8
n−6(7,

n−7︷ ︸︸ ︷
2, . . . , 2))

≥ m∗(U2b
n−a−b+2(2a− 9,

n−a−b+1︷ ︸︸ ︷
2, . . . , 2) ∪ P6, k)−m(P7 ∪ P6 ∪ (n− 7)P2, k − 1) ≥ 0 .

The last inequality is strict for k = 2. Thus we have S(B∗
n(a, b)) � S(B∗

n(4, 4)) for

a ≥ b ≥ 4 and a is odd or b is odd.

Case 2: 2a ≡ 2b ≡ 0 (mod 4), i. e., a, b are even. From Lemma 3, it follows that

b2k(S(B
∗
n(a− 2, b)) = b2k(U

2b
n−a−b+4(2a− 5,

n−a−b+3︷ ︸︸ ︷
2, . . . , 2))

+ m(P2b−1 ∪ P2a−6 ∪ (n− a− b+ 3)P2, k − 1)

− 2m(P2b−1 ∪ (n− a− b+ 3)P2, k − a+ 2) .

By a similar to the proof of Claim 2, we can prove b2k(S(B
∗
n(a, b)) ≥ b2k(S(B

∗
n(a −

2, b)), and S(B∗
n(a, b) � S(B∗

n(a−2, b). Thus we have S(B∗
n(a, b)) � S(B∗

n(a−2, b)) �
· · · � S(B∗

n(4, 4)) for a ≥ b > 4 and a, b are even.

Combining Claims 3 and 4, the result follows.

Lemma 12. Let G be a bicyclic graph on n vertices containing exactly two cycles Ca

and C3. If a ≥ 4, then S(G) � S(B∗
n(3, 4)) with equality if and only if G ∼= B∗

n(3, 4).

Proof. By a similar proof of Lemma 11, we can prove that S(G) � S(B∗
n(3, a)) with

equality if and only if G ∼= B∗
n(3, a). By Lemma 2 we have

b2k(S(B
∗
n(3, a)) = b2k(U

2a
n−a−1(5,

n−a−2︷ ︸︸ ︷
2, . . . , 2) +m(P4 ∪ P2a−1 ∪ (n− a− 2)P2, k − 1)

+ 2m(P2a−1 ∪ (n− a− 2)P2, k − 3)

and

b2k(S(B
∗
n(3, 4)) = b2k(U

8
n−5(5,

n−6︷ ︸︸ ︷
2, . . . , 2))

+ m(P4 ∪ P7 ∪ (n− 6)P2, k − 1) + 2m(P7 ∪ (n− 6)P2, k − 3) .

So, we have

b2k(S(B
∗
n(3, a))− b2k(S(B

∗
n(3, 4))
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≥ b2k(U
2a
n−a−1(5,

n−a−2︷ ︸︸ ︷
2, . . . , 2)− b2k(U

8
n−5(5,

n−6︷ ︸︸ ︷
2, . . . , 2))

= [b2k(U
2a
n−a−2(

n−a−2︷ ︸︸ ︷
2, . . . , 2) ∪ P5) +m(P2a−1 ∪ P4 ∪ (n− a− 2)P2, k − 1)]

− [b2k(U
8
n−6(

n−6︷ ︸︸ ︷
2, . . . , 2) ∪ P5) +m(P7 ∪ P4 ∪ (n− 6)P2, k − 1)]

= [b2k(S(U
a
n−2) ∪ P5)− b2k(S(U

4
n−2) ∪ P5)]

+ [m(P2a−1 ∪ P4 ∪ (n− a− 2)P2, k − 1)−m(P7 ∪ P4 ∪ (n− 6)P2, k − 1)]

≥ m(P2a−1 ∪ P4 ∪ (n− a− 2)P2, k − 1)−m(P7 ∪ P4 ∪ (n− 6)P2, k − 1) ≥ 0 .

The last inequality is strict for k = 2. Hence, the result follows.

Lemma 13. Let n ≥ 5. Then S(B∗
n(3, 3)) � S(θ∗n(1, 2, 2))

Proof. For 1 ≤ k ≤ n, Using Lemma 2 we have

b2k(S(B
∗
n(3, 3))) = b2k(U

6
n−3(3,

n−4︷ ︸︸ ︷
2, . . . , 2)

+ b2k−2(U
6
n−3(

n−4︷ ︸︸ ︷
2, . . . , 2, 1)) + 2m(P5 ∪ (n− 5)P2, k − 3)

and

b2k(S(θ
∗
n(1, 2, 2))) = b2k(U

6
n−3(3,

n−4︷ ︸︸ ︷
2, . . . , 2) +m(Tn−1(3,

n−3︷ ︸︸ ︷
2, . . . , 2, 1), k − 1)

+ 2m(P3 ∪ (n− 4)P2, k − 3) + 2m(P1 ∪ (n− 4)P2, k − 4) .

Note that

b2k−2(U
6
n−3(

n−4︷ ︸︸ ︷
2, . . . , 2, 1))

= m(Tn−1(3,

n−3︷ ︸︸ ︷
2, . . . , 2, 1), k − 1) +m(Tn−1(

n−3︷ ︸︸ ︷
2, . . . , 2, 1, 1), k − 2)

+ 2m(P1 ∪ (n− 4)P2, k − 4) > m(Tn−1(3,

n−3︷ ︸︸ ︷
2, . . . , 2, 1), k − 1)

and

2m(P5 ∪ (n− 5)P2, k − 3) = 2m(P3 ∪ (n− 4)P2, k − 3) + 2m(P1 ∪ (n− 4)P2, k − 4) .

Then, for 1 ≤ k ≤ n, we have

b2k(S(B
∗
n(3, 3))) > b2k(S(θ

∗
n(1, 2, 2))) i. e., S(B∗

n(3, 3)) � S(θ∗n(1, 2, 2)) .
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Lemma 14. Let n ≥ 7. Then S(B∗
n(4, 4)) � S(θ∗n(2, 2, 2)).

Proof. By induction on n. Let n = 7. The Q-polynomial of B∗
n(4, 4) and θ∗n(2, 2, 2)

are

QB∗
7 (4,4

(x) = x7 − 16x6 + 100x5 − 312x4 + 508x3 − 400x2 + 112x

and

Qθ∗n(2,2,2)(x) = x7 − 16x6 + 96x5 − 278x4 + 413x3 − 300x2 + 84x .

Comparing their coefficients the result follows for n = 7. So let n ≥ 8 and the result

holds for smaller values of n. By Lemma 2 we have

b2k(S(B
∗
n(4, 4))) = b2k(S(B

∗
n−1(4, 4)) ∪ P2) +m(2P7 ∪ (n− 8)P2 ∪ P1, k − 1)

and

b2k(S(θ
∗
n(2, 2, 2)) = b2k(S(θ

∗
n−1(2, 2, 2)) ∪ P2) +m(T3(3, 3, 3) ∪ (n− 6)P2 ∪ P1, k − 1) .

By the induction hypothesis, b2k(S(B
∗
n−1(4, 4)∪P2) ≥ b2k(S(θ

∗
n−1(2, 2, 2)∪P2). There-

fore,

b2k(S(B
∗
n(4, 4)))− b2k(S(θ

∗
n(2, 2, 2))

≥ m(2P7 ∪ (n− 8)P2 ∪ P1, k − 1)−m(T3(3, 3, 3) ∪ (n− 6)P2 ∪ P1, k − 1)

= [m(P7 ∪ P4 ∪ P3 ∪ (n− 8)P2 ∪ P1, k − 1)

+ m(P7 ∪ P3 ∪ (n− 7)P2 ∪ P1, k − 2)]

− [m(P7 ∪ P3 ∪ (n− 6)P2 ∪ P1, k − 1) +m(2P3 ∪ (n− 5)P2 ∪ P1, k − 2)] ≥ 0 .

The above inequality is strict for k = 3, the proof completed.

Similarly, we can prove that

Lemma 15. S(B∗
n(4, 3)) � S(θ∗n(1, 2, 2)) for n ≥ 6; S(θ∗n(4, 3)) � S(θ∗n(1, 2, 2)) for

n ≥ 5.

Theorem 4. Let G be a bicyclic graph on n vertices. (a) if 6 ≤ n ≤ 30, then

IE(G) ≥ IE(θ∗n(2, 2, 2) with equality if and only if G ∼= θ∗n(2, 2, 2)); (b) if n ≥ 31,

then IE(G) ≥ IE(θ∗n(1, 2, 2)) with equality if and only if G ∼= θ∗n(1, 2, 2).
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Proof. By Lemmas 11, 12, 13, 14, and 15, we only need to compare the incidence

energies of θ∗n(1, 2, 2) and θ∗n(2, 2, 2).

It is easy to obtain that the Q-polynomial of θ∗n(1, 2, 2) and θ∗n(2, 2, 2) are

Qθ∗n(1,2,2)(x) = (x− 2)(x− 1)n−4(x3 − (n+ 4)x2 + 4nx− 8)

and

Qθ∗n(2,2,2)(x) = x(x− 2)2(x− 1)n−6(x3 − (n+ 4)x2 + (5n− 2)x− 3n) .

So, the polynomial of S(θ∗n(1, 2, 2)) and S(θ∗n(2, 2, 2)) are

PS(θ∗n(1,2,2))(x) = x(x2 − 2)(x2 − 1)n−4(x6 − (n+ 4)x4 + 4nx2 − 8)

and

PS(θ∗n(2,2,2))(x) = x3(x2 − 2)2(x2 − 1)n−6(x6 − (n+ 4)x4 + (5n− 2)x2 − 3n)

respectively. Let x1, x2, x3 (x1 ≥ x2 ≥ x3) are the three positive roots of h(x) =

x6 − (n + 4)x4 + 4nx2 − 8, and y1, y2, y3 (y1 ≥ y2 ≥ y3) are the three positive roots

of r(x) = x6 − (n+ 4)x4 + (5n− 2)x2 − 3n. Then

IE(θ∗n(1, 2, 2)) =
1

2
E(S(θ∗n(1, 2, 2))) = n− 4 +

√
2 + x1 + x2 + x3

IE(θ∗n(2, 2, 2)) =
1

2
E(S(θ∗n(2, 2, 2))) = n− 6 + 2

√
2 + y1 + y2 + y3 .

Clearly, y1 =
√
q1(θ∗n(2, 2, 2)) ≥

√
Δ+ 1 =

√
n− 1. By direct calculation it is easy

to prove the result for 6 ≤ n ≤ 45. Suppose that n ≥ 46, we have that r(0.834) =

−2.989795891 − 0.006018149n < 0, r(2.065) = −3.72388436 + 0.13751015n > 0,

r(2.2) = 9.997504 − 2.2256n < 0, h(0) = −8 < 0, h(0.21) = −8.007693474 +

0.17445519n > 0, h(2) = −8 < 0, and

h(
√
n− 1 + 0.1) = −0.91n2 + 0.2

√
n− 1n2 − 1.584

√
n− 1n

− 12.611899 + 5.5614n+ 2.16406
√
n− 1

> −0.91n2 + 0.2
√
n− 1n2 − 1.584

√
n− 1n

> 0.4n2 − 1.584
√
n− 1n > 0 .
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Thus it follows that for n ≥ 46, y1 ≥ √
n− 1, y2 ≥ 2.065, y3 ≥ 0.834 and x1 ≤

√
n− 1 + 0.1, x2 ≤ 2, x3 ≤ 0.21. Thus we have

IE(θ∗n(2, 2, 2)) = n− 6 + 2
√
2 + y1 + y2 + y3 > n− 6 + 2

√
2 + 2.899 +

√
n− 1

> (n− 4) +
√
2 +

√
n− 1 + 0.1 + 0.21 + 2

> IE(θ∗n(1, 2, 2))

which completes the proof.

Remark: It is easy to prove that E(P 6
2n) < E(P 6,6

2n+1) for n ≥ 8, and E(S(U3
n)) <

E(S(θ∗(1, 2, 2)) for n ≥ 31. By Theorem 1, 2, 3 and 4 it follows that for a connected

graph with n vertices and m edges (31 ≤ n ≤ m ≤ n+ 1), then

IE(U3
n) ≤ IE(G) ≤ IE(P 3,3

n )

with left (right, respectively) equality if and only if G ∼= U3
n (G ∼= P 3,3

n , respectively).
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